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Homography estimation is an important task in robotics applications such as landing on moving platforms, docking and refueling, building inspection, etc. Non-linear observers depend on an estimate of the group algebra velocity as a feedforward term to minimize lag in the filter response. When both the camera and the scene are moving, and for perspective image constructs such as the homography, it is often impossible to directly measure the required group velocity. This paper proposes a solution for the case where the motion is periodic, or approximately periodic, with known period. The approach is based on the internal model principle, where the internal model can be expanded to include a sufficient harmonics of the desired period in order to model complex periodic motions. The novelty of the work lies in formalizing the internal model for observer design to the non-compact Lie group SL(3) and providing a demonstration of the effectiveness of the approach with realworld examples.

I. INTRODUCTION

Recent years have witnessed an increase in the use of autonomous robotic vehicles for a wide range of civilian and commercial applications. There is a growing interest in applications where the autonomous vehicle physically interacts with the surrounding environment. These operations include landing on moving platforms, docking and refueling, building inspections and search and rescue missions. Obtaining a good measure of the position of the vehicle during such missions is a crucial to the system performance. Global Positioning Systems (GPS) are widely used for navigation and control in open areas, however, reliable and accurate GPS localization in the applications of interest is not possible due to tall buildings, urban canyons, dense material such as concrete and steel and many other factors that can block or heavily degrade the GPS signals. Moreover, many missions require localization with respect to some particular features in the environment instead of an absolute position. For these reasons, the study of alternative localization systems has become popular in the robotics and control community. Examples of such localization systems are 2D laser scanner (LIDAR), radar, cameras (monocular, stereo, RGB-D, event), etc. Active sensor systems such as LIDAR are well suited for large-scale vehicles, however since they are usually heavy, expensive and power hungry they S. de Marco and M.-D. Hua are with I3S, Université de Nice, Sophia-Antipolis, CNRS, France sdemarco(hua)@i3s.unice.fr R. Mahony is with the Australian Centre for Robotic Vision, Australian National University, Robert.Mahony@anu.edu.au.

T. Hamel is with I3S, Université Côte d'Azur, Institut Universitaire de France, CNRS, Sophia Antipolis, France, thamel@i3s.unice.fr. cannot be used on small-scale vehicles. In contrast, cameras are cheap, lightweight, small and convenient to mount and provide an information rich measurement. Therefore, visionbased systems remain one of the most promising technologies especially for small-scale unmanned aerial vehicles (UAV). Vision-based control algorithms are known in literature as visual servoing [START_REF] Chaumette | Visual servo control part I: Basic approaches[END_REF], [START_REF] Chaumette | Visual servo control, part II: Advanced approaches[END_REF], [START_REF] Malis | 2-1/2D visual servoing[END_REF].

Any two images of the same planar scene taken from two different camera poses are related by a projective mapping known as a homography. Homographies play a major role in rigid-body pose estimation [START_REF] Chen | Homographybased visual servo tracking control of a wheeled mobile robot[END_REF], [START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF], unmanned vehicle navigation [START_REF] Nguyen | Inertial-aided homography-based visual servo control of autonomous underwater vehicles without linear velocity measurements[END_REF], [START_REF] Plinval | Visual servoing for underactuated VTOL UAVs: a linear, homography-based framework[END_REF], UAV autonomous approach and landing [START_REF] Gonc ¸alves | Homography-based visual servoing of an aircraft for automatic approach and landing[END_REF], [START_REF] Shakernia | Multiple view motion estimation and control for landing an unmanned aerial vehicle[END_REF], to name only a few applications. Using homographies is effective when the surrounding environment is composed mainly of planar surfaces for example in man-made environments, urban scenes and also when the relief of the scene viewed is negligible compared to the distance of the camera from the scene. Estimating homography from pairs of images has been extensively studied in the computer vision literature [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. Classical algorithms estimate homographies by minimizing a suitable cost function given a set of image feature (points, lines, conics) correspondences between image pairs. For such algorithms, there is no difference whether the images considered are generated by a temporal correlated sequence (such as in a video) or are taken independently. When a robotic vehicle moves, however, the camera captures a temporal sequence of images for which the homography varies continuously. This has lead to the development of a number of non-linear continuous-time observers [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], [START_REF] Hua | Explicit complementary observer design on special linear group SL(3) for homography estimation using conic correspondences[END_REF], [START_REF] Hua | Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF] that exploit the structure of the Special Linear group SL(3), a Lie-group isomorphic to the group of homographies [START_REF] Benhimane | Homography-based 2D visual tracking and servoing[END_REF]. A disadvantage of non-linear observers is that they rely on group velocity measurements to propagate the state estimate with time. Although robotic systems are usually provided with an inertial measurement unit, and other velocity measurements such as doppler GPS and optical flow, the homography velocity depends also on scene parameters and is difficult to reconstruct. Furthermore, if the scene itself is moving, such as for landing on a moving platform, ego motion estimation of the robot by itself cannot estimate the velocity of the relative homography. The only algorithms the authors are aware of that address this issue use an integral adaptive term [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], [START_REF] Hua | Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF] to estimate 'constant' unknown velocity. This assumption is restrictive since constant group velocity motions for the homography group are not intuitive motions for a rigid-body robotic system with a mounted camera moving over a moving scene, and it may introduce significant lag in the filter response when used in real-world scenarios [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], [START_REF] Hua | Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization[END_REF], [START_REF] Malis | Dynamic estimation of homography transformations on the special linear group for visual servo control[END_REF].

The problem of regulating the output of a system in order to track an unknown reference trajectory while rejecting disturbances is known as an output regulation problem (or servomechanism problem) [START_REF] Davison | The robust control of a servomechanism problem for linear time-invariant multivariable systems[END_REF], [START_REF] Francis | The linear multivariable regulator problem[END_REF]. The case where the desired reference can be modeled as the solution to an ordinary differential equation with unknown initial condition can be solved by internal model-based regulators. This problem has been extensively studied over the last thirty years in both linear [START_REF] Davison | The robust control of a servomechanism problem for linear time-invariant multivariable systems[END_REF], [START_REF] Francis | The linear multivariable regulator problem[END_REF], [START_REF] Francis | The internal model principle of control theory[END_REF] and non-linear context [START_REF] Isidori | Output regulation for nonlinear systems[END_REF], [START_REF] Byrnes | Output regulation of Uncertain Nonlinear Systems[END_REF], [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF], leading to the so-called Internal Model Principle. The central part of the regulator design incorporates an internal model unit, which is a dynamical autonomous system that generates in steady state the feed-forward input that keeps the tracking error identically to zero. Recently, the theory of non-linear observers has been shown to play a central role in the output regulation problem. In particular, adaptive observers [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF] and high-gain observers [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF], [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF] have been successfully used for the design of adaptive internal models [START_REF] Delli Priscoli | A new approach to adaptive nonlinear regulation[END_REF] and robust internal models [START_REF] Isidori | Robust design of nonlinear internal models without adaptation[END_REF], [START_REF] Bin | Robust internal model design by nonlinear regression via low-power high-gain observers[END_REF].

In this paper, we take advantages of recent results [START_REF] Marco | Output regulation for systems on matrix lie-group[END_REF] on output regulation for systems on matrix Lie-groups to develop an internal model-based observer design for the homography estimation problem. The unknown group velocity, that acts like an unknown reference trajectory, is modeled as belonging to a family of trajectories generated as solutions of an autonomous linear system on the group Lie algebra. The proposed observer, in the same spirit of linear internal model principle, embeds a copy of the exogenous dynamics (posed on the Lie algebra) and incorporates an innovation to synchronize these dynamics with the exogenous plant providing a driving term for the velocity reference of a standard kinematic observer on the Lie group. The novelty of the paper, which is based on the direct point formulation proposed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], is its ability to learn complex feed-forward velocity profiles to reduce lag in the homography tracking where motion is periodic. This has application in a wide range of applications such as landing an aerial robot on an oscillating platform or stabilizing periodic camera shake. A preliminary version of the theoretical results of this paper was presented in [START_REF] Marco | Homography estimation of a moving planar scene from direct point correspondence[END_REF]. Here we provide a more extensive stability analysis extending the local asymptotic results in [START_REF] Marco | Homography estimation of a moving planar scene from direct point correspondence[END_REF] to local uniform exponential results as well as providing a more detailed experimental study and full details of the derivations. The experimental results provided demonstrate excellent performance and robustness in presence of challenging conditions and outperform the state-of-the-art results documented in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF].

The paper is organized into five sections including the present introduction and an appendix. Section II introduces the notation and formulation. The non-linear observer is detailed in Section III. Simulation results are provided in Section IV. Section V provides a detailed description of the software implementation of the observer. In the same section an application of the proposed approach for the tracking of an oscillating platform, with comparisons of the observer proposed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], is presented. A video link of the experiment (https: //goo.gl/9Y3KsB) is provided as supplementary material. The Appendix contains proofs of some useful properties for the observer design, a rigorous analysis of the local exponential stability of the proposed observer, and an important lemma that is not in the direct line of argument for the main result.

II. PROBLEM FORMULATION

A. Notation and mathematical identities

The set of all m×n matrices whose entries are real numbers is denoted R m×n . For any A ∈ R n×n , det(A) and tr(A) denote the determinant and the trace of A respectively.

The Special Orthogonal group is denoted SO(3). The Lie algebra associated to the Special Orthogonal group, denoted by so(3), is the set of 3 × 3 skew symmetric matrices

so(3) := Ω × ∈ R 3×3 |Ω × + Ω × = 0 .
The Lie algebra so(3) with the matrix commutator (Lie bracket)

[•, •] is isomorphic to R 3 with the cross product. Let Ω = [Ω 1 , Ω 2 , Ω 3 ] ∈ R 3 , then the matrix Ω × = 0 -Ω3 Ω2 Ω3 0 -Ω1 -Ω2 Ω1 0
is the skew symmetric matrix associated to the cross product

Ω × v = Ω × v, for any v ∈ R 3 .
The Special Linear group SL(3) and its associated Lie algebra sl(3) are defined by

SL(3) := H ∈ R 3×3 | det(H) = 1 , sl(3) := U ∈ R 3×3 | tr(U ) = 0 .
For H ∈ SL(3) and U ∈ sl(3), the adjoint operator is a mapping Ad : SL(3) × sl(3) → sl(3) defined by

Ad H U := HU H -1 .
For any A, B ∈ R n×n , A, B = tr(A B) defines an inner product on R n×n , and the Frobenius norm • F is defined by

A F := A, A .
Let P sl3 (•) denote the unique orthogonal projection of R 3×3 onto sl(3) with respect to the trace inner product, one has

P sl3 (A) = A - 1 3 tr(A)I ∈ sl(3), ∀A ∈ R 3×3 ,
with I the identity matrix. Let ∧ denotes the mapping ∧ : R 8 → sl(3) that maps the vector v ∈ R 8 to an element of sl(3)

v ∧ := 8 j=1 v j B j where {B 1 , . . . , B 8 } is a basis of sl(3). For instance, denoting by b 1 = [1, 0, 0] , b 2 = [0, 1, 0] , b 3 = [0, 0, 1]
, the following eight generators form a basis for the lie algebra sl(3)

B 1 := b 1 b 1 -I 3 , B 4 = b 1 b 2 , B 7 = b 1 b 3 , B 2 := b 2 b 1 , B 5 = b 2 b 2 -I 3 , B 8 = b 2 b 3 , B 3 := b 3 b 1 , B 6 = b 3 b 2 . ( 1 
)
The operator vec ∨ : sl(3) → R 8 denotes the inverse of the (•) ∧ operator, namely

vec ∨ (v ∧ ) = v, ∀v ∈ R 8 .
For any A ∈ R n×n , vect(A) ∈ R n 2 denotes the column vector obtained by the concatenation of columns of the matrix A as follows

vect(A) = [a 1,1 , • • • , a n,1 , a 1,2 , • • • , a n,2 , • • • , a 1,n , • • • , a n,n ] .
The matrix representation of the composition of the linear maps (vect •∧) : R 8 → sl(3) → R 9 is denoted by the full columns rank matrix J∧K ∈ R 9×8 . Let Q sl3 ∈ R 8×8 denote the symmetric positive matrix Q sl3 := J∧K J∧K.

For any p ∈ S 2 , the projection π p := (I -pp ) onto the tangent space of the unit sphere S 2 at point p satisfies π p p = 0.

B. Perspective Projection

Let B denote projective coordinates for the image plane of a camera, and {B} its frame of reference. Let ξ ∈ R 3 denote the position of the body-fixed frame {B} with respect to the inertial frame {I} expressed in {I}. The orientation of the frame {B} with respect to the inertial frame {I} is given by the rotation matrix R ∈ SO(3). Let T denote the projective coordinates of reference image of the target plane, and let {T } denote its right-hand frame of reference. Let (ξ T , R T ) ∈ R 3 × SO(3) denote the configuration of the frame {T } with respect to the inertial frame {I}.

The coordinates of a single point in the inertial frame P I ∈ {I}, in the camera frame P B ∈ {B} and in the target frame P ∈ {T } (see Figure 1) are related by

P I = R T P + ξ T , (2a) 
P I = RP B + ξ. ( 2b 
)
The orientation of the body-fixed frame {B} with respect to the target frame {T }, is denoted by the rotation matrix R : {B} → {T }, while the relative position of the frame {B} with respect to the target frame {T } expressed in the frame {T } is denoted by ξ, one verifies that

R = R T R, (3a) ξ = -R T (ξ T -ξ). (3b) 
Substituting (2a) into (2b) one has

P B = R P -R ξ (4) 
as relation between the coordinates of the same point in the target frame and in the body-fixed frame.

Considering the classical pinhole camera model [START_REF] Faugeras | Three-dimensional Computer Vision: A Geometric Viewpoint[END_REF], [START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF], 3D points can be projected on the image planes B and T . Let p ∈ B denote the image of a point when the camera is aligned with the body-fixed frame {B} and let p ∈ T denote the image of the same point when the camera is aligned with the target frame {T }, then 1 p ∼ = K P , p ∼ = KP B 1 The notation " ∼ =" is defined in the homogeneous sense, i.e. up to a nonzero scalar factor [START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF]. where K is the upper triangular camera matrix which depends on intrinsic parameters of the camera, namely focal length, pixels aspect ratio and principal point offset.

C. Homography matrix and the Special Linear Group SL(3)

Let η denote the unit normal vector pointing towards the target plane expressed in {T }, and let d denote the orthogonal distance of the plane to the origin of {T }.

Due to the fact that all target points Pi for i = {1, . . . , n} lie on a single planar surface one has

η Pi d = 1,
it follows from (4) that

P Bi = R -R ξ η d Pi , (5) 
and thus, using the perspective projection, one obtains

pi ∼ = K R -R ξ η d -1 K -1 p i . (6) 
The projective mapping G : B → T that maps pixel coordinates from B to T given by

G = ζK R -R ξ η d -1 K -1 ,
where ζ represents a scaling factor, is known in literature as homography matrix. Let η (resp. η I ) denote the normal to the target plane expressed in the frame {B} (resp. {I}), and let d (resp. d I ) denote the orthogonal distance of the planar surface to the origin of the body-fixed frame {B} (resp. inertial frame {I}). One verifies that:

η = R η I = R η, (7) 
d = d I -η I ξ = d -η ξ. (8) 
It follows that the homography matrix can be written as If the camera is calibrated the homography matrix can be scaled

G = ζK R + ξη d K -1 .
H = K -1 GK = ζ R + ξη d . (9) 
This mapping is referred to as Euclidean homography since it maps Euclidean coordinates of the scene's points from {B} to {T }. Indeed, the Euclidean homography contains the relative pose information of the camera body-fixed frame {B} with respect to the target frame {T }. From now on we restrict our attention to the Euclidean homography H.

Since the homography H is only defined up to a scale factor, it is possible to represent it uniquely as an element of the Special Linear group SL(3) by choosing ζ such that det(H) = 1, namely

H = H det(H) -1 3 ∈ SL(3).
For the remainder of this paper, we assume that the calibrated homograpy is appropriately scaled in such a way H ∈ SL(3).

D. Homography Kinematics and Measurements

Denote the angular velocity and linear velocity of the target frame {T } with respect to the inertial frame {I} expressed in the target frame {T } by Ω T and V T . The target kinematics of (R T , ξ T ) are given by:

ṘT = R T Ω T × , ξT = R T V T . ( 10 
)
Let Ω denote the angular velocity of the body-fixed frame expressed in {B} and let V denote the linear velocity of the body-fixed frame {B} with respect to the inertial frame {I} expressed in the frame {B}. The kinematics of (R, ξ) are given by:

Ṙ = RΩ × , ξ = RV. ( 11 
)
It follows that the kinematics of the relative attitude and position of the body-fixed frame {B} with respect to the target frame {T } expressed in {T } can be written as

Ṙ = R Ω× , ξ = R V (12) 
where

Ω× = Ω × -( R Ω T ) × , (13a) V = R Ω T × ξ + V -R V T . ( 13b 
)
Lemma 1. Consider a camera moving with kinematics (11) viewing a moving planar scene whose kinematics are defined by [START_REF] Chen | Homographybased visual servo tracking control of a wheeled mobile robot[END_REF]. Let H : {B} → {T } denote the Euclidean homography matrix. The group velocity Ū ∈ sl(3) induced by the relative motion between the camera and the target plane is such that

Ḣ = H Ū , with Ū = Ω× + V η d - η V 3d I. (14) 
Proof: See Appendix A. Note that the group velocity Ū induced by the relative motion between the camera and the target plane depends on the normal to the surface η and the orthogonal distance d, that define the scene geometry at time t, as well as the angular velocity of the target plane Ω T . The scene parameters and the velocity of the target are usually unmeasurable and they have to be taken into account during the observer design. To this purpose we rewrite the group velocity as

Ū = Ω × + Γ ∧ , ( 15 
)
where Ω is typically the measurable part, which can be obtained from the set of embedded gyros and can be directly used in the observer as feed-forward term. While the remainder of the group velocity Γ ∧ represents the unmeasurable part that has to be estimated.

In order to cope with the unmeasurable group velocity, we assume that Γ ∧ can be immersed into a finite-dimensional and observable linear system ( [START_REF] Byrnes | Structurally stable output regulation of nonlinear systems[END_REF], [START_REF] Khalil | Robust servomechanism output feedback controllers for feedback linearizable systems[END_REF]) in such a way it can be written in the form

Γ ∧ = (Cγ) ∧ , γ = Sγ ( 16 
)
where the known matrix C ∈ R 8×m is a full row rank matrix with m ≥ 8, γ ∈ R m and the known matrix S ∈ R m×m is skew symmetric, namely S = -S .

Remark. The eigenvalues of a real skew-symmetric matrix are all purely imaginary and they come in conjugate pairs. In case of odd dimension there is an additional unpaired null eigenvalue. The system in ( 16) is stable in the Lyapunov sense. Indeed considering the Lyapunov candidate L = γ 2 , and differentiating it along the solutions of (16) one obtains L = 2γ Sγ = 0. It follows that any autonomous observable system of the form

ẋ = Ax, A ∈ R m×m , x ∈ R m y = C y x, C y ∈ R 8×m , y ∈ R 8
is equivalent to (16) iff all eigenvalues of A have zero real part and multiplicity one in the minimal polynomial. The considered assumption on Γ ∧ is of course not valid for all types of relative motions between the camera and the target plane. It, however, allows us to cover many possible camera/target trajectories encountered in practice such as (near) circular or sinusoidal motions.

We consider a set of n point measurements p i ∈ P 2 associated to a group action of SL(3) onto the projective space

P 2 p i = H -1 pi |H -1 pi | , i = {1, . . . , n}, (17) 
representing calibrated image points projected onto the unit sphere.

III. NON-LINEAR OBSERVER DESIGN ON SL(3)

The goal of the non-linear filter is to provide an estimate Ĥ ∈ SL(3) given a collection of n measurements p i to drive the error H := ĤH -1 to the identity element of the group. To this purpose, we define the estimates pi ∈ P 2 of p i as

pi := Ĥ-1 pi Ĥ-1 pi , i = {1, . . . , n}. (18) 
The estimates e i of pi then is defined as

e i := Ĥp i Ĥp i = Hp i Hp i , i = {1, . . . , n}. (19) 
Definition 1. A set M n of n(≥ 4) vector directions pi ∈ P 2 is called consistent, if it contains a subset M 4 ⊂ M n of 4 constant vector directions such that all its vector triplets are linearly independent.

Theorem 1. Let H denote the Euclidean homography (9) and consider the kinematic system in (14) along with (15) and ( 16).

Consider the following nonlinear filter

Ḣ = Ĥ(Ω × + Γ∧ ) + k p ∆ Ĥ (20a) Γ∧ = (C γ) ∧ (20b) γ = Sγ + k I C Q sl3 n i=1 ϕ i (20c)
with k p and k I some positive gains and

∆ := n i=1
π ei pi e i ∈ sl(3)

ϕ i := vec ∨ P sl3 ( Ĥ pi )( Ĥ-1 e i ) +
-e i pi vec ∨ P sl3 ( Ĥ e i )( Ĥ-1 e i ) .

(21) Assume that the measured angular velocity Ω of the planar target, the group velocity Γ (equivalently γ) in ( 16) and homography matrix H are bounded.

Then, if the set M n of measured directions pi is consistent, the equilibrium ( H, γ) = (I, 0), with H := ĤH -1 , γ := γ -γ, of the error system is locally exponentially stable.

The proof of Theorem 1 is given in Appendix B. The positive gains k p and k I in (20) share the same effects of a proportional gain and an integral gain for a linear system, respectively. In particular k p directly relates the dynamics of Ĥ to the innovation, while the gain k I represents the integral term of the innovation projected into R 8 in the inertial frame.

Remark. The constant image points pi represent known reference points which can be extracted from a stored reference image of the planar scene or extracted directly during the initialization process of the observer, namely the first image taken by the camera. In the latter case one has pi = p i (0), ∀i = {1, . . . , n}, whereas e i represent the estimates of the reference points pi based on the current measurements p i . Roughly speaking, in a classical linear Luenberger observer the error i (p i -e i ) would represent the output prediction error (innovation).

IV. SIMULATION RESULT

In this section we illustrate the performance of the proposed observer through simulations. The camera is assumed to be a stationary camera. The target plane trajectory, depicted in Figure 3, is chosen as a Lemniscate of Gerono with zero angular velocity and linear velocity given by:

V T =   -12π sin(6πt) 12π cos(12πt) 24π cos(12πt)   .
Note that the group velocity Γ ∧ in [START_REF] Francis | The internal model principle of control theory[END_REF] induced by the Gerono trajectory cannot be immersed into a finite linear system. However, due to the fact that Γ ∧ is a periodic function it is possible to decompose it into Fourier series (see Figure 4).

The initial homography H is initialized as while the initial estimated homography Ĥ(0) is set to the identity element of the group. The filter parameters are k p = 50 and k I = 10.

H(0) =   2 
Considering the spectrum of the group velocity induced by the motion of the planar target, depicted in Figure 4, we implemented in the internal model unit the first four harmonics for the basis B 1 , B 5 , B 7 , B 8 defined in [START_REF] Astolfi | A high-gain nonlinear observer with limited gain power[END_REF].

For comparison purpose a second simulation was run considering the observer proposed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], using the same value k p = 50 for the proportional term. The results reported in Figures 56show respectively the time behavior of the Frobenious norm I -H F for the observer presented in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] and the proposed observer (termed OSC in order to highlight the oscillatory nature of the terms in the Lie algebra), the Frobenious norm Γ ∧ -Γ∧ F , and the group velocity vs. the estimated group velocity. Figure 5 clearly shows that the proposed observer outperform the observer in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF]. Plots show that, in steady state, the velocity Γ∧ of the observer practically converges to Γ ∧ and the estimated homography Ĥ practically converges to the real homography H. In red the proportional observer (P) proposed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] and in blue the observer (OSC) proposed in this paper.

In Figure 7 it is shown the state of the internal model unit relative to the basis B 8 in order to track the desired group velocity Γ ∧ .

V. EXPERIMENTAL RESULT A. Experimental implementation aspects

The proposed non-linear observer has been implemented in C++ with OpenCV library. Due to real-time constraint, the time consuming image processing part of the observer has been implemented taking advantages of modern GPU parallel computing. In particular, in view of embedding the filter on small-scale unmanned vehicles on the Jetson NVIDIA family, CUDA API have been used. The algorithm, whose flowchart is depicted in Figure 8, can be summarized as follows. The process is initialized detecting feature and extracting the descriptor of a reference image (red boxes Figure 8). As soon as a new image arrives, it is transformed with a perspective transformation (OpenCV's cuda::warpPerspective) based on the homography estimate. The algorithm detects key-points on the current warped image and extracts the features' descriptor. The descriptor of the current image is matched with the descriptor of the reference image (Figure 9). Those matches, however, may contain many outliers which are removed with the outliers algorithm presented in [START_REF] Hua | Featurebased Recursive Observer Design for Homography Estimation and its Application to Image Stabilization[END_REF]. The remaining inliers, that lie on the image plane, are projected onto the unit sphere [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF]. From these measurements the homography estimate is updated by iterating the observer equations 250 times per video frame. In this correction step, special attention has been paid on the integration of the observer equations in [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. In particular a leapfrog integrator has been implemented for the numerical integration of the oscillators bank in the lie algebra sl(3) of the observer. Note that feature detection and description are essential components for the algorithm. Several feature detectors, such as scale invariant feature transform (SIFT) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], features from accelerated segment test (FAST) [START_REF] Rosten | Fusing points and lines for high performance tracking[END_REF], oriented FAST and rotated BRIEF (ORB) [START_REF] Rublee | Orb: An efficient alternative to SIFT or SURF[END_REF], speeded-up robust features (SURF) [START_REF] Bay | Speeded-up robust features (SURF)[END_REF] and descriptors such as ORB, SIFT and SURF have been proposed in literature. Choosing the detector-descriptor combination depends on the particular application and is usually a trade-off between accuracy, repeatability, robustness and speed. Since the major constraint for this application is the time it has been decided to use the combination FAST-ORB.

B. Experimental setup

In order to experimentally validate the proposed observer we present an application for the homography estimate of an oscillating cardboard target in challenging conditions such as partial target occlusions, changing in light condition and specular reflections. The platform used for the experiment, depicted in Figure 10, is made of a cardboard box whose upper flap is actuated by a small servo motor via an Arduino Mega 2560. The camera used is a Basler acA 1200-200uc featuring a 6.1 mm × 4.9 mm sensor, maximum resolution 1280 px × 1024 px and maximum frame rate of 203 fps. An Optitrack motion capture system is used together with markers mounted to the camera and to the cardboard in order to provide homography ground truth measurements starting from the knowledge of the full pose of the camera and the planar target.

C. Experimental results

The experiment has been performed using the Basler camera which is held stationary recording at 50 fps while looking at the oscillating target. In an ideal scenario, the target platform should oscillate with a frequency of 0.83 Hz only on the pitch angle. However, due to the simple design of the handmade platform, the target oscillates along all the three axes, as depicted in Figure 11. Since the platform is tracking the desired sinusoidal trajectory by means of position feedback only, and due to the fact that the center of mass of the target is located slightly below the rotation axis, the rising and the falling edge of the sinusoidal trajectory are not symmetrical. As a consequence, the motion of the target is still periodical but with a much richer frequency spectrum (see Figure 11, cyan box).

We proceed by presenting a comparison of the homography observer proposed in [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] with respect to the filter formulated in this paper. In order to have a fair comparison between the algorithms, the proportional term of the three observers is chosen as k p = 80, the integral term of the proportionalintegral filter is chosen equal to the oscillator gain of the internal model-based observer and set to k I = 80. In the internal model-based observer only the nominal oscillation frequency f n = 0.83 Hz of the target has been implemented in the bank of oscillators defined on the Lie algebra sl(3). In particular denoting by

S 1 := 0 -2πf n 2πf n 0 , C 1 := 0 1 ,
the matrices of the implemented observer have the following form

S = diag(S 1 , S 1 , S 1 , S 1 , S 1 , S 1 , S 1 , S 1 ) ∈ R 16×16 , C = diag(C 1 , C 1 , C 1 , C 1 , C 1 , C 1 , C 1 , C 1 ) ∈ R 8×16 .
Figures [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF][START_REF] Bay | Speeded-up robust features (SURF)[END_REF][START_REF] Benhimane | Homography-based 2D visual tracking and servoing[END_REF][START_REF] Bin | Robust internal model design by nonlinear regression via low-power high-gain observers[END_REF][START_REF] Byrnes | Output regulation of Uncertain Nonlinear Systems[END_REF][START_REF] Byrnes | Structurally stable output regulation of nonlinear systems[END_REF][START_REF] Chaumette | Visual servo control part I: Basic approaches[END_REF][START_REF] Chaumette | Visual servo control, part II: Advanced approaches[END_REF][START_REF] Chen | Homographybased visual servo tracking control of a wheeled mobile robot[END_REF][START_REF] Davison | The robust control of a servomechanism problem for linear time-invariant multivariable systems[END_REF][START_REF] Marco | Homography estimation of a moving planar scene from direct point correspondence[END_REF] show the comparison between the three algorithms: namely proportional (P), proportional-integral (PI), and internal model-based (OSC). To this regard, we performed an experiment where:

• From 0-25 seconds (Figure 2 frames 38-293) the conditions are ideal, except for the presence of specular reflections. Figure 12 shows the time behavior of the Frobenious norm I -H F for the three implemented algorithms. The figure clearly shows better performance of the internal model based observer with respect to [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] in all the conditions except when the assumption on the periodicity of the target trajectory is strongly violated. APPENDIX A PROOF OF LEMMA 1 Considering (9), the time derivative of the homography is given by

Ḣ = ζ Ṙ + ξη + ξ η d - ḋ ξη d 2 + ζ ζ H.
Recalling [START_REF] Byrnes | Structurally stable output regulation of nonlinear systems[END_REF], [START_REF] Chaumette | Visual servo control part I: Basic approaches[END_REF] it is straightforward to verify that ḋ = -η V , η = η Ω× and bearing in mind (13a), (13b) one has 

Ḣ= ζ R Ω× + R V η + ξη Ω× d + η V ξη d 2 + ζ ζ H = ζ R + ξη d Ω× + ζ R + ξη d V η d + ζ ζ H = H Ω× + V η d + ζ ζ I . (22 

APPENDIX B PROOF OF THEOREM 1

We recall that the matrix representation of the composition of the linear maps (vect •∧) is denoted by the full columns rank matrix J∧K ∈ R 9×8 . Let Jvec ∨ K ∈ R 8×9 denotes the matrix representation of the inverse of the map (vect •∧), namely

vect(v ∧ ) = (vect •∧)(v) = J∧Kv, vec ∨ (v ∧ ) = (vect •∧) -1 (vect(v ∧ )) = Jvec ∨ K vect(v ∧ ), (23) 
for any v ∈ R 8 . The operator ⊗ denotes the usual Kroneker product. Let us introduce the following properties which are instrumental for the proof of the main theorem of this paper.

A. Property 1

For any H ∈ SL(3) and v ∈ R 8 , the matrix representation of the composition of the linear maps (vec

∨ • Ad H ) vec ∨ (Ad H (v ∧ )) := JAd H Kv is given by JAd H K = Jvec ∨ K(H -⊗ H)J∧K. (24) 
Proof. From the definition of J∧K and Jvec ∨ K in (23) one has

vec ∨ (Hv ∧ H -1 ) = Jvec ∨ K vect(Hv ∧ H -1 ) = Jvec ∨ K(H -⊗ H) vect(v ∧ ) = Jvec ∨ K(H -⊗ H)J∧Kv = JAd H Kv B. Property 2 For any A ∈ R 3×3 , B ∈ R 3×3 , one verifies J∧KJvec ∨ K(A ⊗ B)J∧K vec ∨ (U ) = = J∧KJvec ∨ K(A ⊗ B) vect(U ) = J∧KJvec ∨ K vect(BU A ) = vect(BU A ) = (A ⊗ B) vect(U ) = (A ⊗ B)J∧K vec ∨ (U ) which implies J∧KJvec ∨ K(A ⊗ B)J∧K = (A ⊗ B)J∧K. (25) 

C. Theorem 1 Proof

By considering the Euclidean homography ( 14), with kinematics ( 15), ( 16) along with the observer [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], the dynamics of the error system are given by

Ḣ = -[Ad Ĥ (C γ) ∧ ] H + k p ∆ H γ = Sγ -k I C Q sl3 n i=1 vec ∨ (Ad Ĥ ∆). (26) 
To prove that the origin of the error system ( H, γ) = (I, 0) is locally exponentially stable, it suffices to show that the origin of the linearized error system is exponentially stable. The proof is based on Theorem 1 in [START_REF] Loria | Uniform exponential stability of linear timevarying system: revisited[END_REF] which establishes sufficient conditions for the uniform exponential stability of the origin of a linear time-varying system having the following standard form ẋ θ = A(t) B(t) -C(t) 0

x θ . (27) 
In order to write the linearized system in the standard form [START_REF] Loria | Uniform exponential stability of linear timevarying system: revisited[END_REF] , which implies x Px ≥ 0. We show that P is positive definite by contradiction. Assume that there exists a non null vector x such that x = 0 ∈ ker P,

which in turn implies and recalling that π pi is a projector it yields x∧ pi = λ i pi .

Since the measurement set is consistent, one can consider (without loss of generality) that (p 1 , p2 , p3 ) are three non collinear eigenvectors of x∧ associated with the eigenvalues λ i for i = {1, 2, 3}. Moreover due to the consistency of the set it can be shown that there exists a constant direction pk from the set {p 4 , . . . , pn } such that: which implies x Qx ≥ 0, and using the fact that the set M n is consistent one can ensure that Q is positive definite. Finally, it is straightforward to verify that B is a full rank matrix, which implies that B B is positive definite which in turn implies that the term B is persistent exciting. Therefore, we conclude that all the conditions of Theorem 1 in [START_REF] Loria | Uniform exponential stability of linear timevarying system: revisited[END_REF] are satisfied and thus the set S is locally exponentially stable. This in turn completes the proof.
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 1 Fig. 1. Representation of a point of the planar surface in the inertial frame {I}, body-fixed frame {B} and target frame {T }.
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 2 Fig. 2. The red, blue and green polygon represents the region of interest tracked by the proportional, proportional-integral and internal model-based filter respectively.
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 5 Fig. 5. Time behaviour of the Frobenious norm I -H F and Γ∧ -Γ∧ F .In red the proportional observer (P) proposed in[START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF] and in blue the observer (OSC) proposed in this paper.
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 6 Fig. 6. Estimated group velocity Γ∧ (blue lines) and true group velocity Γ∧ (red lines). Note that each plot represent an element of the group velocity matrix.
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 7 Fig. 7. Bank of oscillators relative to the eighth generator of the Lie algebra sl(3). In blue the first four harmonics (6, 12, 18, 24 Hz) implemented in the observer and in cyan the resultant.
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 11412 Fig. 11. Roll, pitch and yaw Euler angles of the oscillating platform.

  we consider the following time-varying change of coor-dinates γ = Qγ, Q = -QS, with Q ∈ SO(m), yielding Ḣ = -[Ad Ĥ (C Q γ ) ∧ ] H + k p ∆ H, γ = -k I QC Q sl3 n i=1 vec ∨ (Ad Ĥ ∆).(28)Let us define x ∧ , with x ∈ R 8 , and θ ∈ R m the first order approximation of H, γ around the equilibrium point (I, 0)H (I + x ∧ ) = (I + 8 k=1 x k B k ), γ = θ. ⊗ π pi ) (p i ⊗ π pi )J∧Kx = vect(x ∧ ) n i=1 (p i ⊗ π pi ) (p i ⊗ π pi ) vect(x ∧ ) = n i=1 p i x ∧ π pi x ∧ pi = n i=1 e i -pi2 H=I

π pi x∧ pi = 0 .

 0 It follows that for each i = {1, . . . , n} one has x∧ pi ∈ ker(π pi )

pk = ẙk |ẙ k | , where ẙk = 3 i=1α 3 i=1 α i pi = 3 i=1 λ i α i pi = 3 i=1λ

 3333 i pi , α i ∈ R/{0}, i = {1, 2, 3} which implies that x∧ k α i pi .From the equation above it is straightforward to verify thatλ 1 = λ 2 = λ 3 = λ k . Since x∧ ∈ sl(3) one has tr(x ∧ ) = 3 i=1 λ i = 0,which along with the equation above implies λ 1 = λ 2 = λ 3 = λ k = 0, which in turn implies x = 0 and this contradicts x = 0 in[START_REF] Nguyen | Inertial-aided homography-based visual servo control of autonomous underwater vehicles without linear velocity measurements[END_REF]. It follows that the kernel of the matrix P is trivial and P is positive definite.For the matrix Q, one verifiesx Qx 2k I k p = x J∧K n i=1 (p i p i ⊗ π pi ) n i=1 (p i p i ⊗ π pi )J∧Kx = vect n i=1 (π pi x ∧ pi p i ) vect n i=1(π pi x ∧ pi p i ) = tr(∆ ∆) H=I ,
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A first-order approximation of the output errors e i given by [START_REF] Hamel | Homography estimation on the special linear group based on direct point correspondence[END_REF], considering the equation above, can be written as

and by neglecting high order terms one has e i pi + x ∧ pi -pi p i x ∧ pi .

Substituting the expression of the output errors e i [START_REF] Malis | 2-1/2D visual servoing[END_REF] in the innovation term ∆ one obtains

(31) Thus, the first-order error dynamics for the error system are given by

Bearing in mind Property 1 in [START_REF] Isidori | Output regulation for nonlinear systems[END_REF], it yields

Proceeding in a similar way, the first order approximation of γ is given by

and recalling the definition of Q sl3 and bearing in mind Property 2 in (25) one obtains

It follows that the linearized system is in standard form [START_REF] Loria | Uniform exponential stability of linear timevarying system: revisited[END_REF] with

It is straightforward to verify that the matrices

are symmetric and they satisfy the required relations PB = C and Q = -A P -PA of Theorem 1 in [START_REF] Loria | Uniform exponential stability of linear timevarying system: revisited[END_REF]. It remains to prove that the matrices P and Q are positive definite, to this purpose note that the matrix P is associated to the quadratic form e i -pi 2 at the origin, indeed one has