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ABSTRACT:
Ocean acoustic tomography is traditionally performed using the travel-time variations of an acoustic path between a

source and a receiver. In the context of shallow-water tomography and multipath propagation, the different acoustic

paths can be correctly identified if the source and the receiver are arrays of transducers. Here, a double-beamforming

algorithm can be applied to extract a collection of eigenbeams from the raw acoustic dataset. In this study, four

observables can be measured for each eigenbeam: the travel-time, the amplitude, and the emitting and receiving

angles. In this study, the sensitivity kernel (SK) formulation is used to establish a quantitative relation between a per-

turbation of the surface of an ultrasonic waveguide and the emitting and receiving angles of each eigenbeam. This

theoretical relation is experimentally demonstrated using a forward model experiment designed to measure the SK.

The SK formulation is then used in a second experiment to quantitatively and dynamically image the propagation of

a surface wave traveling across the surface of the waveguide. The inversion results show that the quality of the joint

inversion of the emitting and receiving angles is higher than previous results based on amplitude or travel-time

observables. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002447

(Received 3 July 2020; revised 6 October 2020; accepted 12 October 2020; published online 24 November 2020)

[Editor: John A. Colosi] Pages: 2841–2850

I. INTRODUCTION

Oceanic acoustic tomography is traditionally performed

based on the travel-time variations of acoustic waves that

arise from local fluctuations of the medium velocity (Munk

and Wunsch, 1979). These variations are classically mod-

eled using the Fermat principle and are therefore associated

with a specific acoustic path (Cornuelle, 1982). In the spe-

cific case of a shallow-water acoustic waveguide, the multi-

path propagation produces a set of acoustic arrivals that can

superimpose on the receiver (Roux and Fink, 2000). In the

acoustic ray approximation, each of these arrivals corre-

sponds to a different eigenpath between the source and the

receiver, with a unique set of emitting angles, receiving

angles, and travel-times. In most cases, the emitting and

receiving angles are not measurable, as the acoustic source

and receiver are generally single transducers.

However, by using arrays of transducers, the angle

information linked to the acoustic propagation can be

extracted. In the present case, the extraction of the emitting

and receiving angles as quantitative observables associated

with each individual echo is performed through a double-

beamforming (DBF) algorithm. DBF allows us to project

the acoustic pressure field onto the waveguide eigenbeams,

thus going from a source-and-receiver sensor space to an

emitting-and-receiving angle space (Roux et al., 2008). In

this new space, each eigenbeam is represented by an inten-

sity spot. As the eigenray concept results from the applica-

tion of ray theory that is traditionally valid in an infinite

bandwidth-high frequency approximation, we prefer to

describe in the following the ultrasonic arrivals extracted

from the DBF process as eigenbeams in the finite-frequency

approach.

This projection of the pressure field on the eigenbeam

space gives access to a total of four observables that can be

used for shallow-water tomography and monitoring: the

travel-time, the amplitude of the eigenbeams, and the emit-

ting and receiving angles. Furthermore, it allows the acous-

tic field to be separated into independent acoustic arrivals

that are related to each multipath echo, making the inversion

process much easier in the case of a waveguide perturbation.

The inversion of the waveguide perturbation is achieved

using sensitivity kernels (SKs) for a given eigenbeam that

describe its sensitivity to a given observable. This formula-

tion is based on diffraction physics, and it has been used

since the 1980s in geophysics (Snieder and Nolet, 1987),

and since the early 2000s in underwater acoustics

(Skarsoulis and Cornuelle, 2004). In the context of wave

propagation in a shallow-water waveguide, previous studies

have dealt with acoustic tomography based on travel-times

(Iturbe et al., 2009) or amplitudes (Marandet et al., 2011).a)Electronic mail: tobias.van-baarsel@inria.fr
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At the same time, it has been shown that local fluctuations

of the propagation medium do not only influence the travel-

time, but also the emitting and receiving angles of each

eigenbeam (Roux et al., 2008). The variations of the emit-

ting and receiving angles were used jointly with the travel-

time by Aulanier et al. (2013) to invert a local perturbation

of the sound speed localized in the waveguide.

In this paper, we propose to use only the two new angle

observables, the emitting and receiving angles of each

eigenbeam, to localize and estimate the perturbation of the

air-water interface at the surface of an ultrasonic waveguide.

This is achieved using the SKs for the two-dimensional (2D)

surface approach, which has been used previously for travel-

times and amplitudes (Roux and Nicolas, 2014; Sarkar

et al., 2012; van Baarsel et al., 2019), and is here developed

for the eigenbeam angles.

This paper uses two experiments to invert for surface

perturbations at the air-water interface of an ultrasonic

waveguide using the changes in the incidence angles on the

perturbed interface of selected eigenbeams. The first experi-

ment is designed to measure the effects of a known perturba-

tion of the water surface on the emitting and receiving

angles of selected eigenbeams inside the waveguide and will

therefore be referred to as the forward model (FM) experi-

ment. The goal of the second experiment is to invert an

unknown perturbation of the air-water interface using the

angle variations of a large set of eigenbeams, and this will

be referred to as the inverse problem (IP) experiment. The

inversion is performed from a linear algebraic formulation

deduced from the SK approach.

II. EXPERIMENTAL DESIGN

The two set-ups are two variations of an ultrasonic

Pekeris waveguide (Pekeris, 1948). Two source-receiver

ultrasonic arrays face each other in a small-scale shallow-

water waveguide. The waveguide is 55 mm deep and 0.6 m

long for the FM experiment, and 55 mm deep and 1 m long

for the IP experiment. The surface perturbation in the IP

experiment is independently measured by optical means for

validation purposes (not shown here; see van Baarsel et al.,
2019). The optical measurements are carried out using two

cameras: one that films the water surface from the top and

records the frequency-wavenumber information of the per-

turbation; the second that views the perturbation from the

side and records the height of the perturbation. However,

the resolution of this camera is too low for accurate mea-

surements, and this allows only an order of magnitude esti-

mate of the perturbation. Moreover, perturbations of less

than 1 mm cannot be recorded optically, although the com-

parisons between different experiments with different exci-

tation strengths show the correct estimation on the order of

magnitude of the surface displacement, even for very small

perturbations (i.e., �1e� 5 m).

The arrays are composed of 64 transducers centered at

1 MHz. The transducer dimensions are 0.75 mm along the

vertical axis and 12 mm along the transverse axis. This

feature naturally creates a collimated beam in the waveguide

axis direction. The bottom of the waveguide is steel and pro-

vides a good reflection of ultrasonic waves (Mayer, 1963).

The FM experiment is detailed in Sarkar et al. (2012).

It was designed to measure the surface SK using a 5 mm

lead sphere probe that acts as a point perturbation of the sur-

face [Fig. 1(a)]. The penetration of the sphere into the water

is approximately 1 mm, and the horizontal translation of the

sphere along the interface is 1 mm. For each position of the

sphere, the transfer matrix of the waveguide is recorded,

which therefore measures the effects of local displacement

of the water surface on the acoustic field in the waveguide,

from which the SK can be computed. Note that in the FM

experiment, the SK is measured only at each position of the

sphere along a one-dimensional (1D) central line at the sur-

face of the waveguide, and not on the whole 2D surface of

the waveguide.

The IP experiment is detailed in van Baarsel et al.
(2019). The surface of the waveguide is perturbed by a

blast wave generated above the surface and at the position

x � 0:56 m, by laser-induced breakdown [Fig. 1(b)]. The

perturbation is localized and controllable, and results in a

circular surface wave. Due to the dimensions of the wave-

guide, this circular wave is seen by the ultrasonic system as

FIG. 1. (Color online) (a) Cartoon of the FM experiment designed to mea-

sure the surface SK in a fluid waveguide. A 5-mm lead sphere penetrates

the water at different locations on the central line of the surface of the

waveguide (gray arrows), and acts as a point perturbation of the water sur-

face. The penetration depth is on the order of 1 mm. The experimental

design does not allow the SK to be measured for the entire surface, but only

the central line of the surface of the waveguide (dashed line). (b) Cartoon of

the IP experiment designed to image a traveling gravity-capillary wave on

the surface of the waveguide. The transfer matrix of the waveguide is

recorded at a rate of 100 frames/s over 5 s, during which time the surface

wave is caused by laser-induced breakdown (lightning-shaped arrow) in the

center of the surface of the waveguide.
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two counter-propagating wave packets that expand from the

center. While the wave is travelling across the surface, the

ultrasonic system records the transfer matrix of the wave-

guide at 100 times/s, over 5 s.

The transfer matrix of the waveguide is the set of trans-

fer functions for each source-receiver pair (64 sources� 64

receivers). As the medium is highly reverberant, a recording

window of up to 100 ls is used, which provides up to 12 dis-

tinguishable ultrasonic arrivals for each pair.

The perturbation of the waveguide interface affects

each eigenbeam that interacts with the air-water interface.

Now we use the SK formalism to describe the variations of

each eigenbeam caused by the surface perturbation.

III. EIGENBEAM ANGLES SKS FOR THE SURFACE
PERTURBATION

This section shows the mathematical relation between a

surface perturbation and the variations of the angle observ-

ables. The eigenbeams of the waveguide can be separated

using the DBF algorithm (Kr€uger et al., 1993), i.e., a delay-

and-sum algorithm applied to both the emitting and receiv-

ing arrays. The DBF is expressed as

pDBFðhe; hr; tÞ ¼
1

Ne

1

Nr

X
e

X
r

pðze; zr; tÞ

� exp ð�ıx sðhe; zeÞ � sðhr; zrÞ½ �Þ ;
(1)

where pDBFðhe; hr; tÞ is the acoustic pressure in the emitting

angle, receiving angle, and time space (DBF space) com-

puted from the acoustic pressure pðze; zr; tÞ (in depth and

time space) between transducers ze and zr and the number of

transducers in the emitting and receiving subarrays Ne and

Nr, respectively.

The time delays sðhe; zeÞ and sðhr; zrÞ depend on the

local velocity in the propagation medium and the geometry

of the emitting and receiving subarrays. In a homogeneous

waveguide, these time delays can be written as

sðh; zÞ ¼ ðz� z0Þ sin h
c

; (2)

where z� z0 is the distance between the sensor at depth z
and the center of the subarray in z0, h is the emitting or

receiving angle, and c is the speed of sound.

Note that the homogeneous waveguide approximation

is correct in our small-scale water-tank experiment.

However, the DBF algorithm can be extended to more com-

plex media by taking into account a depth-dependent sound-

speed profile (Aulanier et al., 2013; Roux et al., 2008).

Each eigenbeam corresponds to an ultrasonic arrival

and is represented in the DBF space by an intensity spot

with a maximum pDBFðhe; hr; tÞ centered on the eigenbeam

coordinates ½he; hr; t�.
For each eigenbeam, the variation of the double-

beamformed pressure dpDBFðhe; he; tÞ is the difference

between the pressure pDBFðhe; hr; tÞ in the perturbed

waveguide and the rest state pDBF
0 ðhe; hr; tÞ in the unper-

turbed waveguide. In the small perturbation assumption

(van Baarsel et al., 2019), this difference can be linked to

the surface perturbation Dhðr0Þ for each point at the surface

r0 using the SK formulation, i.e.,

dpDBFðhe; hr; tÞ ¼ pDBFðhe; hr; tÞ � pDBF
0 ðhe; hr; tÞ

¼ 1

2p

ð ð
Dhðr0ÞKDBFðhe; hr; r

0;xÞ

� PsðxÞ e�ıxtdx dr0; (3)

where KDBF is the double-beamformed SK for the wavefield

amplitude and PsðxÞ is the power spectrum of the source at

a given pulsation x.

The DBF algorithm gives access to four observables for

each eigenbeam: the three coordinates of each eigenbeam in

DBF space (i.e., the emitting angle he, the receiving angle hr,

and the travel-time t), and the eigenbeam amplitude. Any pertur-

bation of the waveguide surface results in variations of these

four observables. Note that the amplitude of the transmitted sig-

nal is not a coordinate of the eigenbeam and therefore does not

appear directly as such in Eq. (3). The study of the travel-time

and amplitude variations dpDBF due to a surface perturbation

from the SK approach has been discussed previously (Roux and

Nicolas, 2014; Sarkar et al., 2012; van Baarsel et al., 2019).

From now on, we limit the present study to the case of a

homogeneous waveguide with parallel interfaces, to pursue

the analysis with a simplified analytical expression for the

double-beamformed SK KDBF.

The image theorem allows us to consider each eigen-

beam in the unwrapped space with a free space calculation

of Green’s functions (Fig. 2). In doing so, we do not con-

sider angle-dependent reflection coefficients on the bottom

interface, as encountered in a Pekeris waveguide (Pekeris,

1948). Within this approximation that will be discussed

later, the expression of the double-beamformed SK can be

defined as in Sarkar et al. (2012),

KDBFðhe; hr; r
0;xÞ ¼ 4 GBF

0 ðr0; he;xÞGBF
0 ðr0; hr;xÞ

� x2

c2
sinðaeÞ sinðarÞ; (4)

where, as shown in Fig. 2, r0 is the position of the surface

perturbation for each reflection in the unwrapped space, and

ae (respectively, ar) is the angle between the emitting subar-

ray (respectively, receiving subarray) and r0.
In the unwrapped space, GBF

0 in Eq. (4) can be approxi-

mated as the open-field plane-wave Green’s function

between the emitting subarray (or receiving subarray) and

r0, of coordinates ðr0x; r0zÞ, given by

GBF
0 ðr0; he;xÞ ¼ ð�1Þn exp ık r0x cos he þ ðze � r0zÞ sin he

� �� �
;

(5a)

GBF
0 ðr0;hr;xÞ
¼ ð�1Þn exp ık ð‘� r0xÞcoshrþðzr;image� r0zÞsinhr

� �� �
;

(5b)
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where ‘ is the length of the waveguide, k is the acoustic

wavenumber, and n is the number of crossings at the air-

water interface that takes into account the sign change of the

reflected wave in the expression of the unwrapped Green’s

function GBF
0 . The z-coordinate of the receiving subarray

center zr;image and the coordinate r0z of each reflection point

along the interface are defined in Appendix A.

In practice, the eigenbeam SK KDBF is the summation

of the SKs computed for each different surface reflection in

the unwrapped space. This is shown in Fig. 2, where the

Green’s functions GBF
0 in Eq. (4) are computed separately

for n¼ 1 (with r0 varying along the interface zsurf ¼ 2h) and

n¼ 2 (with r0 varying along the interface zsurf ¼ 4h). Note

that due to the bandwidth of the acoustic signal, the oscilla-

tions of the SK do not extend over the whole interface between

x¼ 0 and x¼ l (van Baarsel et al., 2019). Therefore, we can

limit each SK computation to around the corresponding reflec-

tion point in the unwrapped space [red dashed lines at

z ¼ zsurf ðn ¼ 1Þ and z ¼ zsurf ðn ¼ 2Þ in Fig. 2].

From this point on, the goal of this section is to estab-

lish the relation between a surface perturbation Dhðr0Þ and

the variation of the emitting and receiving angles of each

eigenbeam in the framework of the SK approach.

The solution follows the methodology defined in

Skarsoulis and Cornuelle (2004) and Aulanier et al. (2013).

In the ½he; hr; t� space, an eigenbeam is a local maximum of

the DBF pressure field, i.e.,

rp0 he; hr; tð Þ ¼
@=@he

@=@hr

@=@t

24 35p0 he; hr; tð Þ ¼~0; (6)

where r is the gradient operator.

When the surface of the waveguide undergoes a local

displacement Dhðr0Þ, the coordinates of the eigenbeam are

shifted by the small amounts Dhe; Dhr, and Dt, and thus,

rp he þ Dhe; hr þ Dhr; tþ Dtð Þ ¼~0: (7)

A first-order Taylor development of Eq. (7) leads to

rpðhe; hr; tÞ þ Dhe
@

@he
rpðhe; hr; tÞ

þDhr
@

hr
rpðhe; hr; tÞ

þDt
@

@t
rpðhe; hr; tÞ ¼~0: (8)

Eq. (8) can then be rewritten using the matrix formulation,

rpþH pð Þ Dhe;Dhr;Dt½ �T ¼~0; (9)

where HðpÞ is the Hessian matrix of p, and ½��T is the trans-

pose operator. The expression of the Hessian matrix HðpÞ is

given in Appendix B. In practice, the Hessian matrix

corresponds to the curvature of the DBF pressure field at its

maximum; i.e., at the eigenbeam coordinates. As HðpÞ
¼ Hðp0Þ þHðdpÞ with HðdpÞ that is first order in Dh [see

Eq. (3)]. We can further simplify Eq. (9) by applying the

Hessian only to the unperturbed wavefield p0. For a small

surface perturbation, HðpÞ � Hðp0Þ means that as a first

approximation, the intensity maximum described as the

eigenbeam is shifted in time and angles but keeps the same

shape and therefore the same curvature in the ½he; hr; t� space

[for experimental validation, see Fig. 4(b) in Roux and

Nicolas, 2014].

Since the Hessian matrix is nonzero and invertible for

each eigenbeam, we can finally extract the coordinate

variations

FIG. 2. (Color online) Cartoon of the unwrapping of the waveguide for an

eigenray path including n¼ 2 reflections at the waveguide surface, repre-

sented by an (x–z) slice. The waveguide surface is represented by the hori-

zontal solid line, and the waveguide bottom is the horizontal dashed-dotted

line. The unwrapped space is shown in a lighter color than the real wave-

guide space. The real eigenpath is represented by the solid orange line,

whereas the dashed orange line represents the unwrapped eigenpath. The

Green’s functions (dotted lines) between the emitting array and r0 on the

one side, and the receiving array and r0 on the other side are computed sepa-

rately for each reflection (n¼ 1 or n¼ 2) on the waveguide interface. (a)

GBF
0 ðhe; r

0;x; n ¼ 1Þ. (b) GBF
0 ðhr ; r

0;x; n ¼ 1Þ. (c) GBF
0 ðhe; r

0;x; n ¼ 2Þ.
(d) GBF

0 ðhr ; r
0;x; n ¼ 2Þ. The angles ae and ar are shown for the first reflec-

tion (n¼ 1) on the waveguide interface. The red dots highlight the reflection

points at the surface for the unwrapped eigenpath. The red horizontal

dashed lines represent the region for which the SK associated with each

reflection is computed.
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Dhe;Dhr;Dt½ �T ¼ �H�1 p0ð ÞrðdpÞ (10)

as rp ¼ rðdpÞ from Eq. (6). The calculation of the gradient

rðdpÞ is detailed in Appendix C. This leads to an explicit

formula for the coordinate variations

Dhe

Dhr

Dt

264
375¼�H�1ðp0Þ

1

2p

�
ðð ık �r0x sinheþðze�r0zÞcoshe

� �
ık �ð‘�r0xÞsinhrþðzr;image�r0zÞcoshr

� �
�ıx

264
375

�Dhðr0ÞKDBFðhe;hr;r
0;xÞPsðxÞe�ıxtdxdr0:

(11)

As usual, the SK is computed for a broadband signal

and at a given time t that corresponds to the travel-time of

the specific eigenbeam.

From Eq. (11), we can see that the phase oscillations of

the angles kernel are carried by the kernel KDBF and the spa-

tial gradient contribution. On the other hand, the role of the

Hessian is to scale the gradient of the SK in all three

½he; hr; t� dimensions, by a factor that represents the curva-

ture of the unperturbed eigenbeam in the DBF space.

In Appendix B, the Hessian Hðp0Þ and its inverse

H�1ðp0Þ are obtained in the framework of the plane-wave

approximation. In this context, the Hessian is a diagonal

matrix that decouples the different observables ½he; hr; t�. In

practice, even if the DBF algorithm helps in the creation of

planar wavefronts in the far field, the plane wave approxima-

tion should be used with caution in the calculation of the

Hessian matrix. What remains from Eq. (B13) in Appendix B,

however, is that the angle observables ½he; hr� are not coupled

with the time observable t.
Therefore, limiting our analysis to angle variations

only, we can simplify Eq. (11) as

Dhe

Dhr

" #
¼� 1

p0 he;hr; tð Þ
3

N3b2

1

2p

�
ð ð

ık �r0x sinheþðze� r0zÞcoshe

� �
ık �ð‘� r0xÞ sinhrþðzr;image� r0zÞcoshr

� �" #
�Dhðr0ÞKDBFðhe;hr;r

0;xÞPsðxÞe�ıxtdxdr0; (12)

where N is the number of sensors on the emitting and receiv-

ing arrays, and

b ¼ pd

k
cos he; (13)

where d is the spacing between the elements of the array,

and he is the emitting angle of the eigenbeam in the

unwrapped space (Fig. 2).

Note that Eq. (12) is equivalent to Eq. (3) for the angle

perturbations ½Dhe;Dhr� instead of the wavefield amplitude

perturbation dp. As such, it provides an analytical

formulation of the SK for angles for a surface perturbation

of the waveguide.

Note also that the angle kernels are relative to the

amplitude of the unperturbed pressure field p0ðhe; hr; tÞ in

Eq. (12), which means that they will be no different if our

calculation had taken into account reflection coefficients at

the waveguide interfaces.

As the purpose of this paper is to invert surface fluctua-

tions from angle variations only, we do not consider from

here on the travel-time perturbations in the recovery of the

surface perturbation of the waveguide. For discussions about

surface fluctuations inverted with travel-time or amplitude

perturbations, please refer to previous studies (Roux and

Nicolas, 2014; van Baarsel et al., 2019).

A 1D representation of the SK for the emitting and

receiving angles is shown in Fig. 3. The predicted SK is

compared to the SK measured in the FM experiment. The

comparison is satisfactory with respect to the uncertainties

in the FM experimental conditions. The uncertainties are

mainly the depth of the lead sphere at the air-water interface

and the alignment of the experimental SK along the x axis.

Therefore, the slight phase and amplitude differences

between predicted and experimental SKs in Fig. 3 are bal-

anced out by the large number of SKs used in the inversion

process, as will be shown later.

This agreement retrospectively justifies the plane-wave

approximation that was carried out (i) in the formulation of

the SK in Eqs. (5a) and (5b); (ii) in the calculation of its gra-

dient in Eqs. (C1a) and (C1b); and finally (iii) in the calcula-

tion of the Hessian matrix in the Appendix B. This also

validates the choice of not taking into account the angle-

dependent reflection coefficient at the waveguide bottom in

the computation of the kernel KDBF and its gradient.

A 2D surface representation of the theoretical SKs is

shown in Fig. 4. A few points can be noted here. First, the

SK for the emitting angle shows higher sensitivity close to

the source array. The same behavior is observed for the sen-

sitivity of the receiving angle SK close to the receiver array.

Second, we note also the asymmetric shape of the SKs with

respect to the reflection point of each eigenbeam at the

FIG. 3. (Color online) (a) SK for the emitting angle, measured using both

the FM experiment (solid line) and computed theoretically (dashed line).

Only the central line of the theoretical SK is plotted (y¼ 0; see Fig. 1). The

corresponding eigenray (½he; hr ; t� ¼ ½�14:8deg;�14:8deg; 427:3 ls�) is

depicted under the SK on a different axis. (b) SK for the receiving angle.
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interface. Such asymmetry has already been observed for

angle SKs predicted for a local sound-speed perturbation

inside the waveguide (Aulanier et al., 2013).

In Fig. 7, the amplitude SK established in a previous

study (van Baarsel et al., 2019) is plotted for comparison

with the angles SK in Fig. 4. Considering the same eigen-

beam, the amplitude SK looks particularly different from

the emitting-receiving angles SK: (1) the sensitivity of the

amplitude is of equal magnitude for the two reflections; and

(2) the pattern of the SK amplitude is similar on each side of

the reflection point at the interface. As will be discussed

later, the shape differences between the angles SK and the

amplitude SK results in different spatial resolutions when

the inversion process is performed from amplitude or angle

observables.

IV. INVERSION RESULTS

In this section, we present the inversion results from the

angle perturbations only, for both the FM and the IP experi-

ments. As in Sarkar et al. (2012) and van Baarsel et al.
(2019), a total of 2000 different eigenbeams extracted by the

DBF algorithm were combined in the inversion process. The

angles SK sets the linear FM between the angle variations

Dhe and Dhr and the surface displacement Dh. Using matrix

formulation and waveguide discretization, Eq. (12) can be

generalized to the full set of eigenbeams as

Dh ¼ bKDBF
Dh dS; (14)

where bKDBF
refers to the SK for the angles, as derived for a

single eigenbeam in Eq. (12).

In the general case, the matrix bKDBF
does not have an

inverse. We use the matrix regularization used in the maxi-

mum a posteriori pseudo-inversion scheme described by,

e.g., Beydoun and Tarantola (1988) and Roux and Nicolas

(2014). The inversion can be achieved using one variable

(emitting or receiving angle of the eigenbeams), or the two

variables together in a joint inversion.

Therefore, an estimation of the displaced surface cDh
can be written as

cDh ¼ 1

dS
Cm KT K Cm KT þ Cd

� ��1
Dh; (15)

where K ¼ bKDBF
for the sake of simplicity, T is the matrix

transpose operator, Cm is the covariance matrix of the

model, and Cd is the covariance matrix of the data. Again,

for the sake of simplicity, the data misfits on the beam

observables are considered to be independent, i.e., Cd is

diagonal and Cd ¼ aI, where a is the data misfit for all of

the eigenbeams, as estimated from the variations in the data

when the system is at rest. The model covariance matrix Cm

is set in such a way that reconstructed surface deformations

are spatially correlated with a 2-cm smoothing distance

(Roux and Nicolas, 2014).

A. FM experiment inversion results

In the FM experiment, the surface of the waveguide is

perturbed by a small lead sphere that penetrates the water at

different locations successively. For each position of the

lead sphere, the inversion of the variations of the ultrasonic

field allows the location and magnitude of the surface per-

turbations to be retrieved. Figure 5 shows the inversion

result for the FM experiment, based on the emitting angle

[Fig. 5(a)], the receiving angle [Fig. 5(b)], and both varia-

bles together using joint inversion [Fig. 5(c)].

The inversion result is a matrix with the highest values

on the main diagonal, which shows that the position of the

perturbation is correctly estimated. Furthermore, the estima-

tion of the height of the surface perturbation cDh matches the

penetration depth of the lead sphere.

The joint inversion [Fig. 5(c)] combines both the emit-

ting and receiving angles, and shows better results than the

single-variable inversions: the estimation of the location of

the perturbation is accurate for the whole range of the wave-

guide and shows less faulty surface displacements in the

upper and lower triangles of the inversion result matrix.

Thus, the FM experiment confirms that the use of joint

inversion of two independent angle observables provides

significant improvement over the inversion of a single angle

observable.

Finally, the inversion result of the FM experiment vali-

dates the use of the SK formalism for the emitting and

receiving eigenbeam angles in the case of a small, single-

point perturbation. It has been shown previously (van

Baarsel et al., 2019) that the SK formalism applied to eigen-

beam amplitude variations succeeds in inverting the dynam-

ics of two counter-propagating gravity-capillary wave

packets excited by laser-induced breakdown. Taking this

previous work a step further, the new SK formalism is now

applied to the eigenbeam angle variations induced by the

same laboratory-scale experiment.

B. IP experiment; inversion results

The IP experiment uses laser-induced breakdown to

generate a point perturbation of the water surface. The point

perturbation evolves into gravity-capillary waves that

FIG. 4. (Color online) Theoretical SK computed for a local displacement of

the surface, for the emitting angle (a), and the receiving angle (b), and for

the same eigenray as shown in Fig. 3. Each SK is computed for the entire

surface of the waveguide.
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propagate in all directions across the surface. Due to the

geometry of the waveguide, these circular waves are seen by

the acoustic imaging system as two counter-propagating

wave packets. The result of the joint angles inversion of the

water height displacement is shown in Fig. 6(a).

The inversion is performed on the whole surface of the

waveguide, but for the sake of the representation here, the

inversion result is plotted as a function of the acquisition

time and the waveguide range. Therefore, only the displace-

ment at the central line of the surface (y¼ 0) is shown.

In Fig. 6(a), the point-like perturbation at t¼ 0 can be

clearly seen, as for the two wave packets that propagate in

opposite directions. The dynamic inversion of the wave-

guide interface from the angle variations is to be compared

with the inversion result of the same experiment performed

from the eigenbeam amplitude variation (the “low power”

experiment described in van Baarsel et al., 2019) shown in

Fig. 6(b).

First, the estimated maximum height of the water dis-

placement is approximately 20 lm, with the joint angle

inversion. The same estimation with the amplitude inversion

is around 40 lm, which is of the same order of magnitude.

Second, a more thorough comparison shows that the

use of the angle variation of the eigenbeams yields an inver-

sion of better quality than the amplitude variation. A mea-

surement of the inversion residue variance is performed on

the inversion results based on the different eigenbeam

observables. To discard the surface wave and measure only

the inversion residue, the values inside the red rectangle in

Fig. 6 are taken. The inversion residue variance of each

inversion is given in Table I, including travel-time inver-

sions, for the sake of completeness.

FIG. 5. (Color online) Water surface displacement cDh for a point perturba-

tion scanning the surface, inverted using the corrected SK for the emitting

angle (a), the receiving angle (b), and both the emitting and receiving angles

(c) of a collection of 1292 eigenbeams. All three inversions show good

agreement with the experiment, by estimating a point perturbation ofcDh � 1 mm.

FIG. 6. (Color online) (a) Inversion result of the traveling surface-wave

experiment using both emitting and receiving angles of a collection of 2285

eigenbeams. The x axis is the length of the waveguide; the y axis is the time

relative to the laser shot that causes the surface wave. (b) Figure reproduced

from van Baarsel et al. (2019). Inversion result of the traveling surface-

wave experiment using the amplitude variation DA=A of the same collection

of eigenbeams. The red rectangles in (a) and (b) represent the area used for

the calculation of the inversion residue variance.
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The results show that the joint angle inversion performs

better than the single angle inversion when considering resi-

due variance with a value that halved. This can be expected,

as the joint angle inversion is based on twice as much data

as the single angle inversion. Interestingly, the single angle

inversion (for either emitting or receiving angles) also

shows lower residue variance than the inversion based on

the amplitude or travel-time variations. This might be sur-

prising at first sight, as the predicted amplitude SK matches

the measured amplitude SK from the FM experiment

(Fig. 7). A first explanation for the inversion difference

between amplitude and angle might be that amplitude mea-

surements are more sensitive to noise than angle

measurements.

Another explanation is that the intrinsic properties of

the angles SK provide more resolution for the angle inver-

sions than the inversion based on the amplitude SK. Indeed,

the amplitude SK is symmetric relative to the reflection

point of the eigenbeam [Fig. 7(a)] when the angles SK

shows an anti-symmetrical behavior with respect to the

reflection point of the eigenbeam (Fig. 3), the SK being null

at the reflection point. Moreover, the angles SK show more

zero-crossings than the amplitude SK, with therefore faster

oscillations and higher spatial resolution. In short, the spatial

gradient of the SK leading to faster oscillations of the angles

SK here appears to be the key for improved resolution of the

inversion result for the surface perturbation.

In conclusion, the use of the emitting and receiving

angles in a joint inversion provides a good method for

inverting an unknown surface perturbation in the IP experi-

ment. The qualitative and quantitative validation of the

inversion comes from independent optical measurements

described in a previous study (van Baarsel et al., 2019).

V. CONCLUSION

This study uses for the first time the variations of the

emitting and receiving angles of a set of eigenbeams in an

ultrasonic waveguide to accurately invert a dynamic surface

perturbation of the waveguide. The 2D SKs for both the

emitting and receiving angles link the observable variations

to the perturbations of the surface height at the waveguide

interface. The first experimental set-up allows us to measure

the angles SK using a controlled perturbation of the surface.

The experimental results are in good agreement with the

theory. The second experiment is used to dynamically invert

an unknown perturbation. The results show significant

improvement in the joint angles inversion results compared

to previous studies based solely on the wavefield amplitude

variation.
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APPENDIX A: CALCULATION OF THE COORDINATES
IN THE UNWRAPPED SPACE

The z-coordinate of the receiving subarray center

zr;image is defined in the unwrapped space and is calculated

from the total number of bottom and surface reflections and

the geometry of the waveguide (Fig. 2). Assuming parallel

waveguide interfaces, the position of the receiving array in

the unwrapped space can be approximated by

zr;image � �‘ tan ðheÞ þ ze; if he > 0;
zr;image � ‘ tan ðheÞ � ze; if he < 0:

(A1)

The value r0z in Eqs. (5a) and (5b) also corresponds to

the coordinate along the interface in the unwrapped space

for each reflection. Therefore, it is necessary to take into

account the number n and the order of the surface reflections

for each eigenbeam. For instance, if the emitting angle is

positive ðhe > 0Þ, the first reflection of the eigenbeam will

occur at the surface of the waveguide; if it is negative

ðhe < 0Þ, the beam will first reflect at the bottom.

For these reasons, we have the following expression for

r0z, for the nth reflection at the surface of the waveguide:

TABLE I. Table of the inversion residue variance for the inversions of the eigenbeam amplitude, travel-time, angles taken separately, and joint angles. The

inversion residue variance is calculated in the red rectangle shown in Fig. 6.

Eigenbeam observable Amplitude Travel-time Emitting angle Receiving angle Joint angles

Residue variance 2.09� 10�11 2.45� 10�11 6.42� 10�12 5.12� 10�12 3.2� 10�12

FIG. 7. (Color online) SK for the amplitude of the transmitted signal. (a)

Central line of the theoretical SK (y¼ 0), to be compared with Fig. 3. The

corresponding eigenray (½he; hr ; t� ¼ ½�14:8deg;�14:8deg; 427:3 ls�) is

shown under the SK on a different axis. (b) Top-view of the amplitude SK

on the whole surface of the waveguide, to be compared with Fig. 4.
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r0z ¼ jzsurf � zej

¼
j2 hðn� 1Þ � zej if he < 0

j2 h n� zej if he > 0;

(
(A2)

where h is the height of the waveguide, ze is the position

along z of the emitting subarray center, and zsurf is the posi-

tion along z of the surface in the unwrapped space.

The spatial extent of the SK is to be determined from

the bandwidth of the signal and the incident angle of the

eigenbeam on the interface. More precisely, considering the

Fresnel Zone radius from radar theory
ffiffiffiffiffiffiffi
k R
p

, where R is the

distance between the arrays and k is the central wavelength,

the extent of the surface SK for each reflection can be well

approximated by

Dr0 �
ffiffiffiffiffiffiffi
k R
p

sin he

f

Df
; (A3)

where Df=f is the normalized bandwidth. For instance,

using the numbers for the SK shown in Fig. 3, we have

Dr0 � 0:19 m centered on each reflection point of the eigen-

ray at the surface.

APPENDIX B: CALCULATION OF THE HESSIAN
MATRIX AND ITS INVERSE

The Hessian matrix is the second-order derivative

matrix of the pressure field, i.e.,

HðpÞ ¼

@2

@hehe

@2

@hehr

@2

@het

@2

@hrhe

@2

@hrhr

@2

@hrt

@2

@the

@2

@thr

@2

@tt

0BBBBBBBB@

1CCCCCCCCA
p: (B1)

To compute the Hessian matrix, we first look for an

analytical expression of the unperturbed acoustic pressure

field pDBF
0 ðhe; hr;xÞ. In the unwrapped space,

pDBF
0 ðhe; hr;xÞ results from the convolution of the wave

propagation in the homogeneous medium and the beam-

forming on the arrays.

The beamforming process can be seen as the interaction

of an impinging acoustic wave with an array of sensors in

that it is analogous with the phenomenon caused by a dif-

fraction grating in optics (see, e.g., Born and Wolf, 1999,

pp. 402–405). Therefore, although Eq. (1) is the most gen-

eral equation for the DBF wavefield, its expression can be

simplified in the case of a quasi-plane wave on two uniform

linear arrays as

pDBF
0 ðhe; hr;xÞ ¼ p0ðze;0; zr;0;xÞ � Bðhe; h0Þ � Bðhr; h0Þ;

(B2)

where p0ðze;0; zr;0;xÞ is the acoustic pressure field between

the center of the emitting and receiving arrays, and h0 is the

angle between the array and the eigenbeam in the

unwrapped space. Note that in this case, h0 ¼ he ¼ hr. The

function Bðh; h0Þ is defined as

Bðh; hÞ ¼
sin

p
k

Ndðsin h� sin h0Þ
� �

sin
p
k

dðsin h� sin h0Þ
� � : (B3)

For a pressure field calculated near the eigenbeam emit-

ting and receiving angles, i.e., h � h0 þ Dh, we can approxi-

mate the following:

sin h� sin h0 � Dh cos h0: (B4)

The characteristic angle in the DBF space is the half-

width of the eigenbeam spot. In the present experimental

configuration, Dh � 3 deg for each eigenbeam [see Fig. 4(b)

from Roux and Nicolas, 2014), which validates the above

approximation.

If we rewrite this more compactly as h ¼ Dh, we get

the expression for the pressure field between two arrays,

pDBF
0 ðhe; hr;xÞ ¼ p0ðze;0; zr;0;xÞ

�
sin

p
k

Nd he cos h0

� �
sin

p
k

d he cos h0

� �

�
sin

p
k

Nd hr cos h0

� �
sin

p
k

d hr cos h0Þ
� � : (B5)

To compute the Hessian, we need to express the deriva-

tives of the function

f ðxÞ ¼ sin ðaxÞ
sin ðbxÞ ; (B6)

where a ¼ N b and b ¼ ðpd=kÞh cos h0.

The first derivative is

f 0ðxÞ ¼ cscðbxÞ a cos ðaxÞ � b sin ðaxÞ cotðbxÞ½ �; (B7)

and the second derivative is

f 00ðxÞ¼ cscðbxÞ sinðaxÞ �a2þb2cot2ðbxÞþb2csc2ðbxÞ
� ��

�2abcosðaxÞcotðbxÞ�; (B8)

where the following functions are used:

cscðxÞ ¼ 1

sin x
;

cotðxÞ ¼ cos x

sin x
:

(B9)

Interestingly, we note that
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lim
x!0

f 0ðxÞ ¼ 0; (B10)

lim
x!0

f 00ðxÞ ¼ Nb3

3b
� N3b3

3b
� N3b2

3
; (B11)

which means that the Hessian becomes a diagonal matrix

when the pressure field is computed on the eigenray that

joins the two emitting and receiving arrays. This is indeed

the case, as we compute the Hessian matrix for the unper-

turbed eigenbeam. The Hessian can therefore be written as

H pDBF
0

� �
¼

N3b2

3
0 0

0
N3b2

3
0

0 0 �x2

2666664

3777775� pDBF
0 : (B12)

The inverse of the Hessian matrix is then

H�1 pDBF
0

� �
¼ 1

pDBF
0

3

N3b2
0 0

0
3

N3b2
0

0 0 � 1

x2

26666664

37777775: (B13)

From Eq. (B13), we immediately see that the three

observables ½he; hr; t� are uncoupled and can be separated in

the forward and inverse problem.

APPENDIX C: CALCULATION OF THE GRADIENT
OF THE PRESSURE FIELD VARIATION

The expression of the gradient rðdpÞ can be obtained

by differentiation of Eq. (4). From Eqs. (5a) and (5b), we

obtain,

@

@he
KDBFðhe;hr; r

0;xÞ

¼ ık �r0x sinheþ ðze� r0zÞcoshe

� �
KDBFðhe;hr; r

0;xÞ;
(C1a)

@

@hr
KDBFðhe; hr; r

0;xÞ

¼ ık �ð‘� r0xÞ sin hrþðzr;image � r0zÞ cos hr

� �
� KDBFðhe; hr; r

0;xÞ: (C1b)

The gradient of the pressure variation can therefore be

written as

rðdpÞ¼
@=@he

@=@hr

@=@t

264
375dp

¼
ık �sinðheÞr0xþcosðheÞðze�r0zÞ
� �

ık �sinðhrÞð‘�r0xÞþcosðhrÞðzr;image�r0zÞ
� �

�ıx

264
375dp:

(C2)
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