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Abstract. This paper investigates the acetone variabil-
ity in the upper troposphere (UT) as sampled during the
CARIBIC airborne experiment and simulated by the LMDz-
INCA global chemistry climate model. The aim is to (1) de-
scribe spatial distribution and temporal variability of acetone;
(2) propose benchmarks deduced from the observed data set;
and (3) investigate the representativeness of the observational
data set.

According to the model results, South Asia (including part
of the Indian Ocean, all of India, China, and the Indochi-
nese peninsula) and Europe (including Mediterranean Sea)
are net source regions of acetone, where nearly 25 % of North
Hemispheric (NH) primary emissions and nearly 40 % of the
NH chemical production of acetone take place. The im-
pact of these net source regions on continental upper tro-
pospheric acetone is studied by analysing CARIBIC obser-
vations of 2006 and 2007 when most flight routes stretched
between Frankfurt (Germany) and Manila (Philippines), and
by focussing over 3 sub-regions where acetone variability
is strong: Europe-Mediterranean, Central South China and
South China Sea.

Important spatial variability was observed over different
scales: (1) east-west positive gradient of annually averaged
acetone vmr in UT over the Eurasian continent, namely a
factor two increase from east to west; (2) ocean/continent
contrast with 50 % enhancement over the continents; (3) the
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acetone volume mixing ration (vmr) may vary in summer
by more than 1000 pptv within only 5 latitude-longitude de-
grees; (4) the standard deviation for measurements acquired
during a short flight sequence over a sub-region may reach
40 %. Temporal variability is also important: (1) the ace-
tone volume mixing ratio (vmr) in the UT varies with the
season, increasing from winter to summer by a factor 2 to
4; (2) a difference as large as 200 pptv may be observed be-
tween successive inbound and outbound flights over the same
sub-region due to different flight specifications (trajectory in
relation to the plume, time of day).

A satisfactory agreement for the abundance of acetone is
found between model results and observations, with e.g. only
30 % overestimation of the annual average over Central-
South China and the South China Sea (between 450 and
600 pptv), and an underestimation by less than 20 % over
Europe-Mediterranean (around 800 pptv). Consequently, an-
nual budget terms could be computed with LMDz-INCA,
yielding a global atmospheric burden of 7.2 Tg acetone, a
127 Tg yr−1 global source/sink strength, and a 21-day mean
residence time.

Moreover the study shows that LMDz-INCA can repro-
duce the impact of summer convection over China when
boundary layer compounds are lifted to cruise altitude of 10–
11 km and higher. The consequent enhancement of acetone
vmr during summer is reproduced by LMDz-INCA, to reach
agreement on an observed maximum of 970± 400 pptv (av-
erage during each flight sequence over the defined zone±

standard deviation). The summer enhancement of acetone is
characterized by a high spatial and temporal heterogeneity,
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showing the necessity to increase the airborne measurement
frequency over Central-South China and the South China
Sea in August and September, when the annual maximum
is expected (daily average model values reaching potentially
3000 pptv). In contrast, the annual cycle in the UT over
Europe-Mediterranean is not reproduced by LMDz-INCA,
in particular the observed summer enhancement of acetone
to 1400± 400 pptv after long-range transport of free tropo-
spheric air masses over North Atlantic Ocean is not repro-
duced. In view of the agreement on the acetone annual cy-
cle at surface level, this disagreement in UT over Europe in-
dicates misrepresentation of simulated transport of primary
acetone or biased spatial distribution of acetone chemical
sinks and secondary sources. The sink and source budget in
long-range transported free tropospheric air masses may be
studied by analysing atmospheric chemical composition ob-
served by CARIBIC in summer flights between North Amer-
ica and Europe.

1 Introduction

Hydroxyl (OH) and hydroperoxy radical (HO2) dominate
background tropospheric chemistry through their oxidative
roles. In fact, the oxidation of CO and hydrocarbons is the
main source of tropospheric ozone (Brasseur et al., 1999).
Water vapour is the main precursor of primary tropospheric
OH, except in the upper troposphere (UT) where dry condi-
tions prevail. Here acetone (CH3COCH3) becomes a candi-
date as the main source of OH (Singh et al., 1995). Indeed,
Wennberg et al. (1998) could reach near agreement between
measured and simulated OH concentration in the UT by con-
sidering 300 pptv acetone in a photochemical box model, un-
der specific conditions. For example, OH production is more
sensitive to acetone at low solar zenith angle, and differences
reaching a factor 5 are still observed. The significance of ace-
tone was later confirmed using Chemistry-Climate Models:
for example Folberth et al. (2006) showed using the LMDz-
INCA model, that acetone and methanol play a significant
role in the upper troposphere/lower stratosphere budget of
peroxy radicals, with an increase in OH and HOx concentra-
tions of 10 to 15 % being attributed to acetone. Chatfield et
al. (1987) noted that acetone can be considered an indicator
of properly modelled atmospheric chemistry in the UT, for
instance as a tracer of previous photochemical activity in an
air parcel.

It is currently accepted that the sources of acetone consist
mostly of primary terrestrial biogenic and oceanic emissions,
complemented by secondary chemical production, with sinks
by photolysis, oxidation, and a substantial degree of mostly
dry deposition over land and oceans. Nevertheless, uncer-
tainties remain in the acetone budget. For example, Jacob
et al. (2002) improved the agreement between model and
observational data by (1) adding an oceanic source, (2) in-

creasing the terrestrial vegetation contribution, and (3) de-
creasing the contribution from vegetation decay. In line with
the fairly recent revision of the acetone photolysis quantum
yield in terms of a temperature dependent function (Blitz et
al., 2004), Arnold et al. (2005) estimated a reduced pho-
tolysis sink. Marandino et al. (2006) proposed to compen-
sate for this by increasing the ocean sink in order to ac-
commodate results of air/sea flux measurements over the
Pacific Ocean. Consequently, for total source/sink strength
of around 100 Tg yr−1, estimates of the oceanic contribu-
tion currently range between a net source of 13 Tg yr−1 (Ja-
cob et al., 2002) and a net sink of 33 Tg yr−1 (Marandino et
al., 2006). Concerning primary terrestrial biogenic emission,
Potter et al. (2003) proposed a wide range of source strengths
between 54 and 172 Tg yr−1 for terrestrial vegetation and be-
tween 7 and 22 Tg yr−1 for plant decay.

Most recent budget studies have relied on data compiled
by Emmons et al. (2000): (1) the ocean source was taken
into account for improving agreement over the Pacific Ocean
(Jacob et al., 2002; Folberth et al., 2006); (2) the terres-
trial biogenic primary emissions were modified to fit lower
tropospheric observations (Jacob et al., 2002); (3) the ace-
tone photolysis quantum yield (with its strong impact in the
UT; Arnold et al., 2004) was changed to improve agreement
for the vertical column (Arnold et al., 2005), especially over
the Pacific Ocean. This all shows the problem of resolving
the acetone budget, which by its variability adds an addi-
tional challenge. Because aircraft measurements during field
campaigns are essentially “snapshots”, Emmons et al. (2000)
claim that their data composite can not be regarded as clima-
tology. Observation-based constraints need to be more com-
plete to become applicable to all modelled source, sink and
transport processes. In particular, few measurements were
hitherto available in the northern mid-latitude and over con-
tinents, and temporal variability in the UT has been sounded
only sporadically.

The “civil aircraft” approach of the CARIBIC experiment
(Civil Aircraft for Regular Investigation of the atmosphere
Based on an Instrument Container) (Brenninkmeijer et al.,
2007) and other projects such as MOZAIC (e.g. Marenco et
al., 1998; Thouret et al., 2006) and CONTRAIL (Machida
et al., 2008) provide an opportunity to more systematically
sample the annual cycle and the inter-annual variability of
main atmospheric trace gases on a large scale. CARIBIC,
with its extensive instrument payload is suitable to help to
address the acetone budget issue. Sprung and Zahn (2010)
compiled three years of CARIBIC data to derive the acetone
distribution around the tropopause north of 33◦ N, showing
that acetone volume mixing ratio (vmr) varies by a factor of
four with season.

The purpose of our work is to scrutinize model results and
observations for (1) describing spatial distribution and tem-
poral variability of acetone in the UT; (2) proposing bench-
marks deduced from the observation data set; and (3) inves-
tigating the representativeness of the observational data set.
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The simulation results are provided by LMDz-INCA, which
integrates a comprehensive representation of the photochem-
istry of methane and volatile organic compounds from bio-
genic, anthropogenic, and biomass-burning sources (Fol-
berth et al., 2006). The CARIBIC experiment provides the
acetone measurements in the UT mainly over NH continen-
tal regions where major sources are located and where chem-
ical activity significantly contributes to acetone sources and
sinks. Main flight routes for the period considered extend
between Frankfurt (Germany) and Manila (Philippines), also
providing the opportunity to study the impact of rapid uplift-
ing of pollutants over China and the South China Sea.

The LMDz-INCA model and the CARIBIC experiment
are described in Sects. 2 and 3 respectively, together with
the method used to compare the two data sets. Budget terms
on global and regional scales are also provided in Sect. 2.
Results of comparisons are discussed in Sect. 4. The focus
is on the UT over South-Central China and the South China
Sea, with impacts of pollution events, and over the Europe-
Mediterranean region affected by long-range transport over
the North Atlantic Ocean. Measurements of O3 and CO are
also used to discuss the chemical signature of air masses,
with the help of computed back-trajectories.

2 Global budget of acetone according to LMDz-INCA

2.1 The LMDz-INCA set-up

LMDz-INCA consists of the INteraction Chemistry-
Aerosols (INCA) module representing tropospheric chem-
istry, coupled with the Global Circulation Model LMDz
(Hourdin et al., 2006). Fundamentals are presented by
Hauglustaine et al. (2004) and first results with the full tro-
pospheric chemistry are presented by Folberth et al. (2006).
This model is commonly used in international multi-model
experiments to investigate climate-chemistry issues or inter-
continental transport (e.g. Sanderson et al., 2008; Fiore et
al., 2009). Large scale advection is nudged using ECMWF
re-analysis data. Global tropospheric fields of greenhouse
gases (CO2, CH4, O3, N20), aerosols, water vapour and non-
methane hydrocarbons are simulated on a horizontal grid,
improved since Folberth et al. (2006), from 3.75◦ longi-
tude× 2.5◦ latitude to 3.75◦ × 1.875◦ spatial resolution in
the LMDz4-INCA3 version used here. The number of re-
active species in INCA has been increased from 83 (of
which 58 are transported) to 89. Currently 43 photolytic,
217 thermo-chemical and 4 heterogeneous reactions are inte-
grated in the INCA module. In particular, acetone is directly
involved in 21 reactions, e.g. in oxidation of alkenes, alka-
nes, alpha pinenes, and photolysis. The quantum yield for
acetone photolysis is updated in LMDz4-INCA3, according
to Blitz et al. (2004).

Primary biogenic emissions of isoprene, terpenes,
methanol, and acetone are prepared by the global vegeta-

tion model ORCHIDEE (ORganizing Carbon and Hydrol-
ogy In Dynamic EcosystEms; Krinner et al., 2005), as de-
scribed in Lathìere et al. (2006). Primary emission of ace-
tone by biomass burning is taken from van der Werf et
al. (2006) (GFED-v2). The anthropogenic contribution is
based on the EDGAR v3.2 emission database (Olivier and
Berdowski, 2001), except that for non-methane volatile or-
ganic compounds, which is based on the EDGAR v2.0 emis-
sion database (Olivier et al., 1996). The ocean source is de-
rived from Jacob et al. (2002). GCM primitive equations are
resolved by LMDz every 3 min, the large scale transport has a
time step of 15 min, and physical processes of 30 min. INCA
computes primary emissions, deposition and chemical equa-
tions every 30 min.

Folberth et al. (2006) compared volatile organic com-
pound fields simulated by the NMHC1.0 model version with
field campaign results presented by Emmons et al. (2000)
and Singh et al. (2001). Their simulated values have been
sampled from the model output over the same regions and
months as the airborne observational data: western North At-
lantic Ocean in summer, eastern North Atlantic Ocean and
tropical Atlantic Ocean in early autumn, East Asian coasts in
winter, Pacific Ocean in early spring. Folberth et al. (2006)
show a satisfactory overall agreement, with more frequent
overestimation than underestimation. CARIBIC now allows
us to extend the available data set to continents and to inves-
tigate the seasonal variability (Sect. 3).

2.2 Budget terms

2.2.1 Global budget, sources and sinks

The budget terms computed with LMDz-INCA are presented
in Table 1 together with literature results. Annual cycles of
the global budget terms are shown in Fig. 1. Since no inter-
annual trend is simulated for the annual global acetone bur-
den, 2007 is used as reference for budget analyses. The to-
tal source in LMDz-INCA is apportioned as 60 % primary
terrestrial biogenic, 16 % primary oceanic, and 20 % sec-
ondary chemical production, providing total source strength
of 127 Tg yr−1, which exceeds previous estimates. Indeed
primary emissions are larger by 50 % than considered by Ja-
cob et al. (2002), and by 25 % than Singh et al. (2004) and
Folberth et al. (2006) (Table 1). The ocean source remains
constant at 20 Tg yr−1 since Folberth et al. (2006), but the
primary terrestrial biogenic contribution increased from 56
to 76 Tg yr−1 since Folberth et al. (2006), in close agreement
with 66–71 Tg yr−1 presented by Lathière et al. (2006). This
is at the lowest range estimated by Potter et al. (2003) of 61–
194 Tg yr−1 for biogenic emission (terrestrial vegetation and
plant decay). Chemical production of 27 Tg yr−1 of acetone
estimated by LMDz-INCA is similar to estimates by Jacob et
al. (2002). No values on chemical production were reported
by Folberth et al. (2006).

www.atmos-chem-phys.net/11/8053/2011/ Atmos. Chem. Phys., 11, 8053–8074, 2011
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Table 1. LMDz-INCA computation of acetone global budget terms, as well as literature results. Sources correspond to primary emission
and chemical production, sinks correspond to deposition and chemical destruction. Primary emission and deposition are further apportioned
according to continental/oceanic contributions.

Model IMAGES GEOS-CHEM Singh et al. Marandino TOMCAT LMDz-INCA LMDz-INCA
(Emmons a posteriori (2004) et al. (2006) (Arnold et al., 2005) (Folberth et al., (this work)

et al., 2000) (Jacob et al., 2002) 2006)

Global atmospheric burden (Tg) 3.8 3.9 4.1 7.2

Residence time (days) 15 15 13 35 21

Source/sink strength (Tg acetone yr−1) 95 95 111 42.5 127

Primary emissions

Total 40 67 67 27 80 100

Biogenic: terrestrial
vegetation + plant decay

35 56 56 76

Biomass burning 4.5 9 3.2 2.4

Ocean 27 0 0 20 20

Chemical production Total 28 15.5 27

Deposition

Total 23 9 47

Oceanic deposition 14 62 0 28

Land deposition 9 9 19

Chemical destruction Total 73 33 80

One third of the acetone load is deposited (mainly dry de-
position), and two thirds is either oxidised or photolysed.
Chemical destruction is similar to simulations by Jacob et
al. (2002), but deposition computed by LMDz-INCA is in-
creased to reach equilibrium of equal global source and sink
strengths. The chemical budget by LMDz-INCA displays a
net chemical sink of 53 Tg yr−1 on a global scale (similar to
45 Tg yr−1 estimated by Jacob et al., 2002). The oceans are
a net sink of 8 Tg yr−1, resulting from 20 Tg yr−1 emissions
and 28 Tg yr−1 deposition.

The mean residence time of 21 days is within the range in-
ferred from previous studies (Table 1). However, similarly to
the acetone source strength, our estimated atmospheric bur-
den of 7.2 Tg is larger than previous estimates by Jacob et
al. (2002), Arnold et al. (2005), and Marandino et al. (2006).
An exact balance between source and sink is not constantly
found, causing a small seasonal variability of the global at-
mospheric burden of acetone. Annual cycles of the global
source and sink terms are shown in Fig. 1a. Maxima of the
source terms occur during boreal summer, revealing the sig-
nature of the dominant biogenic source. Because the main
acetone source is terrestrial, a contrast is simulated between
the northern and southern hemisphere, with more acetone
strength and burden in the NH, and with more intense an-
nual cycles, while the residence time of 21 days is equal in
both hemispheres.

On a global scale, minima of the budget terms are found
in boreal winter and maxima in boreal summer. The global
budget is annually balanced, but on a monthly basis accumu-
lation of acetone occurs in July at a rate of 0.7 Tg month−1.
Depletion occurs in December at a rate of−0.2 Tg month−1.
Taking into account the acetone residence time, the annual

cycle of the atmospheric burden is delayed by one or two
months, with a minimum of 6.4 Tg in February and a maxi-
mum of 8.1 Tg in September/October.

2.2.2 Regional features

Budget terms were computed for continental regions enclos-
ing main route sections taken by the CARIBIC experiment in
2006–2007, namely South Asia and Europe (Sect. 3). South
Asia extends between 10◦ and 40◦ N latitude and between
20◦ and 130◦ E longitude, Europe extends between 30◦ and
70◦ N and between 10◦ W and 50◦E. The respective budget
terms proportioned to those regions and monthly averages of
the regional budget terms are plotted in Fig. 1b and c. Due
to its sufficiently long residence time, long range transport
smoothes the spatial distribution of the acetone burden com-
puted on an annual basis, despite high spatial heterogeneity
observed in the source pattern.

South Asia is a net source region, with 2 Tg yr−1 excess
net production (around 15 % of the regional source strength
of 13 Tg yr−1), which is transported to other regions of the
world, as on an annual basis, the atmospheric burden of ace-
tone (0.48 Tg acetone) is proportional to the covered surface
area (11 %). Regarding geographical differences, sources
and sinks are proportionally larger over South Asia than on
a hemispheric scale, with primary emission, deposition and
chemical loss representing around 15 % of the NH terms,
and the chemical production representing up to 23 % (with
4.8 Tg yr−1). The chemical production, in excess relatively
to the other terms, may account entirely for the excess net
production of acetone in South Asia. The annual cycles of
the regional budget terms are similar to that of the global
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Figure 1.  Annual cycle of the acetone budget terms (in Tg/month), computed by LMDz-
INCA for (a) the world, (b) South Asia, and (c) Europe.  The net budget is computed as 
source - sink.  Sources are divided into primary emission, and chemical production, and sinks 
(counted negatively) into dry deposition and chemical loss.   

Fig. 1. Annual cycle of the acetone budget terms (in Tg month−1),
computed by LMDz-INCA for(a) the world,(b) South Asia, and
(c) Europe. The net budget is computed as source-sink. Sources are
divided into primary emission, and chemical production, and sinks
(counted negatively) into dry deposition and chemical loss.

annual cycle in terms of seasonal minimum and maximum
(Fig. 1b and c). However the annual cycles have larger am-
plitudes with primary production increasing by a factor 2.3
and chemical loss by a factor three. The net production in
the region exhibits a strong annual cycle, changing by a fac-
tor 4 with the season.

As for South Asia, the atmospheric burden of acetone over
Europe is proportional to the surface area covered by the re-
gion (8 % with 0.35 Tg acetone) while the European region
also provides excess acetone during all seasons cumulating to
+1.7 Tg yr−1 (around 25 % of the regional source strength of
6.8 Tg yr−1). Concomitantly, the annual chemical production
is important over Europe, reaching 13 % of the NH chemical
production (which represents 8 % of the NH surface area),
and even exceeds primary emission (representing 8 % the NH
primary emission) during the winter (Fig. 1c). This excess
regional chemical production combined with a deficit in sim-
ulated regional chemical loss (accounting for only 6 % of the
NH chemical loss), almost results in net regional chemical
balance: from a net chemical sink of 0.2 Tg month−1 in sum-
mer, reversing to a net chemical source of 0.1 Tg month−1 in
winter, while on a global scale there is always a net chemical
sink. A strong seasonal cycle is also simulated for primary
production, with a factor eight change with season. Depo-
sition appears to be important over the European region as
its magnitude is similar to chemical loss, and even exceeds
chemical loss in winter, which is inferred neither for South
Asia nor on a global scale.

Because primary emissions and dry deposition occur ex-
clusively at surface level, the only source/sink terms impact-
ing the vertical profile of the global budget are the chemical
terms. Because the chemical budget results in a net sink on a
global scale, the atmosphere is expected to be a sink for ace-
tone. Consequently, the lowermost atmospheric layers are
simulated to be net source, with an overlaying net chemi-
cal sink, all through the year. Over Europe, the net acetone
sink at 238 hPa can reach 500 Mg yr−1 and 100 Mg month−1

in August, and over South Asia it may reach 1500 Mg yr−1

and 200 Mg month−1 in August. Consequently, plumes of
acetone at such altitude can only be observed thanks to trans-
port of primary and secondary acetone from the boundary
layer. The two net source regions Europe and South Asia
will be discussed in Sect. 4, in terms of acetone content in
the UT, as they are locations where most data is acquired by
the CARIBIC experiment.

3 The strategy for comparing model data with
CARIBIC measurements

3.1 CARIBIC data set

The CARIBIC project (http://www.caribic-atmospheric.
com/) provides measurements of acetone volume mixing
ratio (vmr) by an instrumented airfreight container oper-
ated during Lufthansa’s regular long-distance flights (Bren-
ninkmeijer et al., 2007). Four consecutive intercontinen-
tal flights are made almost monthly, thus covering around
400 000 km annually. Acquisition is performed during all
seasons, for a large range of solar insolation conditions, and
along four main routes. In 2006 and 2007, most flights
were to Manila, with two flights to South America (February

www.atmos-chem-phys.net/11/8053/2011/ Atmos. Chem. Phys., 11, 8053–8074, 2011
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Table 2. Average and standard deviation are computed for all 2006 and 2007 flight segments included between the minimum and maximum
longitude and latitude of the 11 geographical zones, exclusively in the troposphere, for co-located modelling results and observation. Standard
deviation represents here the temporal and spatial variability. Number of flights crossing the geographical zones is also given for each year.
Computations are similarly made for entire flights, independently the location. Coordinates are also given for the two extended geographical
regions (Europe and South Asia), where budget terms are computed in Sect. 2. Bias is computed as observation subtracted from modelling
results, divided by observation. Focus regions are showed in bold face.

Geographical zones [min; max [min; max Number of flights crossing Observed mean Simulated mean Relative bias
latitude] (◦) longitude] (◦) the region in UT in 2006/2007 ± standard deviation ± standard deviation modelling-

(pptv) (pptv) observation (%)

Mid Latitude South America [−35;−23.5] [−72;−46] 4/0 380±235/N/A 870±840/N/A +130 %/N/A
Eastern South America [−23.5; 0] [−48;−20] 4/0 430±130/N/A 1090±540/N/A +153 %/N/A
Tropical Atlantic Ocean [0; 24] [−45;−10] 4/0 410±125/N/A 1150±580/N/A +180 %/N/A
North Atlantic Ocean (NAO) [24; 60] [−55;−10] 3/3 360±120/750±170 445±55/610±80 +24 %/−19 %
Eastern North America [25; 60] [−100;−55] 0/4 N/A/775±320 N/A/530±80 N/A/−32 %
Europe-Mediterranean (EurMed) [30; 51] [−10; 40] 9/9 775±520/865±500 710±170/695±100 −8 %/−20 %
Northern Europe [51; 60] [−10; 40] 7/9 580±260/430±225 640±125/480±105 +10 %/+12 %
Northern Asia [50; 60] [40; 90] 4/8 720±280/655±380 700±50/595±215 −3 %/−9 %
Central Asia (CAs) [30; 50] [40; 90] 14/13 570±290/640±305 595±160/550±180 +4 %/−14 %
Central-South China (CSChi) [20; 40] [90; 113] 15/16 610±305/585±270 790±305/690±310 +29 %/+18 %
South China Sea (SCSea) [14; 25] [113; 125] 14/14 445±180/450±240 695±235/620±190 +56 %/+38 %
Entire flights [−35; 60] [−100; 125] 37/34 530±290/640±340 755±430/610±220 +42 %/−5 %
extended Europe [30; 70] [−10; 50]
extended South Asia [10; 40] [50; 130]

and March 2006), and two to North America (September
2007). The measurement technique using a Proton-Transfer-
Reaction quadrupole Mass Spectrometer was described by
Sprung and Zahn (2010). The total uncertainty of the acetone
data is∼10 % above 200 pptv and∼20 pptv below 200 pptv.
With a 1-min temporal resolution, approximately 10 000 val-
ues are available each year. The CARIBIC data set presented
highly variable acetone values due to different sampled air
masses (K̈oppe et al., 2009), season, and aircraft position rel-
atively to the tropopause (Sprung and Zahn, 2010), and due
to pollution events (Lai et al., 2010). First we briefly sum-
marise some key results from these studies.

Köppe et al. (2009) identified five air mass types using
cluster analysis applied to a data set composed of mixing
ratios of cloud water, water vapour, O3, CO, acetone, ace-
tonitrile, NOy and for aerosol number densities, measured
exclusively on flights to Guangzhou and Manila in 2006 and
2007. The cluster analysis could not be applied if one or
more measured parameters were missing. Consequently, due
to incidental instrument failure and calibration intervals, air
mass characteristics could be identified for only one third of
all acquisitions (K̈oppe et al., 2009). Acetone vmr seems to
be related with the air mass origin: e.g. acetone vmr in sum-
mer was 780 pptv (±33 % standard deviation) in the cluster
representing high clouds (HC) and was 1230 pptv (±31 %)
in free troposphere (FT) air masses (Köppe et al., 2009). The
seasonal dependence of acetone vmr depends on the air mass:
it was strong in FT air masses where acetone vmr increased
by a factor of two from winter to summer, and it was less im-
portant in boundary layer air mass (BL), where acetone vmr
changed by only 30 %.

Sprung and Zahn (2010) discriminated tropospheric data
from stratospheric data, and also defined a (mixing-based)
height above the thermal tropopause, by translating ozone
concentrations measured in flight, using data collected at 12
ozonesonde stations. Data was acquired by CARIBIC mostly
in the troposphere (76 % in 2006, 64 % in 2007). The loca-
tion of sampling relative to the tropopause was decisive as the
averaged acetone vmr in 2006 was 530±290 pptv in the up-
per troposphere and 350±250 pptv in the lowermost strato-
sphere. Acetone decreased further down to 230±150 pptv
0.5 km above the tropopause. Strong seasonality was ob-
served north of 33◦ N, where a maximum of∼900 pptv was
observed in summer and lowest values of∼200 pptv in win-
ter at the tropopause (Sprung and Zahn, 2010). The air mass
identification techniques by K̈oppe et al. (2009) and Sprung
and Zahn (2010) are complementarily used in this paper.

The CARIBIC data set shows large spatial and temporal
variability in acetone vmr measured in the upper troposphere.
This is illustrated in Fig. 2, which displays acetone vmr
from several flights with values between 100 and 2600 pptv.
The annual maximum acetone concentration in the UT was
observed over Germany in July 2006, just after the ascent
from Frankfurt airport: acetone varied between 1200 and
2600 pptv along 50◦ N latitude, from 15 to 22◦ E (Fig. 2)
at a constant altitude of 280 hPa. The 2007 maximum was
observed in August over eastern Kazakhstan during a flight
from Guangzhou to Frankfurt: acetone varied between 1000
and 2200 pptv along 50◦ latitude between 50 and 60◦ longi-
tude, at 240 hPa. Globally, maximal values in August 2003
were found to reach 3000 pptv between 300 and 500 hPa
and to reach 2000 pptv above 200 hPa (Moore et al., 2010).
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Fig. 2. Acetone vmr (pptv) along the flight track, acquired onboard the CARIBIC passenger aircraft for several flights in 2006 and 2007,
superimposed on maps of daily averaged acetone vmr simulated at 238 hPa by LMDz-INCA.
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Figure 2.  Acetone vmr (pptv) acquired onboard the passenger aircraft along the flight track 
for several flights, superimposed on maps of daily averaged simulated acetone vmr at 238 hPa 
 

Fig. 2. Continued.

Lai et al. (2010) showed the impact on acetone vmr of pol-
lution events observed in the UT in April 2007. Polluted air
masses crossing the flight trajectory over China led to en-
hancements from 350 to 1800 pptv for acetone, from 70 to
150 ppbv for CO with O3 remaining below 100 ppbv. Back
trajectories located the air mass origin over the Indochinese
Peninsula, bringing pollution from biomass/biofuel burning
activities (Lai et al., 2010).

3.2 Methodology to compare observed data to model
results

In this paper, besides the 2006 and 2007 routes to Asia, routes
to the Americas are used for comparison, thus extending the

latitude to span 30◦ S to 55◦ N. Model results are co-located
to observations to allow comparison. Simulated values of
acetone are spatially (vertically and horizontally) and tem-
porally interpolated along the flight tracks, at the coordinates
(time and space) of each data acquisition event.

To ensure consistency in the data set, small-scale variabil-
ity due to changes in acquisition altitude are avoided by only
using measurements when the aircraft cruises at constant al-
titude, i.e. when altitude difference between two successive
acquisitions made in 1 min is smaller than 1 hPa. Conse-
quently, the data set is mostly composed of measurements
acquired at cruising altitudes above 300 hPa. Around 70 %
of the measurements were acquired at altitudes between 200
and 250 hPa and 25 % at altitudes between 250 and 300 hPa.
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Because the INCA module resolves only tropospheric
chemistry, the height above the tropopause defined by Sprung
and Zahn (2010) is used to remove measurements acquired
in the stratosphere. As measurement frequency in the strato-
sphere increases with latitude, most data acquired over north-
ern Asia are screened out. The data set is then composed of
7500 observed values in 2006 and 6100 values in 2007. Most
values (around 60 %) of acetone fall between 200 and 600
pptv. All air masses identified as lowermost stratosphere by
Köppe et al. (2009) are consistently localised in the strato-
sphere according to Sprung and Zahn (2010). Conversely, all
summer HC and winter FT and BL cluster samples are tropo-
spheric. For 2006 and 2007, tropospheric air mass character-
istics are identified for only 3400 data points. Moreover, as
most flights started and finished in Frankfurt at night, mea-
surements were chiefly made during the night (55 % in 2007,
68 % in 2006).

We define 11 geographical zones along all flight routes
(Table 2) to compute regional averages of acetone vmr (one
value per region and per flight), with the standard deviation
as an indication of the spatial variability (the temporal vari-
ability of acetone is negligible in the few hours necessary to
cross the zone). This approach is used for co-located simula-
tion and measurement data sets. The annual cycle of acetone
is illustrated by plotting time series of zonal averages, which
are analysed in the subsequent sections. During each round
trip, given that the aircraft takes similar routes in both di-
rections, it usually crosses a given zone twice within 24 h.
Consequently, the time series for a year show commonly two
points per month, reflecting short term temporal variability.

We are also interested in examining the possible effects of
irregularities in the CARIBIC sampling on properly repre-
senting the annual cycle. For that purpose co-located simu-
lation and measurement averages are compared to averaged
vmr simulated at constant altitude of 238 hPa, over the full
zone for the whole month, hereafter referred to as the cli-
matological value. Also considered is how well spatial vari-
ability is represented by the standard deviations over all grid
boxes of the different zones, as discussed in the subsequent
sections.

4 Comparison of results

4.1 Impact of air mass history on geographical
variability

Annual averages of measurements and co-located model re-
sults for each zone are presented in Table 2. It shows that
the magnitude of acetone vmr in UT can be reproduced by
LMDz-INCA, but disagreements occur as a function of geo-
graphical location. Averaging the whole data set (7500 data
points in 2006, and 6100 in 2007) provides a mean ace-
tone value of 530± 290 pptv observed in the UT in 2006
and 640±340 pptv in 2007. Bearing in mind the high stan-

dard deviation as a result of significant temporal and spa-
tial variability of acetone along the flight tracks, there is a
satisfactory agreement with simulations (Table 2). Acetone
vmr generally appears to be larger over the continents than
over the oceans. The largest observed averages are encoun-
tered over the EurMed region, of 770±520 pptv in 2006 and
860±500 pptv in 2007, with large standard deviation sug-
gesting strong temporal variability. The smallest averages
below 500 pptv are observed: (1) over the Atlantic Ocean and
South America in only one season (February–March 2006);
(2) over the South China Sea in 2006 and 2007, but with
large standard deviation (around 50 %) due to measurements
extending over several seasons. Averages over the North At-
lantic Ocean (NAO) may give an indication of the seasonal
impact: acetone doubles from winter 2006 to summer 2007.

Overall agreement is observed within±30 % in most re-
gions. Elsewhere, LMDz-INCA over-estimates acetne, as
over the South China Sea in 2006 and 2007, and over the
Tropical Atlantic Ocean and South America in winter 2006
(Table 2). Best agreement is found over EurMed, North-
ern Europe, Northern Asia and Central Asia. The smallest
simulated average is found over the North Atlantic Ocean in
winter 2006, providing a satisfactory agreement with obser-
vation. Largest simulated values are not found over EurMed
region, but rather over South America and the Tropical At-
lantic Ocean. Figure 2 shows indeed a dense plume simu-
lated over tropical South America in February 2006, which
is though not observed.

Averages are also computed for the clusters identified by
Köppe et al. (2009) in the winter and summer troposphere in
2006 and 2007, independent on the location along the flight
track between Frankfurt and Manila. A scatterplot of simu-
lations and measurements is provided in Fig. 3. Agreement
between observation and modelling is satisfactory for sum-
mer and winter BL, for summer HC, for FT in winter but
not in summer, for TP in summer but not in winter. The
model underestimates observations of the air mass maximum
in FT during both 2006 and 2007 summers by around 50 %
(1390±310 pptv in 2007 and 1630±330 pptv in 2006). The
largest simulated value of 920±270 pptv is for 2007 summer
BL, providing good agreement with the observation (the sec-
ond largest observed annual value). Observed summer BL
value is under estimated by only 30 % in 2006. The lowest
observed values in winter and summer correspond to TP air
masses that may have experienced some stratospheric influ-
ence, which are then over-estimated by modelling. In HC air
masses, comparison results depend on the year: the simula-
tions underestimate measurements in 2006 but overestimate
them in 2007. Observations show seasonal dependence for
BL and FT air masses in 2006 and 2007, which is fairly well
reproduced in 2007: averaged acetone vmr is smaller than
700 pptv in winter 2007 and is larger than 700 pptv in sum-
mer 2007.

Given Fig. 3 and the frequency occurrence of air masses
over the different zones, we may gain insight on the
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Figure 3.  Relation between simulated and measured acetone vmr (pptv) for flights of 2006 
and 2007 to Manila.  Annual averages are derived from co-located simulations and airborne 
acquisition, making distinction according to the air mass fingerprint defined by Köppe et al. 
[2009], as FT for Free Troposphere, BL for Boundary Layer, HC for High Clouds and TP for 
tropopause.  In winter 2007, dots not identified correspond to FT air mass.  Vertical and 
horizontal bars depict the standard deviation of acetone simulated and measured, respectively.  
Superimposed are three lines showing agreement (x=y), and a factor 2 difference between 
simulation and measurement (y=2x and y=x/2). 

 

Fig. 3. Relation between simulated and measured acetone vmr (pptv) for flights of 2006 and 2007 to Manila. Annual averages are derived
from co-located simulations and airborne acquisition, making distinction according to the air mass fingerprint defined by Köppe et al. (2009),
as FT for Free Troposphere, BL for Boundary Layer, HC for High Clouds and TP for tropopause. In winter 2007, dots not identified
correspond to FT air mass. Vertical and horizontal bars depict the standard deviation of acetone simulated and measured, respectively.
Superimposed are three lines showing agreement (x = y), and a factor 2 difference between simulation and measurement (y = 2x and
y = x/2).

comparison results per zone and season. In winter, satisfac-
tory agreement is found only for BL in 2006 and for FT in
2007, for other air masses strong overestimations are found.
Since they are both mostly encountered over CSChi, it is ex-
pected to find best agreement in winter over CSChi, and an
overestimation over other zones. Air mass origin maximum
observed in summer FT air mass induces the geographical
maximum observed over EurMed (Table 2). Moreover, ace-
tone vmr being significantly under-estimated in FT air mass,
it is expected to significantly underestimate acetone vmr over
EurMed in summer. Satisfactory agreement for EurMed in
2006 and 2007 (Table 2) is therefore explained by an over-
estimation in winter compensated by an underestimation in
summer. Disagreement on the standard deviation confirms
seasonal dependence is not reproduced (see Sect. 4.3). In
contrary, as FT is being found in less than 10 % of the cases
over CSChi in 2006 and 2007 summers, better agreement is
expected over CSChi than over EurMed in summer.

4.2 Acetone variability over the Eurasian continent

We focus on flight segments embedded in the European and
South Asian extended regions (last entries in Table 2) which
both harbour net sources, and where nearly 25 % of the
NH primary emissions and nearly 40 % of the NH chemi-
cal production occurs, according to LMDz-INCA (Sect. 2).
However on an annual basis, the regional atmospheric bur-
den of acetone is proportional to the regional surface area
(19 %) thanks to long-range transport on shorter time scales.
As an example of modelled acetone transport in the UT,
Fig. 2 shows that a plume observed over Central-South China

(CSChi) during the July 2007 also covers North India and the
Himalayas. Moreover Europe and South Asia are the most
intensively sampled regions by CARIBIC in 2006 and 2007.
Indeed flights crossed EurMed 18 times, and Central-South
China around 30 times (Table 2). The CARIBIC experi-
ment thus allows studying the impact of acetone emission
and transport on its spatial distribution in the UT over the
Eurasian continent, as well as its seasonal variability.

Scatterplots of 2006 and 2007 flight averages of co-located
simulations and measurements are plotted in Fig. 4a, b and c
for CSChi, SCSea and EurMed, respectively (Table 2). The
flight average is the average of measured acetone vmr dur-
ing the flight leg contained in the defined zone. Standard
deviation on each flight represents the spatial variability in
the zone. Modelling reproduces fairly well the variability of
acetone vmr in the UT over CSChi (Fig. 4a) with only 30 %
mean overestimation by LMDz-INCA, as well as over SC-
Sea (Fig. 4b). Indeed averaged acetone vmr measured over
CSChi varies by a factor of two in 2006 and by a factor of
three in 2007, and simulated acetone varies by a factor of
around 2.5 in 2006 and 2007. Measurement and simulation
also agree concerning the standard deviation which can reach
400 pptv or 40 % of the flight average. The data points fall
between the 100 %-agreement and the factor-2 overestima-
tion lines, except for 6 outliers as the 2006 and 2007 min-
ima. Agreement is particularly satisfactory for acetone vmr
observed in excess of 800 pptv. Similarly, over SCSea, the
flight average of acetone vmr varies by a factor of 2 to 4 in
2006 and 2007 according to observation over SCSea, and by
a factor of around 2 according to modelling.
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Figure 4.  As Figure 3 except no distinction is made with air mass fingerprint but with 
geography and flight averages are plotted instead of seasonal averages: (a) Central-South 
China, (b) China Sea, and (c) Europe-Mediterranean region. 

Fig. 4. As Fig. 3 except no distinction is made with air mass fingerprint but with geography and flight averages are plotted instead of seasonal
averages:(a) Central-South China,(b) China Sea, and(c) Europe-Mediterranean region.

Finally LMDz-INCA reproduces the magnitude of acetone
vmr over EurMed but not its variability (Fig. 4c). The obser-
vations indicate large variability of averaged acetone vmr as
well as large standard deviations. Acetone vmr varies from
less than 500 pptv to around 1400 pptv (except for the min-
imum of 120 pptv measured in 2006 over North Africa, re-
turning from Sao Paulo; Fig. 2). The summer maximum is
consistent with retrievals from MIPAS-E (Moore et al., 2010)
sounding the upper troposphere in August 2003: daily aver-
ages vary between 1200 and 1600 pptv between 45◦ N and
90◦ N at 277 hPa. The standard deviation can reach values as
high as 700 pptv for the 2006 maximum observed on 5 July
2006 due to a plume (Fig. 2). However modelling provides
little variability, with averaged acetone vmr falling between
560±50 and 930±160 pptv in 2006 and 2007 (except for the
minimum of 270± 10 pptv corresponding to the minimum
observed over North Africa).

4.3 Annual cycle in the UT over Europe-
Mediterranean, Central-South China and
South China Sea

Sprung and Zahn (2010) discussed the annual cycle of ace-
tone vmr in the stratosphere and at the tropopause over
the Eurasian continent north of 33◦ N, based on the 2006
and 2007 CARIBIC data. An annual cycle is observed,
with minimum acetone vmr of 200 pptv in midwinter at
the tropopause and maximum of 900 pptv in summer, but
with large standard deviation reaching e.g. 60 % for the June
maximum of 1000 pptv, due to stratospheric influence and
geographical heterogeneity (latitude varying from 10◦ E to
100◦ E). We reduce such variability by focusing on the tropo-
sphere and distinguishing measurements as a function of ge-
ographical location. In 2006 and 2007, the CARIBIC aircraft
route crossed the EurMed, CSChi and SCSea tropospheric
regions almost every month (Table 2), providing the oppor-
tunity to study the geographical variation of the annual cy-
cle of acetone vmr in UT. The time series of flight averages
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Figure 5.  Annual cycle of acetone vmr (pptv) simulated and measured in 7 months of 2006 
and in 9 months of 2007 in UT over Central-South China (a and b) and the South China Sea (c 
and d), and in 8 and 9 months of 2006 and 2007 respectively, over Europe-Mediterranean (e 
and f).  Black empty squares and red filled circles present simulated and measured averages, 
respectively, with vertical bars for standard deviation.  Intermittent line and shaded area 
represent the climatological annual cycle: zonal average of monthly simulations, and its 
standard deviation. 
 

Fig. 5. Annual cycle of acetone vmr (pptv) simulated and measured in 7 months of 2006 and in 9 months of 2007 in UT over Central-South
China (a andb) and the South China Sea (c andd), and in 8 and 9 months of 2006 and 2007 respectively, over Europe-Mediterranean
(e andf). Black empty squares and red filled circles present simulated and measured averages, respectively, with vertical bars for standard
deviation. The intermittent line and shaded area represent the climatological annual cycle: zonal average of monthly simulations, and its
standard deviation.

of co-located simulations and measurements plotted in Fig. 5
show that most of the variability observed for CSChi and SC-
Sea (Fig. 4a and b) is due to the seasonal variation which is
well reproduced by the model.

The annual CSChi maximum of 970± 400 pptv in 2006
is observed in October and in 2007 the maximum of 960±

300 pptv is observed in July (with largest standard deviation)
(Fig. 5a–b). The 2006 and 2007 minima of 300± 60 and
150±50 pptv, respectively, are observed in winter, when the
variability is also at its minimum. The observed increase of

acetone vmr from winter to summer is reproduced by mod-
elling, as averaged co-located simulations for 2007 show a
minimum in winter and a maximum in July. In 2006, the
minimum observed in December is overestimated, but the
model reproduces the low value observed in spring.

Seasonal variation is as intense over the South China Sea
(Fig. 5c–d) as over Central-South China in 2007, but in 2006
no clear tendency is observed over SCSea. The 2007 max-
imum of 870± 150 pptv is observed in July (same day as
over CSChi), and the minimum of 210±50 pptv in March.

Atmos. Chem. Phys., 11, 8053–8074, 2011 www.atmos-chem-phys.net/11/8053/2011/



T. Elias et al.: Acetone variability in the upper troposphere 8065

Agreement between model results and data is found in Au-
gust 2007 over both SCSea and CSChi (flight back to Frank-
furt, case study by Lai et al., 2010), however, strong over
estimation occurs in autumn-winter 2006 and 2007 over SC-
Sea. A plume is observed in October 2006 (Fig. 2), North
West of the CSChi zone, extending to Central Asia, but it is
simulated in the South East corner of the CSChi zone, also
covering the entire SCSea zone. The plume location is not
reproduced accurately but agreement is still found for aver-
age and standard deviation over CSChi, while overestimation
is significant over SCSea (Fig. 5c). Regarding inter-annual
variability over SCSea, observations in June and July show
important differences between 2006 and 2007, which how-
ever are not captured by the model. In contrast, in April–May
2006 and 2007, modelling and observation agree to indicate
that the acetone vmr is close to 500–600 pptv.

Finally, according to observation, acetone exhibits a strong
annual cycle over EurMed (Fig. 5e–f). Flight averages as
well as standard deviations increase significantly in June,
July and August 2006 and 2007, reaching larger values than
over SCSea and CSChi, and minimum is observed in Febru-
ary 2006 and 2007, while, as discussed in the Sect. 4.2,
modelling fails to simulate an annual cycle over EurMed.
Agreement is satisfactory only for measured values around
750 pptv in spring.

4.4 Was the CARIBIC flight frequency sufficient to
assess a climatological annual cycle of acetone?

Given the agreement between simulation and measurement
in the UT over CSChi, modelling can be used to assess the
effect of incomplete or sparse airborne sampling on the rep-
resentativity of the annual cycle. The climatological annual
cycle is plotted in Fig. 5 together with both the measured
and simulated co-located annual cycle. The disagreement
between the two approaches in representing the annual cy-
cle shows the limitation of airborne sampling when acetone
burdens are highly variable, as occurs in summer. The annual
cycle sampled over CSChi agrees with the climatological cy-
cle (Fig. 5a–b): the minimum of below 500 pptv, together
with the minimum standard deviation, both occur in win-
ter; and acetone vmr increases in both magnitude and stan-
dard deviation towards summer. However, according to the
monthly climatological average, the maximum should occur
in September (2006 and 2007) with monthly averaged ace-
tone vmr of around 1200 pptv, and neither in July, as ob-
served in 2007, nor in October as observed in 2006. No
measurements were made over CSChi in September 2006
and 2007 to check this simulated annual maximum. More-
over measurements made in August 2007 suggest that ac-
quisition frequency (once per month) in summer might not
be sufficient to capture the maximum. Indeed observation
and modelling agree, indicating that the acetone vmr at the
time of aircraft crossing was smaller than the climatologi-
cal monthly mean by more than 200 pptv (Fig. 5b). This is

an indication of significant day-to-day variability, which is
moreover concomitant with strong spatial heterogeneity of
the acetone in summer, shown by the increased standard de-
viation. For winter, the climatological annual cycle provides
confirmation that the acetone vmr is always over-estimated,
but that simulated standard deviation is consistent.

Similarly over SCSea, the climatological annual cycle
confirms overestimation in autumn-winter in UT, and that ob-
servations are missing in September to check simulated max-
imum around 1100 pptv. According to modelling, acetone
distribution is more homogeneous in SCSea than in CSChi
(except for May–June), as the climatological standard de-
viation remains small, in contrast with observations. Sur-
prisingly, the standard deviation of co-located simulations is
large in March 2007 over SCSea, in contrast with measured
standard deviation and with the climatological standard de-
viation. This is because the aircraft unusually flew at a low
altitude and that the simulated vertical gradient is too steep.
This does not affect the climatological values which are de-
fined at constant altitude of 238 hPa.

4.5 Acetone enhancement in the summer monsoon
plume in the UT: horizontal heterogeneity and
daily variability of acetone vmr

The summer acetone plume is responsible for the mean ace-
tone vmr increasing from winter to summer, accompanied by
increasing temporal and spatial heterogeneity. Simulations at
238 hPa for July 2007 (Fig. 2) show that the daily averaged
acetone vmr is larger than 1000 pptv for a large zone covering
North India, the Himalayas to the Chinese coasts, consistent
with the extended South Asian region defined for the budget
computation (Sect. 2). In accordance with the annual cy-
cle over CSChi, the daily average of simulated acetone vmr
over the extended South Asian region increases from 400 to
1000 pptv from winter to summer, with the standard devia-
tion increasing from 100 to 400 pptv (Fig. 6). The standard
deviation increases because the regional maximum increases
from less than 1000 pptv in January–March to 3000 pptv in
September, while the regional minimum remains relatively
constant between 300 pptv in March and 500 pptv in Novem-
ber. The area covered by the acetone plume also increases
from winter to summer, to cover half the South Asian region.
Figure 6 also shows that day-to-day variability can be very
important, as the sudden decrease of more than 1000 pptv
around September–October.

Observations show that the acetone variability within a
single day can be large. Over CSChi, the time lag between
inbound and outbound flights is generally between 10 and
17 h, while over SCSea it is less than 8 h. This in-out shift
can mean 240 pptv difference, as for August 2006 over SC-
Sea and for August 2007 over CSChi (Fig. 5). Shifts can be
large even when modelling indicates a homogeneous acetone
field. Examples are the 200 pptv change in February 2007
over CSChi and in October 2007 over SCSea. The in-out
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Fig. 6. Temporal and horizontal variability of acetone vmr (pptv) at
238 hPa over South Asia. Daily averages are provided by LMDz-
INCA. The dashed line represents the regional average, with the
shaded zone for±1 standard deviation. Full lines show spatial min-
imum and maximum acetone vmr for each day. Monthly number of
values larger than 1000 pptv is indicated at the top of the figure.

shift may be due to altitude differences, as the outbound
flights over SCSea are generally higher by 20 hPa than the
inbound flights, but lower than inbound flights over CSChi
by more than 70 hPa. However the change of acetone vmr
with altitude is not systematic. The acetone vmr is sometimes
observed to decrease with increasing altitude, as in August
and November 2006 over SCSea, and sometimes observed
to increase with increasing altitude as in May 2007. Over
CSChi, the acetone vmr decreases with increasing altitude in
April and November 2006, and in February, June and August
2007, but remains constant despite altitude change in May
and October 2007. Other causes may be the different insola-
tion conditions and the air mass change with time.

4.6 Effects of vertical gradients

Acetone vmr may depend on flight altitude as modelling
shows. Simulated monthly vertical profiles are plotted in
Fig. 7, for 2 cases: (1) background conditions defined by ace-
tone vmr at 238 hPa being below 1000 pptv, (2) “ppbv-event”
conditions defined by acetone vmr at 238 hPa larger than
1000 pptv. During background conditions, the acetone vmr
continuously monotonically decreases with altitude. In con-
trast, during the ppbv-event, a local minimum is simulated
between 400 and 600 hPa, indicating an elevated acetone
plume (except for September, when the plume seems to ex-
tend down to the surface with acetone vmr remaining higher
than 1300 pptv below 238 hPa). The largest values at surface
level are reached during the 238-hPa ppbv-events: from May
to November, the acetone vmr is larger than 2500 pptv, and
even reaches 3400 pptv in July, while under background con-
ditions acetone vmr is less than 2200 pptv. The simulated al-

Fig. 7. Vertical profile of monthly average of acetone vmr simulated
by LMDz-INCA over South Asia extended region, in background
conditions and during 238-hPa ppbv-event (238-hPa acetone vmr
>1000 pptv).

titude of the acetone plume is consistent with simulations by
Park et al. (2004) of a plume composed of high mixing ratios
of CH4, H2O and NOx at pressure altitudes included between
300 and 150 hPa, in accordance with observations from the
HALOE instrument. The increase of CH4 is also observed
by the AIRS instrument in the altitude interval from 300 to
150 hPa (Xiong et al., 2009).

While modelling over EurMed does not reproduce the ob-
served variability of acetone in the UT, it does provide vari-
ability at surface level. Simulated vertical profiles over Eu-
rope (not shown) are similar to vertical profiles over South
Asia under background conditions only (no ppbv-events
were observed at 238 hPa). While the averaged acetone vmr
remains constant around 600 pptv at 238 hPa, it varies be-
tween 1300 and 2200 pptv at surface level, in correlation with
the season. Comparisons are made with ground-based obser-
vation presented by Solberg et al. (1996) and already used
by e.g. Jacob et al. (2002) and Folberth et al. (2006). Time
series of monthly averages of acetone vmr are plotted for 6
European sites in Fig. 8. Similarly to the observations in the
UT, an annual cycle is observed at the surface sites, but it is
highly dependent on location. The timing and magnitude of
the maxima varies: the maximum is observed from May in
Birkenes to August in Donon, between 1000 pptv in Rucova
and 2000 pptv in Donon. The minimum is observed between
300 pptv in Birkenes and 600 pptv in Waldhof. In contrast
to the UT, the model is able to simulate an intense annual
cycle at surface level, with acetone vmr increasing by a fac-
tor 2.5 from winter to summer. The maximum is simulated
in August-September, somewhat later than observed, except
in June in Birkenes, in agreement with observation. Agree-
ment between modelling and observation is satisfactory in
spring-summer at the two 48–49◦ N sites. The maximum
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Fig. 8. Annual cycle of acetone vmr measured at surface level at 6 European stations (Solberg et al., 1996) (dots for averages and vertical
bars for standard deviation), and climatological annual cycle computed by LMDz-INCA (line).

magnitude is reproduced, but the minimum is overestimated,
as it is the case in the UT over Central-South China and South
China Sea. The acetone vmr is over estimated in autumn and
winter, except in Waldhof in January–March. For the 56–
58◦ N sites of Birkenes and Rucova, modelling constantly
overestimates the observations by 500 to 1000 pptv.

Systematic overestimation in autumn (for all sites) is sim-
ilar to Jacob et al. (2002) a priori modelling, which was at-
tributed to an overestimated emission from plant decay as
an acetone source peaking in September–October. Jacob et
al. (2002) then proposed reducing the global plant decay

contribution to fit measured annual cycles. A shift to au-
tumn in the annual cycle has also been simulated with the
LMDz-INCA model (in the 60–90◦ N latitude) for methanol
which is another oxygenated species (Dufour et al., 2007).
The authors attribute the accumulation of methanol to long
residence time. Thus increasing land deposition in autumn
and winter might improve agreement with observation for
methanol, and it could also be envisaged for acetone.
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Figure 9.  KNMI/ECMWF 5-day air mass back-trajectories.  Coordinates and dates of arrival 
points correspond to plumes sampled along the 2006 and 2007 July flights (Figure 2). 
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4.7 Two contrasted transport conditions: rapid
uplifting of pollutants over Central-South China
and long-range transport to Europe-Mediterranean
region

We have described how acetone vmrs are under-estimated
in summer FT air masses encountered over Europe-
Mediterranean region, and how better agreement is found in
summer BL and HC air masses sampled over Central-South
China. We discuss here the impact of different transport con-
ditions, which implies different chemical activity in the trans-

ported air masses, witnessed by a different relation between
acetone content and CO and O3 contents.

Five-day back-trajectories are computed based on meteo-
rological analysis data from the European Centre for Medium
range Weather Forecasts (ECMWF) (van Velthoven, 2009),
with the KNMI trajectory model TRAJKS (Scheele et al.,
1996) for every 3 min of flight. Back-trajectories plotted in
Fig. 9 are computed for plumes observed in July 2006 and
2007. Two plumes are observed, with acetone vmr in excess
of 2000 pptv around 21:40 GMT 5 July 2006, and in excess
of 1000 pptv around 05:20 GMT 6 July 2006. Three plumes
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Fig. 9. Continued.

are observed with acetone vmr in excess of 1500 pptv around
22:10 GMT 17 July 2007, in excess of 1000 pptv around
04:10 GMT 18 July 2007, and in excess of 1500 pptv around
06:20 GMT (Fig. 2). The European plume, assigned to the
FT air mass cluster in July 2007 (no air mass assigned in
July 2006), originates from long-range transport from North
America or the North Atlantic Ocean. The North Chinese
plume, with mainly HC and few BL signatures, originates
from the local boundary layer with only few days of travel
time (Fig. 9d), and the South Chinese plume, with BL signa-
ture, originates from regional transport from India (Fig. 9e).

The transport conditions over China are similar to the im-
pact of the summer monsoon observed over India, which
was the subject of many publications. The summer mon-
soon affects the composition of the UT by dynamical and
meteorological processes, basically strong and rapid con-
vection lifting of boundary layer air masses combined with
high precipitation affecting emissions from certain sources.
Consistent enhancements of CO, H2O, CH4, N2O and non-
methane hydrocarbons were observed with CARIBIC over
South Asia in summer 2008 (Schuck et al., 2010; Baker et al.,

2011). A concomitant decrease of ozone was also observed
by CARIBIC (Schuck et al., 2010). Model and satellite data
consistently localised high mixing ratios of CH4 between
60◦ E and 120◦ E around 30◦ N, a region included in our ex-
tended South Asian region (Table 2) at and above cruising
altitude, at pressure altitudes between 300 and 100 hPa (Park
et al., 2004; Xiong et al., 2009). Schuck et al. (2010) showed
that air masses sampled north of 30◦ N generally travel for
more than a week, in contrast with air masses south of 30◦ N
which had ground contact within the last four days prior to
sampling. Baker et al. (2011) confirmed that in the southern
monsoon region, sampled air masses travelled 3 to 6 days
before sampling, and 9 to 12 days in northern monsoon re-
gion. This is consistent with the summer BL air mass fin-
gerprint mostly encountered over CSChi and SCSea (in 2006
and 2007), but rarely encountered over Northern Asia.

The CARIBIC data set shows that air masses sampled over
EurMed and CSChi bear different chemical signatures. The
chemical signature is deduced from the CARIBIC measure-
ments of O3 and CO vmrs. Values of CO vmr larger than
140 ppbv occur only over CSChi and SCSea in 2006, and
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Figure 10. Acetone/CO signature in various air masses sampled in 2006 and 2007 summers.  
Linear regressions are plotted in red for HC and BL air masses sampled over CSChi, in purple 
for these same air masses but sampled over EurMed and Central Asia (CAs) and in black for 
all FT air masses sampled everywhere. 
 
 

 

 
 
Figure 11. O3/CO signature of same air masses of Figure 10, but as O3 vmr plotted as a 
function of CO vmr. 

Fig. 10. Acetone/CO signature in various air masses sampled in
2006 and 2007 summers. Linear regressions are plotted in red for
HC and BL air masses sampled over CSChi, in purple for these
same same air masses but sampled over EurMed and Central Asia
(CAs) and in black for all FT air masses sampled everywhere.

not over other regions. A maximum of CO vmr of 260 ppbv
is measured over CSChi in July and August 2006 (for ace-
tone vmr around 1700 pptv). However, over EurMed, CO
vmr is never observed larger than 120 ppbv. CO vmrs in-
creasing with acetone vmrs, the slope of acetone versus CO
identifies the sampled air mass (de Reus et al., 2003). Lin-
ear regressions with high correlation coefficient are plotted
in Fig. 10, for HC, FT, and BL air masses sampled in 2006
and 2007 summers. The slope depends on the air mass type
but might also depend on location. In particular for BL and
HC air masses, the slope is steeper over EurMed and Central
Asia (around 25 pptv acetone ppbv−1 CO) than over CSChi
(around 6 pptv acetone ppbv−1 CO). The FT slope (rejecting
outliers with CO vmrs larger than 120 ppbv) seems closer to
the BL and HC slopes over EurMed and Central Asia (around
16 pptv acetone ppbv−1 CO).

Over East Mediterranean, major contrast was found by
Scheeren et al. (2003) in the chemical composition of the
upper troposphere, between air mass origin over North At-
lantic/North America (farther west than 0◦) and over South
Asia (farther east than 40◦ E). O3 vmrs were smaller in South
Asian air masses than in North Atlantic/North America air
masses (while CO vmr was larger). Similar behaviour is ob-
served here in relation to the classification per both region
and air mass fingerprint (Fig. 11). Enhancement of both
gases never occurs simultaneously, CO vmrs increase only
in HC and BL air masses sampled over CSChi, with O3 re-
maining smaller than 100 ppbv. O3 vmr can increase in FT
air masses and in HC and BL air masses over EurMed up to
150 ppbv, but with CO vmr remaining smaller than 130 ppbv.
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5 Conclusions

The purpose of this work is to: (1) describe spatial distri-
bution and temporal variability of acetone vmr in the UT;
(2) propose benchmarks deduced from the observation data
set; and (3) investigate the representativeness of the obser-
vational data set. The approach consists in comparing two
data sets obtained by observation and modelling. Simula-
tion results are provided by LMDz-INCA, a global chem-
istry climate model including the oxidation of methane and
volatile organic compounds. The CARIBIC experiment pro-
vides acetone measurements in the upper troposphere (UT)
mainly over north hemisphere continental regions where ma-
jor sources are located and where chemical activity signifi-
cantly contributes to acetone sources and sinks. Acetone is a
key factor in UT chemistry, as a potential source of hydroxyl
and hydroperoxyl radicals, which are important components
of the ozone cycle.

Measurements were made aboard intercontinental flights
to explore the influence of different air mass history, long-
range transport in the free troposphere, rapid convective
uplifting of boundary layer compounds, as well as con-
tinent/ocean contrasts. Moreover the regularity of the
CARIBIC measurements (monthly flights) over several years
provides insight on seasonal variability of the acetone con-
tent. Consecutive inbound and outbound flights separated by
a short stopover on almost identical routes also allow defin-
ing the sensitivity of the chosen flight track in relation to the
specific plume transport. Strong variability is observed. Al-
most a factor 2 on acetone vmr is related to geography, in par-
ticular an East-West gradient is observed over the Eurasian
continent, with annual average of around 450±200 pptv over
South China Sea and of around 800±500 pptv over Europe-
Mediterranean region. Ocean/continent contrast is also ob-
served with a 50 % enhancement over the continent. On a
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smaller scale, acetone vmr may vary in summer by more than
1000 pptv within 5 latitude-longitude degrees, and standard
deviation can reach 40 % of average over a defined zone.
Standard deviation reaching 70 % of annual average is due
to season change. Indeed, acetone vmr in UT increases
from winter to summer by a factor 2 to 4, over Europe-
Mediterranean, over Central South China and South China
Sea. 200 pptv difference may also be observed between the
inbound and outbound flights, due to different altitude of few
tens hPa, different insulation conditions, or plume transport
in relation to the flight track. The capacity of the LMDz-
INCA Chemistry-Climate Model to reproduce all these fea-
tures is assessed using two years of data.

The LMDz-INCA model is able to reproduce the abun-
dance of acetone, and the budget terms are computed. The
mean annual atmospheric burden of acetone is 7.2 Tg, larger
than previous estimates by several authors and even in-
creased since the last version of the LMDz-INCA model,
because of enhanced primary emissions. The oceans con-
tribute 20 Tg yr−1 to primary emissions, similar to the Ja-
cob et al. (2002) estimate, and terrestrial biogenic emissions
contribute 75 Tg yr−1, consistent with the range proposed by
Potter et al. (2003). In situ chemical production of acetone
amounts to 27 Tg yr−1, unchanged since Jacob et al. (2002).
We focused the budget term analysis on two regions sub-
stantially sounded by the CARIBIC experiment. The South
Asian and European regions are identified by the model sim-
ulation as important acetone sources regions on a global
scale, providing respectively 2 Tg yr−1 and 1.7 Tg yr−1 ex-
cess acetone produced in relation to sinks. This is essen-
tially due to strong secondary chemical production of acetone
reaching respectively 25 % and 15 % of the north hemisphere
chemical production.

The quality of the model results depends on geography,
season and air mass history. LMDz-INCA can reproduce
acetone vmrs in the UT over the North Atlantic Ocean,
Europe-Mediterranean, North Europe, North Asia, Central
Asia and Central-South China, but strong overestimation oc-
curs over South America in February–March. Air mass clas-
sification reveals systematic and significant underestimation
of acetone vmrs sampled in air masses with summer free
troposphere (FT) signature, which witness the largest ob-
served acetone loads. In contrast overestimation occurs in
all winter air masses as well as in air masses with summer
tropopause signatures. The second largest acetone load is
observed in air masses with boundary layer fingerprint (BL),
where agreement is good in 2007 but a 30 % overestimation
occurs in 2006. The FT signature is typical of long-range
transport above the North Atlantic Ocean and North America
to Europe, while BL air mass signature observed in the UT
displays rapid convective uplifting of boundary layer com-
pounds, similar to the Asian summer monsoon condition.
Consequently, the annual cycle can be captured by LMDz-
INCA in UT over Central-South China, with acetone vmr
increasing from winter to summer by a factor 2 to 3, despite

an overall overestimation by around 30 %, but no seasonal
variability is reproduced in UT over Europe-Mediterranean
region.

Based on the satisfactory agreement over Central-South
China, sampled information is extrapolated using LMDz-
INCA. We show that monthly frequency of data acquisition
might be too coarse for providing the annual cycle of ace-
tone vmr with accuracy, as a plume structure is responsible
for the acetone vmr increase, therefore causing strong spa-
tial and temporal variability. For example during the Au-
gust 2007 flight, the acetone vmr over Central-South China
was 30 % smaller than the monthly average, and a further
20 % shift was observed between the inbound and outbound
flights. Mainly, missing measurements in September in
both years precludes checking the simulated maximum, of
1200 pptv as a monthly average at 238 hPa, and which can
reach 3000 pptv as daily average. In accordance with previ-
ous studies, LMDz-INCA shows that the plume is located be-
tween 150 and 400–600 hPa, where data acquisition by long-
distance aircraft is most frequent.

We checked with ground-based observation that the miss-
ing acetone plume over Europe is not typical of the whole
column. LMDz-INCA displays seasonal variability of ace-
tone at surface level, reaching agreement for spring-summer
at some surface sites. Overestimation in winter seems sys-
tematic at surface level at European sites and also in the
UT over Europe-Mediterranean, Central-South China, and
South Chinese Sea. Systematic overestimation during au-
tumn could be due to simulated local sinks not being suffi-
ciently strong.

Missing transport of primary emission up to the FT air
masses might explain the discrepancy in UT over Europe-
Mediterranean. Another explanation could be missing sec-
ondary acetone in FT air masses, due to incorrect global dis-
tribution of the chemical production source. The only sink
in FT air masses is chemical destruction which could also
be over-estimated due once again to incorrect global dis-
tribution. Increasing the global amount of acetone chemi-
cal production or decreasing the global amount of chemical
destruction are not recommended, as these changes would
also impact acetone vmr over Central-South China, where
overestimation is already observed. The benchmark in UT
over Europe-Mediterranean is 1400±400 pptv in June-July-
August and 300± 60 pptv in February (zonal average per
flight). Summer flights from Europe to North America could
provide insight on chemical activity in free tropospheric air
masses transported above the Atlantic Ocean.

The study underlines the need for metadata accompanying
the observations such as air mass origin by cluster analysis
and trajectory calculations. Furthermore it shows that the
averaging of data in order to provide climatology is difficult
to envisage due to the huge variability of such a species and
thus should be handled carefully to validate satellite or global
model results.
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J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.:
A dynamic global vegetation model for studies of the cou-
pled atmosphere-biosphere system, Global Biogeochem. Cy., 19,
GB1015,doi:10.1029/2003GB002199, 2005.
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