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Abstract

For a few years, the world of heterogeneous catalysis is focusing on tinier and tinier metal clusters
with the aim of reducing the amount of noble metals in catalysts. The sizes are approaching the
single atom[3][4], and in the model catalysts used by researchers, even if it’s not the purpose, there
are  often  isolated  atoms[5] that  are  very  sensitive  to  the  conditions  and  can  easily  diffuse.
Furthermore, some studies focus now on the catalytic activity of single atoms[1][2]. Experimental
studies require fully characterized model systems to disentangle the effect of different parameters
on  the  final  reaction.  Unfortunately,  if  diffusion  occurs  during  a  catalytic  reaction,  a  well-
characterized  system  before  the  experiment  loses  it’s  characteristics  as  soon  as  the  reaction
conditions are set. In this paper, I derive the analytic formula  (20) giving the size distribution of
clusters in a given system after diffusion and recombination of all single atoms.

Introduction

This study is motivated by the following concrete problem: The deposition of metal atoms to survey
their catalytic activity (for example, by condensing a flow of atoms coming from an evaporator) on
a  surface  exhibiting  nucleation  centers  distributed  on  a  network.  In  this  case,  because  each
nucleation site is equivalent, the probability, for a diffusing atom on the surface, to be captured is
the same for all the nucleation centers considered.  One of the first question that can be asked is :
"What  is  the  size  distribution  of  the  particles  formed  as  a  function  of  the  quantity  of  atoms
deposited? » . In fact, the answer to this question is known: After the deposition of an average of x
atoms per nucleation site, the probability of having a cluster of n atoms follows Poisson's law [7] :

P(x ,n)=
xn

n!
e− x . If the particles are stable, there is no reason for these probabilities to change,

however, as it is the case in some experiments, the deposition conditions may be different from the
conditions under which the properties of these clusters are studied: The temperature may change,
the chemical environment (the gases used for the study) can vary, radiation (laser, UV source...)
may be used...  all  these changes can "destabilize" the arrangement of the particles by initiating
diffusion. Generally speaking, the smaller the size of a metal aggregate, the more easily it will
diffuse (even if in some cases this may not be true). One can expect that the clusters formed by a
single  atom  (the  monomers)  will  be  the  first  to  start  moving  when  environmental  conditions
change[6].  Obviously,  if  conditions become so extreme that all  metal particles either diffuse or
evaporate, the experiments lose their interest. The purpose of this paper is to give the probability
law of the size distribution of the clusters in the case where only single atoms can diffuse and all the
monomers have finally diffused and settled on other clusters. 
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Assumptions of this study

For this work we will make five assertions :
1. Initial probabilities are known.
2. Only single atoms can move
3. Single atom (monomer) diffusion can be decomposed in two half steps :

a) A monomer is removed from the set of monomers.
b) The taken atom is then placed randomly at the surface

4. The number N of nucleation sites is very large : 1/N << 1
5. Finally, the size of an atom is negligible in regard of the distance of nucleation sites. this

means that the capture probability for an atom does not depend of the size of the cluster
already present on the site.

We will note than the first half step of the diffusion affects only the amount of monomers and empty
sites, and the second step will affect all size classes.

Enumeration of size’s classes and evolution of probabilities

Let  be  an  initial  configuration  where  there  is  the  probability  P  to  have  an  empty  site,  the₀

probability P  to have a site with a single atom, P  to have a site with a dimer… and P₁ ₂ s to have a
site with a cluster of s atoms. After a number ɑ of diffusions, the new probabilities will be noted ɑP ,₀
ɑP , ₁ ɑP , ₂ ɑP   ... Let’s see to start, how P  transforms during a single diffusion.₃ ₀

P₀ :

Let N0 be the number of empty sites before the diffusion.  N0 = NP0.
The first half step of the diffusion rises by 1 the number of empty sites :  N 0 → N0’ = N0 + 1 . The
new probability P0’ is then in a way that N0’ = NP0’ i.e.  NP0 + 1 = NP0’ . It therefore follows that P0’
= P0 + 1/N . Since now we will substitute 1/N by ε to simplify the notation.

P0 ' = P0+ε

The second half step will decrease the amount of empty sites according the probability of having an
empty site : N0’ → N0’’ = N0’ – (1×P0’) . In the same way we can verify that if N0’’ = NP0’’ then  P0’’
= P0’ – εP0’ = (1 – ε)P0’ = (1 – ε)(P0 + ε). 

P0 ' ' = P0 '−P0 ' ε

At the end of the whole diffusion :

P0
1

= (P0+ε)(1−ε)

However it is interesting at this point to raise a little bit the difficulty of the game by assuming than
each diffusion can rise from a monomer formerly present on the surface or from an atom coming
from outside (gas phase during deposition for example). Then the first half step will not subtract ε
from P1 but  β ( 0 ≤ β ≤ ε ). This complication will nevertheless lead to the solution of out initial
problem setting  β = ε and allow to check if we are totally wrong or not : indeed, by setting β = 0,
one should expect to rediscover the Poisson distribution. We can now rewrite the probability after
the diffusion :

P0
1

= (P0+β)(1−ε)

Trivially, the upper formula can be generalized to the recurrence relation :
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P0
a+1

= ( P0
a

+β)(1−ε) (1)

P₁ :

It’s a little bit more complicated to address P . Indeed, the successive values of P  will not only₁ ₁
depend of the value of P  at the former stage, but also the former value of P . After first half step :₁ ₀

P0 ' = P0+β and P1 ' = P1−β

If the moving atom is placed on an empty site (probability P₀’) P ’’ =  P ’ + ₁ ₁ ε, and if the moving
atom is placed on an site with 1 atom (probability P₁’),  P ’’ =  P ’ + ₁ ₁ ε . It follows that :

P1
1

= (P1−β)(1−ε)+ε(P0+β)

And again the recurrence relation can be deduced very easily :

P1
a+1

= ( P1
a

−β)(1−ε)+ε( P0
a

+β) (2)

 

P₂ :

The value of P2 is not modified by the first half step, but it is changed if during second stage of the
diffusion the atom is deposited on a preexisting monomer, or a preexisting dimer. If the atom is
dropped on a site with one monomer P2’’ =  P2 + ε , and if is dropped on a site with a dimer P2’’ =  P2

- ε . Taking into account the probabilities of having a monomer or a dimer it follows the recurrence
relation :

P2
a+1

= P2
a

(1−ε)+ε( P1
a

−β) (3)

P₃ :

In the same way, there are two means to change the probability of having a trimer : Depositing the
diffusing atom on a site with a trimer (-ε), or depositing the atom on a dimer  (+ε). The associated
recurrent formula raises :

P3
a+1

= P3
a

(1−ε)+ε P2
a (4)

Ps :

From P3 we can notice that the result doesn't any-more depend on the firs step of the diffusion and

only depend on the former values of Ps and Ps-1. So for  s ≥ 3 :

P s
a+1

= Ps
a

(1−ε)+ε Ps−1
a (5)



4

Iterations

To obtain the final statistics of site occupation, one has to iterate the elementary process and get an

analytic  expression of  ɑPs .  The expression of  ɑP  is  of main importance because the diffusion₁
process must stop when  ɑP   = 0. This will be examined in the section “₁ Interrupting the diffusion”.

Now we will concentrate in obtaining the expressions of ɑPs depending on ɑ, ε, and of the initial

values of Ps . Notice that as the number N of sites is very large, ε and  β are tiny. The number ɑ of
iterations is proportional to N, as increasing by a factor A the number of sites will automatically
increase by the same factor A the number of elementary processes to reach the same situation. The
product ɑ×ε is in fact the mean number of diffusion per site and I will note x this number when the
discrete formulas will be extrapolated to continuous formula.
Second order terms implying ε2 , εβ or β2 are negligible compared to 1, except if associated with the
number ɑ of steps, and, of course, 1 is negligible compared to ɑ.

P0 :

After neglecting what has to be neglected in formula (1) we have :

P0
a+1

= P0
a

(1−ε) + β (6)

Let us try to find a kind of regularity to the successive expressions of  ɑP  :₀

P0
1

= P0(1−ε) + β

P0
2

= P0(1−ε)
2

+ β(1−ε) + β

P0
3

= P0(1−ε)
3

+ β(1−ε)
2

+ β(1−ε) + β

A form seems to emerge :

P0
a

= P0
0

(1−ε)
a
+β∑

i=0

a−1

(1−ε)
i

It is easy to calculate the sum :

∑
i=0

a−1

(1−ε)
i
=

(1−ε)
a
−1

(1−ε)−1
= −

1
ε [(1−ε)

a
−1 ]

And then, as 0P  is nothing else than  P₀ ₀ :

P0
a

= P0(1−ε)
a
+

β
ε [1−(1−ε)

a
]

is to say :

P0
a

= (P0−
β
ε )(1−ε)

a
+

β
ε (7)
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The proof of this formula can be found in the annex subsection “Proof of the formula for P₀ :”
This discrete formula (7) can be expressed in a continuous formula (knowing that (1−ε)

a
= e−εa

when ε<<1 ) :

P0(x) = (P0−
β
ε )e−x

+
β
ε (8)

P  ₁  :

As for P , we will neglect the quadratic terms of ₀ ε in the recurrent formula (2) for P . ₁ This leads to :

P1
a+1

= P1
a

(1−ε) + ε P0
a

− β (9)

After iterations and search for regularities, it turns out that  :

P1
a

= P1(1−ε)
a

+ ε∑
i=0

a−1

[ P0
a−1−i

(1−ε)
i
] − β∑

i=0

a−1

(1−ε)
i

That can be simplified into :

P1
a

= P1(1−ε)
a

+ (P0−
β
ε )a ε(1−ε)

a−1 (10)

The proof of this formula can be found in the annex subsection “Proof of the formula for P₁ :”
As for P0, we can express a continuous form of this formula :

P1(x) = (P1 + x(P0−
β
ε ))e−x (11)

P₂ :

Once the quadratic terms of formula (3) removed we have :

P2
a+1

= P2
a

(1−ε)+ε P1
a (12)

and, by the way already used the solutions is : 

P2
a

= P2(1−ε)
a

+ ε∑
i=0

a−1

[ P1
a−1−i

(1−ε)
i
]

Leading to :

P2
a

= P2(1−ε)
a

+ P1 aε(1−ε)
a−1

+ (P0−
β
ε )

a(a−1)

2
ε

2
(1−ε)

a−2 (13)
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The proof of this formula can be found in the annex subsection “Proof of the formula for P  :₂ ”
and the associated continuous formula takes the form :

P2(x) = [P2 + P1 x + (P0−
β
ε )

x2

2 ]e−x (14)

P₃ :

The recurrence relation for P  is the same as for P , and one could expect that all can be deduced ₃ ₂
easily from here, nevertheless, the expressions becomes more and more complicated :

P3
a+1

= P3
a

(1−ε)+ε P2
a (15)

and so :

P3
a

= P3(1−ε)
a

+ ε∑
i=0

a−1

[ P2
a−1−i

(1−ε)
i
] (16)

To simplify this wee need to sum the square of integers from 0 to ɑ-2 [8] and finally we get :

P3
a

= P3(1−ε)
a

+ P2 aε (1−ε)
a−1

+
1
2

P1 a(a−1)ε
2
(1−ε)

a−2

+
1
6
(P0−

β
ε )(a−1)[(a−1)

2
−1]ε

3
(1−ε)

a−3
(17)

The proof of this formula can be found in the annex subsection “Proof of the formula for P  :₃ ”
The discrete formula (17) leads to the following continuous formula :

P3(x) = [P3 + P2 x +
1
2

P1 x2
+

1
6
(P0−

β
ε )x3]e−x

(18)

Short discussion

Trying to generalize what is obtained for P , it seems that the beginning of P₃ s is :

Ps
a

= P s(1−ε)
a

+ Ps−1 aε(1−ε)
a−1

+
1
2

Ps−2 a(a−1)ε
2
(1−ε)

a−2

+
1
6

Ps−3(a−1)[(a−1)2
−1]ε

3
(1−ε)

a−3
+ ... + K (P0−

β
ε )
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Ps
a

= P s(1−ε)
a

+ K1 P s−1ε(1−ε)
a−1

+ K2 Ps−2 ε
2
(1−ε)

a−2

+ K3 P s−3ε
3
(1−ε)

a−3
+ ... + K s(P0−

β
ε )

Every coefficient Km associated with Ps-m are coming from the sums found in the generic recurrence

formula for Ps-m-1 : 

Ps
a

= P s(1−ε)
a

+ ε∑
i=0

a−1

[ P s−1
a−1−i

(1−ε)
i
]

This means that, to calculate Km, we have to compute the sum of the sum of the sum… m times of
something depending of P0 leading to calculate the sum of powers of ɑ every steep higher.

Ignoring all what can be neglected, the successive terms for Ps-m look like  α(εɑ)m. The problem

being to determine α : Indeed, it does not exist a simple formula for the sum of powers ∑
i=0

N

ik , We

can use the Von Staudt formula [9] ∑
i=0

N

ik
=N k

+∑
i=0

k

[ Bi k!

i!(k−i+1)!
N k−i+1] ,  Bi being the Bernoulli

numbers : B₀ = 1 ; B  = -1/2₁  ; B  = 1/6₂  ; B  = 0₃  ; B  = -1/30 …. or the Faulhaber formula ₄ [10] that
also needs the Bernoulli numbers and is not easiest.

However,  the limit where β=0 suggests that α should be equal to m! , and we would have the
following continuous version for the sizes different from 0 :

Ps≠0(x ) =[∑
i=1

s−1 Ps−i xi

i!
+

1
s!

(P0−
β
ε )xs ]e− x (19)

"Hybrid" proof of formula (19)

By "hybrid" I mean that instead of making iterations of the recurrence formula injecting the discrete
and  complicated  probability  expression  for  the  previous  size,  I  will  use  the  continuous  form
obtained.  Let  us  return to  the procedure  that  allowed us  to  deduce  P3,  and  use the continuous
formula (14) instead of discrete formula (13).

In one hand we have :

P3
a+1

= P3
a

(1−ε)+ε P2
a

that leads to :
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P3
a

= P3(1−ε)
a

+ ε∑
i=0

a−1

[ P2
a−1−i

(1−ε)
i
]

and in other hand :

P2(x) = [P2 + P1 x + (P0−
β
ε )

x2

2 ]e−x

Replacing x by εɑ this formula transforms to :

P2
a

= [P2 + P1εa +
1
2
(P0−

β
ε )ε

2 a2](1−ε)
a

that is in fact the discrete formula (13) :

P2
a

= P2(1−ε)
a

+ P1 aε(1−ε)
a−1

+ (P0−
β
ε )

a(a−1)

2
ε

2
(1−ε)

a−2

free from all negligible terms.

Let’s focus on the sum : ∑
i=0

a−1

[ P2
a−1−i

(1−ε)
i

ε]

This sum can be arranged inverting the order of the terms : this will simplify the understanding of
the meaning of a such sum. 

∑
i=0

a−1

[ P2
a−1−i

(1−ε)
i

ε ] = ∑
i=a−1

0

[ P2
a−1−i

(1−ε)
i

ε ] = ∑
j=0

a−1

[ P2
j

(1−ε)
a−1− j

ε ]

I keep inside the sum ε, because this will have it’s importance.

P2
j

(1−ε)
i
= [P2 + P1ε j +

1
2
(P0−

β
ε )ε

2 j2](1−ε)
j
× (1−ε)

(a−1− j )

= [P2 + P1ε j +
1
2
(P0−

β
ε )ε

2 j2](1−ε)
(a−1)

when ε tends towards 0 : (1−ε)
a−1

= (1−ε)
a and finally :
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P2
j

(1−ε)
a−1− j

= [P2 + P1ε j +
1
2
(P0−

β
ε )ε

2 j2]e−εa

And we will notice, once again when ε tends towards 0 that :

a−1

∑
j=0

[[ P2 + P1 ε j +
1
2
(P0−

β
ε )ε

2 j2]e−εa
× ε] =

x

∫
0

[P2 + P1 α +
1
2
(P0−

β
ε )α

2]e− x d α

P2(x) = [P2 + P1 x + (P0−
β
ε )

x2

2 ]e−x

And the continuous form for P₃ is directly deduced avoiding the tedious calculus of the discrete
form. :

P3(x) = P3 e− x
+

x

∫
0

[P2 + P1α +
1
2
(P0−

β
ε )α

2]e−x dα

= P3 e− x
+

x

∫
0

P2(α)dα

= [ P3 + P2 x +
1
2

P1 x2
+

1
6
(P0−

β
ε ) x3 ]e− x

P3(x) = P3 e− x
+

x

∫
0

[ P2 e−x
+

x

∫
0

[P1 e− x
+

x

∫
0

[(P0−
β
ε )e− x ]d α]d α]d α

Considering the probability Ps for the size s requires an integration that raises the power of x and

brings out, as expected, the factorial of the number of successive integrations.
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Interrupting the diffusion

As explained at the beginning of this article, the diffusion will stop after xi movements per site,

when no more monomers are present. One has to solve the following equation :

P1(x) = (P1 + x(P0−
β
ε ))e−x

= 0

If xi exists, it is such that P1 + xi(P0−
β
ε ) = 0 is to say x i =

P1

(
β
ε − P0)

Let us remember that here, we are interested by the particular case where β = ε, and finally, the new
distribution after the monomer diffusion process is expressed in the following concise form :

Ps≠0(xa) =[∑
i=1

s−1 Ps−i xa
i

i!
+

1
s!

(P0−1) xa
s ]e−x

P0(xa) = (P0−1)e−xa + 1

with

xa =
P1

(1 − P0)

(20)

Some verifications and remarks

remark :

If only monomers are found at the beginning of the diffusion process, then P  = 1 – P  implying that₀ ₁

xɑ = 1 . The mean numbers of diffusions per site to get rid of monomers is 1, and this, whatever the

value of  P  !₁

Some verifications

Sum of probabilities

We have to check, at least in specific cases, that the sum of the probabilities is equal to 1. Let's
check what happens if all stating probabilities are equal to zero except  P  = 1 :₁

To lighten the notation let's replace β/ε by γ.
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P0(x)ex
= γ ex

− γ

P1(x)ex
= 1 − γ x

P2(x)ex
= x −

1
2

γ x2

P3(x)ex
=

1
2

x2
−

1
6

γ x3

P4(x )ex
=

1
6

x3
−

1
24

γ x4

Ps−1(x )ex
=

1
(s−2)!

xs−2
−

1
s−1!

γ xs−1

Ps(x )ex
=

1
(s−1)!

xs−1
−

1
s!

γ x s

∑
s=0

∞

P s(x)ex
= γex

+ (1−γ) + x (1−γ) +
1
2

x2
(1−γ) +

1
3!

x3
(1−γ) + ... +

1
s!

xs
(1−γ) + ...

= γex
+ (1−γ)∑

s=0

∞

( xs

s! )
= γex

+ (1−γ)ex
= ex

∑
s=0

∞

P s(x)ex
= ex

⇔ ∑
s=0

∞

P s(x)=1

Poisson distribution

By taking β = 0, P  = 1, and of course all P₀ i≠0 = 0 , we expect to find the values given by the Poisson
Distribution. 

Ps≠0(x ) =[∑
i=1

s−1 Ps−i xi

i!
+

1
s!

(P0−
β
ε )xs ]e− x

= [∑
i=1

s−1
0 × x i

i!
+

1
s!

1 × xs ]e− x

=
x s

s!
e−x

P0(x) = (P0−
β
ε )e−x

+
β
ε = e−x

which matches exactly the Poisson distribution : P(x ,n)=
xn

n!
e− x

evolution of Poisson distribution

again with  β = 0, we can as starting point have a Poisson distribution with the corresponding
probabilities P , P , P ,… and check how transforms these probabilities during a deposit of atoms.₀ ₁ ₂
As an example I will focus on the evolution of P  :₃
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P3(x) = [P3 + P2 x +
1
2

P1 x2
+

1
6

P0 x3]e−x

Th Poisson distribution for a mean number y of atoms per site is :

P0=e− y

P1= y e− y

P2=
1
2

y2 e− y

P3=
1
6

y3 e− y

After having deposit a mean number x of atoms per site is P  becomes :₃

P3(x) = [ 1
6

y3 e− y
+

1
2

y2 e− y x +
1
2

y e− y x2
+

1
6

e− y x3]e− x

= [ 1
6

y3
+

1
2

y2 x +
1
2

y x2
+

1
6

x3]e−x e− y

=
1
6

[ y3
+ 3 y2 x + 3 y x2

+ x3 ] e−( x+ y)

=
1
6
(x+ y )

3e−(x+ y )

that matches the expected probability for trimers with a mean number x+y atoms par site.

Conclusion

The exact size distribution law (20) after the diffusion of the monomers is deduced in rigorously
under some hypotheses (germination centers on a network, mobility of the monomers). This law
should be useful to all experimenters working on surfaces with very small deposits of atoms or
molecules wishing to characterize as well as possible their studied samples. As an exact law, one
can easily imagine that it could also be useful in other fields for which I have no particular skills.
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Annex

Proof of the discrete formulas. All the formulas are proved by induction.

Proof of the formula for P₀ :

The expression (7) is easily proven. We want to check that:

P0
a

= P0(1−ε)
a

−
β
ε (1−ε)

a
+

β
ε

and we know the following  recursive expression:

P0
a+1

= P0
a

(1−ε) + β

Few lines allows us to calculate a+1P and check that the result is consistent with the formula (7) :

P0
a

(1−ε) + β =[ P0(1−ε)
a

−
β
ε (1−ε)

a
+

β
ε ](1−ε) + β

= P0(1−ε)
a+1

−
β
ε (1−ε)

a+1
+

β
ε (1−ε) + β

= P0(1−ε)
a+1

−
β
ε (1−ε)

a+1
+

β
ε − β + β

= P0(1−ε)
a+1

−
β
ε (1−ε)

a+1
+

β
ε = P0

a+1

and obviously :

P0
0

= (P0−1)(1−ε)
0
+1 = P0 − 1+1 = P0

The accuracy of the formula  (7) is then proved

Proof of the formula for P₁ :

We have to check that the formula (10) is correct. I remind this formula here :

P1
a

= P1(1−ε)
a

+ (P0−
β
ε )aε(1−ε)

a−1

and we know that (formula (9) ):
P1

a+1
= P1

a
(1−ε) + ε P0

a
− β

and also :

P0
a

= (P0−
β
ε )(1−ε)

a
+

β
ε

The recursive formula is correct as we can check in the following calculus :

P1
a

(1−ε) + ε P0
a

− β

= P1(1−ε)
a+1

+ (P0−
β
ε )aε(1−ε)

a
+ ε P0

a
− β

= P1(1−ε)
a+1

+ (P0−
β
ε )aε(1−ε)

a
+ ε [(P0−

β
ε )(1−ε)

a
+

β
ε ] − β

= P1(1−ε)
a+1

+ (P0−
β
ε )aε(1−ε)

a
+ ε(P0−

β
ε )(1−ε)

a

= P1(1−ε)
a+1

+ (P0−
β
ε )(a+1)ε(1−ε)

a
= P1

a+1

and we can check easily that :
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P1
0

= P1(1−ε)
0

+ (P0−
β
ε ) × 0 × ε(1−ε)

−1
=P1

that definitively proofs the accuracy of the formula (10) for P .₁

Proof of the formula for P₂ :

In one hand we have P2
a+1

= P2
a

(1−ε)+ε P1
a and P1

a
= P1(1−ε)

a
+ (P0−

β
ε )a ε(1−ε)

a−1

and we have to demonstrate that

P2
a

= P2(1−ε)
a

+ P1 aε(1−ε)
a−1

+ (P0−
β
ε )

a(a−1)

2
ε

2
(1−ε)

a−2 .

Let’s calculate a little bit :

P2
a

(1−ε) + ε P1
a

= [ P2(1−ε)
a

+ P1aε(1−ε)
a−1

+ (P0−
β
ε )

a (a−1)
2

ε
2
(1−ε)

a−2](1−ε) + ε P1
a

= P2(1−ε)
a+ 1

+ P1 aε(1−ε)
a

+ (P0−
β
ε )

a (a−1)
2

ε
2
(1−ε)

a−1

+ ε [P1(1−ε)
a

+ (P0−
β
ε )a ε(1−ε)

a−1 ]

= P2(1−ε)
a+ 1

+ P1 aε(1−ε)
a

+ (P0−
β
ε )

a (a−1)
2

ε
2
(1−ε)

a−1

+ P1ε(1−ε)
a

+ (P0−
β
ε )aε

2
(1−ε)

a−1

= P2(1−ε)
a+1

+ P1(a+1)ε(1−ε)
a

+ (P0−
β
ε )ε

2
(1−ε)

a−1[ a(a−1)

2
+a ]

since

a(a−1)

2
+a=(a+1)a

hence :

P2
a

(1−ε) + ε P1
a

= P2
a+1

And finally the particular case a=0 leads 0P  = P  that demonstrates the correctness of the formula.₂ ₂



16

Proof of the formula for P₃ :

We start with P3
a+1

= P3
a

(1−ε) + ε P2
a and  P2

a
= P2(1−ε)

a
+ P1 aε(1−ε)

a−1
+ (P0−

β
ε )

a(a−1)

2
ε

2
(1−ε)

a−2 , and we have to check that 

the following formula is correct : P3
a

= P3(1−ε)
a

+ P2 aε (1−ε)
a−1

+
1
2

P1 a(a−1)ε
2
(1−ε)

a−2
+

1
6
(P0−

β
ε )(a−1)[(a−1)

2
−1]ε

3
(1−ε)

a−3 .

P3
a

(1−ε) + ε P2
a

= [P3(1−ε)
a

+ P2 aε(1−ε)
a−1

+
1
2

P1 a(a−1)ε
2
(1−ε)

a−2
+

1
6
(P0−

β
ε )(a−1)[(a−1)

2
−1]ε

3
(1−ε)

a−3](1−ε) + ε P2
a

= P3(1−ε)
a+1

+ P2 aε(1−ε)
a

+
1
2

P1 a(a−1)ε
2
(1−ε)

a−1
+

1
6
(P0−

β
ε )(a−1)[(a−1)

2
−1]ε

3
(1−ε)

a−2

+ ε [ P2(1−ε)
a

+ P1 aε(1−ε)
a−1

+ (P0−
β
ε )

a(a−1)

2
ε

2
(1−ε)

a−2]

= P3(1−ε)
a+1

+ P2 aε(1−ε)
a

+
1
2

P1 a(a−1)ε
2
(1−ε)

a−1
+

1
6
(P0−

β
ε )(a−1)[(a−1)

2
−1]ε

3
(1−ε)

a−2

+ P2ε(1−ε)
a

+ P1aε
2
(1−ε)

a−1
+ (P0−

β
ε )

a(a−1)
2

ε
3
(1−ε)

a−2

= P3(1−ε)
a+1

+ P2(a+1)ε(1−ε)
a

+
1
2

P1(a+1)aε
2
(1−ε)

a−1
+ (P0−

β
ε )ε

3
(1−ε)

a−2[(a−1)[(a−1)
2
−1]

6
+

a(a−1)

2 ]
Simplifying the expression in the square brackets :
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(a−1) [(a−1)2
−1]

6
+

a(a−1)

2
=

1
6

[ (a−1)[(a−1)
2
−1]+3a(a−1) ] =

1
6

[ (a−1)(a2
−2 a+1−1+3a) ]

=
1
6

[(a−1)(a2
+a)] =

1
6

[ a3
−a2

+a2
−a ] =

1
6
(a (a2

−1))

leads to : 

P3
a

(1−ε) + ε P2
a

= P3(1−ε)
a+1

+ P2(a+1)ε(1−ε)
a

+
1
2

P1(a+1)aε
2
(1−ε)

a−1
+

1
6
(P0−

β
ε )ε

3
(1−ε)

a−2 a(a2
−1) = P3

a+1

And in a trivial way, when a=0 leads to 0P  = P . The formula ₃ ₃ (17) is then demonstrated.
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