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Abstract 
We study the secondary time-averaged flow (streaming) generated by an oscillating cylinder immersed within a fluid, under 
high amplitude forcing so that inertial effects are significant. This streaming is decomposed into a viscous boundary layer 
flow where vorticity is created, and an outer flow of larger size. We operate under conditions of relatively low viscosity, 
so that the boundary layer is smaller than the object diameter. While for low Keulegan–Carpenter number (small enough 
amplitude), the size of the outer flow is typically that of the object, here we show that at large enough forcing, the outer flow 
stretches along the direction of the vibration by up to 8 times, while the flow still keeps its axial symmetry. We quantify the 
elongation through PIV measurements under an unprecedented range of frequency and amplitude, so that the streaming 
Reynolds number reaches values much larger than unity. The absence of significant unsteady component of vorticity outside 
the viscous boundary layer—and the fact that the length of elongation scales well with the streaming Reynolds number—sug-
gest that the stretching should be due to the convection of stationary vorticity by the streaming flow itself.
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1 Introduction

Oscillations of bodies immersed in fluids are known to 
generate secondary steady flows (streaming) Riley (2001), 
which originate from mechanisms similar to those produced 
by acoustic fields near solid boundaries (Nyborg 1958). 
These steady flows result from the creation of vorticity in a 
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viscous boundary layer either around the vibrating body, or 
along the walls surrounding the area of sound propagation. 
Streaming flows have applications in fluid homogenization 
and mixing especially in microfluidics (Suri et al. 2002), 
in heat transfer enhancement (Loh et al. 2002; Tajik et al. 
2013; MeiSou et al. 2011; Amir Bahrani et al. 2019), in 
particle sorting (Lutz et al. 2006; Devendran et al. 2014) or 
in fluid pumping (Schmid et al. 2012). This phenomenon is 
denoted as Rayleigh streaming, from the pioneering study of 
Rayleigh on acoustically generated flows in pipes (Rayleigh 
1883) and is distinct from the Eckart streaming originating 
from viscous acoustic dissipation in the bulk Eckart (1948). 
Being localized within the boundary layer, the first-order 
incompressible viscous flow generates in turn secondary 
streaming due to the nonlinear interactions between first-
order viscous forces and second-order inertial ones. Light-
hill (1978) explained the generation of streaming by vol-
ume forces resulting from spatial gradients of the Reynolds 
stress—either in the liquid bulk or near solid boundaries, 
induced by a nonzero acoustic momentum flux averaged 
over one period. A typical model situation, investigated in 
this paper, is that of an immersed cylinder oscillating per-
pendicular to its axis. These vibrations generate two pairs 
of counter-rotating vortices within the boundary layer, and 
by transfer of momentum and vorticity, larger eddies can 
be generated outside the boundary layer (outer streaming) 
(Riley 1965; Stuart 1966; Sadhal 2012). The two-dimen-
sional (2D) flow structure is sketched in Fig. 1. The flow 
is divided into two zones, the inner boundary layer where 
the velocity components on (x, y) are (vx1 + vx2, vy1 + vy2) 
and the outer layer (Vx2,Vy2) (indices 1 and 2, respectively, 
stand for the time-dependent and stationary components), 
whose averages over one period are ⟨vx1⟩ = ⟨vy1⟩ = 0 and 
⟨vx2⟩ and ⟨vy2⟩ ≠ 0 . Hence, the time-dependent flow should 
vanish away from the inner layer.

Our study aims to quantify the spatial range and strength 
of the outer streaming, with particle image velocimetry 
(PIV) measurements, within a large range of frequency and 
amplitude; in particular within the up-to-now poorly inves-
tigated amplitude range where A ∼ d , with d the cylinder 
diameter. More specifically, our study focuses on the elonga-
tion (or stretching) of the outer eddies along the direction of 
vibration, as the streaming Reynolds number (to be defined 
later) is larger than a few units. Besides fundamental aspects, 
this effect can be of interest to induce mixing, homogeniza-
tion, heat transfer and resuspension of particles far from the 
vibrating object.

The steady flow around a vibrating cylinder was theo-
retically investigated in various studies (Riley 1965; Stuart 
1966; Holtsmark et al. 1954; Milton-Andres and Ingard 
1953; Davidson and Riley 1972) and summarized in the 
monographs of Batchelor (1967) and Schlichting (1979)—
who additionally investigated the first-order flow in the 

oscillating boundary layer. By taking �(t) = V0 sin(�t) �� 
(where V0 = A� and the phase � = �t ), as the time-
dependent velocity of the vibrating cylinder, A and � 
being the amplitude and angular frequency, these studies 
predicted a time-averaged secondary flow (vx2, vy2) within 
a boundary layer of thickness �s around the object, depend-
ing on the space variable y and expressed in Cartesian 
coordinates as:

where � =

√
2�

�
 stands for the thickness of the oscillating 

boundary layer, which can be slightly different from its 
steady counterpart �sHoltsmark et al. (1954), Stuart (1966). 
Here, V0c is taken as the component of the vibration velocity 
that is normal to the surface of the cylinder, i.e., V0c is maxi-
mal at the vibration axis ( � = 0 and � ) and V0c = 0 at the 
nodes of the vibration ( � = ±

�

2
 ). For any point along the 

cylinder (rc, �c) or (xc, yc) , V0c = A� cos(�c) = A�
yc

(x2c+y2c)
1∕2 . 

Hence, it yields: dV0c

dyc
=

A�

rc
 . Incidentally, it is remarkable that 

the streaming flow is related to the nonzero local curvature 
of the vibrating object. This is reminiscent of the streaming 
induced by acoustic fields in microchannels either around 
cylindrical or squared posts (Lieu et al. 2012), or near sharp 

(1)⟨vx2⟩ =
3

4�

d

dy

�
V0c

dV0c

dy

��
y −

13

6
�
�

(2)⟨vy2⟩ = −
3

4�
V0c

dV0c

dy

Fig. 1  Sketch and geometrical definitions of the secondary flow 
generated by the oscillations (amplitude A and frequency f) of an 
immersed cylinder of diameter d. The inner �2 and outer �2 stream-
ing are represented within internal and external boundary layers of 
respective thicknesses �s and D 
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edges (Nama et al. 2014; Ovchinnikov et al. 2014; Zhang 
et al. 2019) which concentrate the streaming force.

When �
d
 is small enough, the time-averaged velocity 

field outside the boundary layer (Vx2,Vy2) can be deduced 
from the inner flow by taking the inner streaming velocity 
(vx2, vy2) along the periphery of the boundary layer as a slip 
velocity boundary condition (Nyborg 1958; Sadhal 2012). 
Eq. (2) says that the vertical component of the inner flow vy2 
is maximal at x = 0 . The outer flow is such that the fluid is 
pushed away from the vibration antinodes and flows toward 
vibration nodes, see Fig. 1. Stuart (1966) analyzed theoreti-
cally the flow both inside and outside the boundary layer 
and showed that the size of outer vortices decreased with the 
forcing amplitude. In the related case of vibrating spheres, 
Riley (1966) and Amin and Riley (1990) investigated the 
secondary streaming flow and provided analytical expres-
sions for low to moderate streaming Reynolds numbers. 
In Amin and Riley (1990), qualitative experiments were 
conducted, suggesting that the classical streaming flow pro-
gressively turns to jet-like flow shooting from the axis of 
vibration.

The analyses of secondary flows generally introduce 
dimensionless parameters: the Keulegan–Carpenter (KC) 
number compares the amplitude A with the size of the object 
KC =

2�A

d
 (also appearing in the acoustic literature as: 

� =
A

d
=

KC

2�
 ), the Stokes number � =

d2�

2��
=
(

d

�

)2

 is the 
square of the ratio between the cylinder diameter and the 
boundary layer thickness. The KC number is the inverse of 
the Strouhal (St) number: St = (KC)−1 , which is most often 
found in von Karman flows studies. The Stokes number � is 
also related to the Womersley (M) number ( � =

1

2�
M2) Petit 

and Gondret (1992). The Reynolds number can be defined 
with respect to the object vibration: Re1 =

A�d

�
=

V0d

�
 , or 

with respect to the secondary flow: Res =
Ustrd

�
 , with Ustr the 

characteristic velocity of the streaming flow.
The streaming flow was experimentally investigated in 

various studies with immersed vibrating cylinders or spheres 
(Riley 1965; Stuart 1966; Holtsmark et al. 1954; Davidson 
and Riley 1972; Petit and Gondret 1992; Bertelsen et al. 
1973; Tatsuno 1973; Tatsuno and Bearman 1990; Kotas 
et al. 2007, 2008), or for a static cylinder immersed in an 
oscillating flow (Holtsmark et al. 1954). Bertelsen et al. 
(1973) investigated the inner and outer streaming flow pro-
files, showing that the outer vortices grow in size with the 
size of the external container and evidencing the influence 
of outer boundary conditions. Tatsuno (1973) showed that 
in a low Reynolds number ( Re1 ) situation (i.e., 𝛿 ≫ d ), the 
size of inner vortices decreased with amplitude, and that the 
outer flow was significantly influenced by both the amplitude 
and the size of the container. Tatsuno and Bearman (1990) 
studied flow regimes at higher amplitude ( A > d ) and invis-
cid flows ( 𝛿 ≪ d ) and identified a host of time-dependent 

and asymmetrical regimes (e.g., vortex shedding and transi-
tion to von Karman vortices), but without straightforwardly 
pointing out the phenomenon of vortex elongation along 
the vibration axis. Still, to the best of our knowledge, none 
of these studies quantitatively investigated the size of the 
outer flow in the range where Res is larger than a few units. 
More recent studies of secondary flows generated by vibrat-
ing spheres were conducted in a larger range of Res number 
(Blackburn 2002; Klotsa et al. 2007, 2009; Otto et al. 2008). 
In the paper by Blackburn (2002), the mass transport and 
drag of oscillating sphere was investigated from Res = 1 to 
Res = 100 , and the narrowing of eddies was noticed at large 
Res . In Voth et al. (2002) and Klotsa et al. (2007, 2009), the 
formation of clusters of non-Brownian particles by stream-
ing flows was investigated experimentally and numerically, 
revealing the remarkable periodicity of the patterns of par-
ticles (Klotsa et al. 2007), and investigating the underlying 
mechanisms through the study of transient behavior (Klotsa 
et al. 2009).

The elongation we report in this study cannot be 
explained within the usual frame of low-amplitude vibra-
tions. Indeed, the classical approach predicts that the outer 
vortices naturally scale like the size of the vibrating object. 
Our experiments show that the size of flow structures can 
increase by a factor of up to 8 along the vibration axis. 
Therefore, we carried out an experimental analysis of the 
flow in order to quantify and understand better the mecha-
nism of the stretching.

The paper is organized as follows: in Sect. 2, the experi-
mental setup is presented; in Sect. 3, we first review expected 
scaling laws and show a comparison of experiments with 
theoretical predictions in the regime of weak forcing and 
then extended to larger amplitude forcing. Then, we propose 
possible interpretation in Sect. 4 and we conclude on the 
main outcomes of our results.

2  Experimental setup

The experimental system (Fig. 2a) consists of a aluminum 
cylinder beam, denoted as the vibrating object, of diameter 
d = 5 mm , mounted on an electromechanical vibrator (min-
ishaker type 4810, Brüel & Kjær, Nærum, Denmark). This 
vibrating object is immersed in a fluid and shaken perpen-
dicularly to its axis. The cylindrical container has a diam-
eter l = 13 cm and the height of the fluid is L = 8 cm . The 
fluid is silicon oil (Polydimethylsiloxane, Sigma-Aldrich) 
of dynamic viscosity � = 9.3 × 10−3 Pa.s , kinematic viscos-
ity � = 10 cSt , density � = 930 kg/m3 and surface tension 
� = 0.0205 N/m at 25◦C . A periodic sinusoidal voltage, 
generated by a function generator (DG4062, RIGOL Tech-
nology Inc., USA), is transmitted to the vibrator via a power 
amplifier (type 2718, Brüel & Kjær, Nærum, Denmark). It 
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allows us to finely tune the amplitude A (corresponding to 
a net displacement of 2A over one period) and frequency 
f = �∕2� of the vibrations, which are the two main control 
parameters here. Table 1 lists the physical quantities and 
parameters used in this study. The amplitude was determined 
both by direct visualization and by an accelerometer (PCB 
Piezotronics model 256HX) fixed to the cylinder which, via 
the Fourier analysis on an oscilloscope (Rigol DS1102E) 
also allowed us to check that the forcing remains sinusoidal.

The evolution of the flow structure is determined by PIV. 
The fluid is therefore seeded with silver-coated hollow-glass 
spheres of 10 μm diameter (Dantec Dynamics) of density 
�s = 1060 kg/m3 . An (r–� ) plane is illuminated by a Nd:Yag 
laser sheet ( � = 532 nm , thickness 1 mm). The flow pattern 
is recorded with a high-speed camera synchronized with 

the function generator (Phantom V7, Vision Research Inc., 
USA)—by means of a mirror oriented at an angle of 45◦ with 
the horizontal. We choose the recording frame rate to be 10 
to 20 times the frequency of the vibrations, allowing us to 
capture both the first-order oscillatory flow and the stream-
ing flow. In the same way as in a previous study (Costalonga 
et al. 2015), a PIV treatment macro is applied to series of 
two images with a time interval of one period between them, 
hence taken at the same phase. We add several of these suc-
cessive iso-phase images to obtain the traces of individual 
particles, which is equivalent to long-time exposure shots. 
A typical result is depicted in Fig. 2b: it is pictured out from 
long-time exposure recording (typically 20–100 periods). In 
this image, and in all the following images, the vibration is 
always oriented along the vertical axis.

Table 1  Definitions and 
symbols of the different 
parameters and quantities

Symbol Physical quantity Units

� Liquid density kgm−3

� Liquid dynamic viscosity Pa s
� Liquid kinematic viscosity m2 s−1

A Cylinder vibration amplitude m
f ,� Cylinder vibration frequency and angular frequency Hz, rads−1

d Cylinder diameter m
� Dimensionless amplitude –
V0 Vibration velocity m/s
V0c Vibration velocity component normal to the vibration axis m/s
� Thickness of unsteady inner BL m
�s Thickness of steady inner BL m
D Thickness of steady outer BL m
�� Unsteady velocity m/s
�� Steady velocity m/s
�1 Unsteady vorticity s−1

�2 Steady vorticity s−1

p1 Unsteady pressure Pa
p2 Steady pressure Pa
Ustr Typical streaming velocity ms−1

vmax Maximal streaming velocity ms−1

vy,max Maximal vertical streaming velocity ms−1

ymax Vertical position of the maximal streaming velocity ms−1

ra Radial position of the center of the flow streamlines m
�a Angular position of the center of the flow streamlines –
rm Radial position of the maximal vorticity m
�m Angular position of the maximal vorticity rad
la Typical length range for the streaming flow m
� Angular direction for the maximal length range rad
KC Keulegan–Carpenter number –
� Stokes number –
St Strouhal number –
M Womersley number –
Re Reynolds number –
Res Streaming Reynolds number –
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Since vibrations can induce waves on the liquid surface, 
we carefully checked that these waves did not disturb the 
bulk flow. We checked that the measured flow is independ-
ent of the vertical position of the laser sheet—when it is far 
enough from the container base and the free-surface, in prac-
tice at a distance of roughly 2 cm from the bottom surface.

3  Experimental results

3.1  Flow analysis

Tatsuno and Bearman (1990) and Elston et  al. (2006) 
investigated the different regimes generated by a vibrating 
cylinder within a large range in KC and � . They showed 
that for low enough KC and � (the threshold on each 

parameter depends on the other one), there is no vortex 
shedding, no flow separation nor tridimensional flow, i.e.:

– the flow is symmetric with respect to the vibration axis 
and invariant along the direction of the cylinder axis.

– the averaged first-order flow is zero, so that the time-
averaged flow is only streaming.

The corresponding flow was denoted as A∗ and A regimes, 
and we keep this denomination for the sake of consistence. 
The transition between these two regimes were described 
in Tatsuno and Bearman (1990) as when the flow is com-
posed of secondary streaming and flows due to vortices 
resulting from separation. They associated this transition 
to the appearance of vortex shedding, which is visible 
along the vibration axis [see Fig. 3 of Tatsuno and Bear-
man (1990)].

Thus, we choose our experimental range in A∗ and A 
regimes, so that the outer flow consists in four vortices, 
whose maximal intensity is located at some distance rm 
and angular position �m from the center of the cylinder. 
In practice, the amplitude is kept smaller than half of the 
object size, i.e., A ≤ 2.5 mm , within the frequency range 
between 5 and 60 Hz. Let us mention that due to the lim-
itation of the shaker and amplifier power, the maximal 
value of 2.5 mm could be prescribed only for moderate 
frequencies (roughly, for f ≤ 25 Hz).

In A∗ and A regimes, the vortices of the secondary flow 
are symmetric over the y axis, and the two pairs are sym-
metric over the x axis. This is also true for the center of the 
recirculation zones, as revealed by the long-time exposure 
recording, see Fig. 2b. However, it does not imply that the 
angles corresponding to maximal and minimal vorticity be 
equal to 45◦ . Although for weak enough forcing � ≃ 45◦ 
(see Figs. 2b and 3a), this is no longer true at higher forc-
ing, as shown in Fig. 3b. The flow structure is no longer 
symmetric over x = y and x = −y axes. The distance ( ra ) 
between the center of the cylinder and that of the flow 
streamlines (i.e., the location of the eye of the vortices) 
increases with the quantity A2f  . These recirculation zones 
are pushed away from the ( x = 0 ) axis, and this seems to 
be the difference between A∗ and A regimes underlined 
in Tatsuno and Bearman’s study (Tatsuno and Bearman 
1990). From Fig. 3a–d, it is clear that ra and rm are differ-
ent, and so are �a and �m.

Simple scaling arguments lead to fair predictions for the 
velocity of the secondary flow, at moderate forcing and for 
unconfined geometry. Let us plug the unsteady �� and steady 
�� velocity fields. We also operate the same decomposition 
for the vorticity � = �1 +�2 . Considering ‖��‖ ≪ ‖��‖ 
as a small perturbation of the primary flow, and taking the 
time-average of the incompressible Navier-Stokes equation, 
it yields:

Fig. 2  a Sketch of the experimental system, see text for details. b The 
structure of the secondary flow is revealed by trajectories of particles 
using long-time exposure (several tens of periods). The black region 
in the left is the shadow of cylindrical beam (diameter d = 5mm ). 
Close to the cylinder, one sees the four inner vortices
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The nonlinear term involving �� can be accounted for an 
effective volume force, which is nonzero only in the bound-
ary layer. Seeking for a scaling law, one sets ‖��‖ ∼ A� and 
the diameter d as being the length scale for the variations of 
�� . The thickness � is chosen as the scale to the gradient of 
�� . Hence, considering only the vertical component of the 
time-averaged flow ( v2 ) leads to � v2

�2
∼

(A�)2

d
 , which yields 

the following scaling for v2:

that can also be retrieved from Eq. (2). Let us remark that 
taking Ustr = v2 in the expression of Res yields: Res =

(
A

�

)2

 , 
which becomes larger than one when the amplitude over-
comes the thickness of the boundary layer. Pursuing this 
scaling approach for vorticity, from the evaluation of the 
circulation of v2 around a vortex, one can write: v2d ≃ �d2 , 
which comes from the Kelvin–Stokes theorem stating the 
equality between the circulation of v2 and the flux of vorti-
city. This assumes the vortex size to be equal to d × d , which 
is valid only for low enough forcing, as we will see in more 
details later. Therefore, a characteristic value for the steady 
vorticity �2 reads:

(3)< 𝜌(��.�) �� >= −�p2 + 𝜌𝜈 𝛥��

(4)v2 ∼
A2�

d

Consistently with Eq. (2), the streaming flow is assumed 
to be independent of viscosity. This independence holds as 
long as the thickness of the inner boundary layer �s remains 
small compared to the other dimensions of the problem, like 
the cylinder diameter d or the container size (Costalonga 
et al. 2015).

Stuart’s analysis (Stuart 1966) predicted that when Res is 
larger than a few units, a second external boundary layer 
would exist, due to convection of vorticity from the inner 
boundary layer, and that the size of these outer vortices 
D = d

(
��

V2
0

)1∕2

= d
(

�

A2�

)1∕2

= d(Res)
−1∕2 would decrease 

with A, within the range KC ≪ 1.
Figure 4 shows vorticity maps for different increasing 

values of amplitudes A, at the same frequency of 25 Hz. It 
clearly illustrates that in the lower range of A, an increase 
in A leads to an intensification of vorticity without signifi-
cant elongation, while in the upper range of A this increase 
leads to the vortex elongation while the vorticity saturates. 
Let us notice that the shadow of the cylinder appears as 
artefacts colors in the left side of the cylinder. From these 
series of vorticity maps, we can infer that vortex elongation 
occurs beyond a threshold in amplitude, after a first phase of 

(5)�2 ∼
A2�

d2

Fig. 3  a, b Long-time exposure 
visualization of particle trajec-
tories for the steady streaming 
flow (left) and their corre-
sponding vorticity maps (right) 
and c, d velocity fields of the 
streaming flow, for f = 25Hz 
and A = 0.5 mm (a, c) and 
f = 25Hz ( V0 = 0.078 m/s , 
� = 62.5 , KC = 0.628 , 
Res = 0.625 ) and A = 1.8 mm 
(b,d) ( V0 = 0.28 m/s , � = 62.5 
, KC = 2.262 , Res = 8.1 ). The 
straight line connects the center 
of the cylinder to the center of 
the flow streamlines (xa, ya)

(a) (b)

(c) (d)
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vorticity intensification with A increasing within its lower 
range.

3.2  Instantaneous flow over a period of oscillation

We aim to relate the behavior of the streaming eddies and 
their stretching at high enough Res with that of the instan-
taneous unsteady flow. The time-periodic flow is measured 
with PIV technique similar to that employed for the stream-
ing flow. However, it is determined from visualizations with 

stronger magnification than that used for the streaming flow, 
to reveal the flow around the cylinder. Also, the velocity 
fields taken at different fixed phases are determined from 
an average over 10 consecutive periods, in order to smooth 
or suppress some unphysical noise, especially close to the 
cylinder.

Figure 5 shows an example of successive instantane-
ous velocity fields around the oscillating cylinder. These 
fields correspond to a typical situation when the stretching 
of vortices is observed, with A = 1.31 mm and f = 40 Hz 

Fig. 4  Vorticity maps at f = 25 Hz , for different amplitudes A of increasing values from (a) to (f). a A = 0.46 mm , b 1.19 mm, c 1.46 mm, d 
1.61 mm, e 1.80 mm and f 1.88 mm. Let us note that the colormap scale of figure (a) is ten times smaller than those of figures (b–f)
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Fig. 5  Successive unsteady velocity fields around the oscillating cyl-
inder ( A = 1.31 mm , f = 40 Hz , giving A� = 0.33 m/s ) represented 
in light yellow. Only the first half period is shown. Ticks on axes 
denote the location in meters. From (a) to (f), the successive times are 

0 ms, 2.5 ms, 5 ms, 7.5 ms, 10 ms, 12.5 ms (corresponding to phases 
� = 0 , �∕5 , 2�∕5 , 3�∕5 , 4�∕5 , � ), the origin of phase and time being 
taken at the lowest vertical location of the cylinder (when V(t) is null)
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( Res = 6.86 ). The sequence starts from the (a) subfigure that 
corresponds to the lowest position of the cylinder ( � = 0 ) 
and ends to the (f) one that corresponds to the highest posi-
tion of the cylinder ( � = � ). The flow is more intense around 
the phases � = 2�∕5 and � = 3�∕5 , indeed shortly before 
and after the cylinder maximal velocity at � = �∕2 , cor-
responding to the cylinder median position. This should 
correspond to the phases of maximal vorticity. Conversely, 
the unsteady flow is very weak when the cylinder lies at 
its lowest and highest positions along the y axis, which 
should correspond to the phase of minimal vorticity. Obvi-
ously, the inner unsteady flow is in phase with the cylinder 
oscillations. The PIV sequences are taken at 20 frames per 
period. For instance, in the example of Fig. 5 of oscillations 
at f = 40 Hz , we opt for 800 fps. This constitutes a fair com-
promise between the time-sampling accuracy and the ability 
to measure a consistent velocity in the region of space of a 
few cm around the cylinder. The maximal value of velocity 
reaches 0.3 m/s, rather close to the maximal velocity of the 
cylinder in the laboratory frame, here A� = 0.33 m/s.

We then determine the unsteady vorticity �1 at the cor-
responding phases, see Fig. 6. As in previous maps, colors 
code for the intensity of vorticity in the z direction normal 
to the plane. For sake of clarity, we took the same color bar 
scale for all pictures. From these maps, we can clearly state 
that the unsteady vorticity is mainly generated within the 
viscous boundary layer. This is expected from general con-
siderations on unsteady boundary layers (Schlichting 1979; 
Riley 1965; Stuart 1966; Sadhal 2012), but was worth being 
confirmed in the situation of large amplitude forcing, where 
A can be several times larger than � . Then, although signifi-
cant unsteady velocity is shown out of the boundary layer, 
this unsteady component is irrotational.

As supplementary information, we provide movies edited 
from these two fields, over one entire period of oscillations, 
taken at the 20 different phases ( � = 0 to 19�∕10 , with 
increment �� = �∕10).

3.3  Streaming flow: quantitative analysis

Typical 2D-maps of the streaming velocity ( v2x, v2y ) and 
vorticity ( �2z ) fields are shown in Fig. 3a–d for a given fre-
quency f = 25 Hz and two values of amplitude A. We first 
extract quantitative values from PIV measurements.

The maximum velocity along the vibration axis is 
extracted from the velocity field, as sketched in Fig. 7a. We 
obtain the profile of vy(y) , and we extract ymax for which vy 
is maximal, see Fig. 7b which gives a typical example. In 
the same figure, vy(x, y = ymax) is also plotted (red disks).

The maximal velocity vmax , i.e., the maximal value of 
the norm of the velocity vector ‖��‖max is plotted in Fig. 8a 
versus the characteristic velocity A2f∕d , suggested from the 
scaling of Eq. (4). Although some dispersion exists, these 

experiments are in fair agreement with Eq. (4), even at rela-
tively high forcing.

Figure 8b shows the maximal velocity along the vertical 
axis (at x = 0 ) vy,max versus characteristic velocity A2f∕d , 
where the velocity has negligible component along x by rea-
sons of symmetry. These results are extracted from the same 
series of sequences as those of Fig. 8a—and show a much 
narrower dispersion. Remarkably again, the scaling law for 
vy,max holds well, even when KC is slightly above 2, and the 
prefactor relating vy,max and A2f∕d is of the order of one. In 
Fig. 8c, we plot the y location for the maximal velocity ymax 
versus A2f∕d . This location remains roughly constant with 
the forcing amplitude and frequency—and is slightly larger 
than the object size. The corresponding error bar represents 
the step of the PIV grid.

The maximal vorticity �max , determined within the outer 
boundary layer, is plotted versus A2f∕d2 in Fig. 8d. Provid-
ing the forcing amplitude is not too large, these results are in 
agreement with the scaling of Eqs. (4) and (5). They are also 
consistent with previous experiments on streaming generated 
with a vibrating beam in a 2D cell (Costalonga et al. 2015). 
At high A, the velocity data show significant dispersion, and 
the maximal vorticity departs from the linear relationship 
� ∼ fA2∕d2 that holds well at small enough A.

To quantify the elongation of the secondary vortices, we 
naturally attempted to determine the position of the maximal 
vorticity (denoted as (xm, ym)=̂(rm,

�

2
− �m) in Cartesian or 

polar coordinates) or the position of the eyes of the vortices 
(which are actually that of the secondary flow streamlines), 
denoted as (xa, ya) =̂ (ra,

�

2
− �a) in Cartesian or polar coordi-

nates. These positions are in general not equal: the maximas 
of vorticity are not located at the eye of the vortices, but 
close to the cylinder where velocity gradients are the strong-
est. It appears obvious in Fig. 3, and in general, xm < xa , 
ym < ya , rm < ra and 𝜃m < 𝜃a.

Figure 9 presents the radial and angular position (ra, �a) 
of the center of the streamlines, versus Res(= A2f∕�) . The 
error bars on both values represent the uncertainty due to 
both the PIV grid and the inherent difficulty to extract the 
minimum of velocity in this area, see Fig. 7a. Although the 
data are slightly dispersed, these results confirm that the 
flow streamlines stretch along the cylinder, along the direc-
tion of vibration, as the forcing gets stronger. Concerning 
the angle �a , the data obtained at different frequencies do 
not collapse on a same curve. Overall, it slightly decreases 
from—roughly—45◦ at low Res down to 27◦ at larger Res . 
Although the position of the center of streamlines fairly res-
titutes the stretching effect, it does not constitute a quantita-
tive enough measurement to reveal that the zones of intense 
vorticity get closer to the y axis.

Hence, we attempted to determine the position of the 
maximal vorticity from the 2D vorticity maps, like those 
in Fig. 3, but due to the flatness of the velocity profiles, 
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and the inherent noise of the experiments, the location of 
these maxima is subjected to large uncertainty. We propose 
an alternative way to quantify both the elongation and the 
narrowing of the vortices. We consider the spatial profile 
of the velocity decrease along the y axis. This quantity is 

measurable with much better accuracy, as it results from a 
fit on more than fifteen data points in vy(y) , as exemplified in 
Fig. 7b. Careful examination reveals that beyond the location 
of the maximal value ymax , the vertical velocity profile can 
be well fitted by the following empirical relationship:

Fig. 6  Unsteady vorticity fields around an oscillating cylinder, repre-
sented here as a dashed ellipse. The outer dashed ellipse represents 
the limits of the viscous boundary layer. Conditions are those of 

Fig. 5. The color bar scale is the same for all plots. Successive times 
and phases are the same as in Fig. 5
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where the length la quantifies the scale of the outer streaming 
flow: it is the distance along which the velocity decreases 
by a factor of 1

e
 , from the location of the maximal velocity 

ymax , see Fig. 7b.

(6)vy(x = 0, y > ymax) = vy,max × exp

(
−
y − ymax

la

)

Figure 10 shows measurements of this characteristic 
length la extracted from PIV maps, versus the dimension-
less quantity Res = A2f∕� . Due to that Eq. (6) provides an 
accurate fit of vy(x = 0, y) (see also Fig. 7b), the typical error 
bar is just slightly larger than the symbols size. These results 
reveal what was suggested by the direct observations of the 
PIV measurements and vorticity maps in Fig. 3. The typical 
length of the outer flow roughly equals 7 mm for Res < 3 and 
increases linearly: la ∼ A2f∕� , and reaches up to 8 times the 
length measured at low forcing.

Of course, the quantity la is closely related to the location 
of the maximal vorticity, and to the size of outer vortices. At 
low enough Res , the size of vortices was found to be roughly 
equal to the size of the vibrating object (Tatsuno 1973; Petit 
and Gondret 1992; Costalonga et al. 2015; Wang 1968), with 
a prefactor close to one, which shows la to be a consist-
ent quantity even at weak forcing. Hence, the stretching of 
streaming vortices along the direction of vibration y seems 
related to the increase in the relative importance of inertia 
in the streaming flow. Still, their width in the x direction 
remains roughly equal to d, which makes their aspect ratio 
significantly increasing with the forcing too.

We also evaluated the direction � along which vorticity is 
the most intense. Indeed, from Fig. 3a, b, it is clear that the 
lobes of vorticity get closer to the (O, y) vibrations axis as 
the forcing increases. It is determined from vorticity maps 
like those in Fig. 3a, b, by measuring the angle correspond-
ing to the farthest radial decrease in the vorticity. Although 
the fitting of data was not as neat as for the velocity vy with 
Eq. (6), it was possible to unambiguously extract this angle 
� with fair accuracy. The typical error bar, roughly 3.5◦ , is 
due to the inherent noise on the vorticity maps, especially 
far from the cylinder.

Figure 10b represents this angle � with respect to (O, y), 
versus the streaming Reynolds number Res =

A2f

�
 . While 

for Res < 1 , � roughly equals 45◦ , it significantly decreases 
for Res > 1 and can reach a value down to 12◦ , hence cor-
responding to a very narrow directional jet. At high forc-
ing, the areas of large vorticity are much more aligned with 
(O, y), and measurements for different frequencies from 5 Hz 
to 60 Hz collapse together well with the quantity A

2f

�
.

4  Discussion

Let us briefly summarize our results: the measurements of 
averaged and maximal vertical velocity are in agreement 
with classical scaling laws given by Eq. (4) over the whole 
range of Res investigated. Conversely, the maximal vorti-
city is well predicted by Eq. (5) only in a limited range of 
Res , typically below 3. For higher values of Res , �max tends 
to saturate, see also Fig. 4, which was not expected from 
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Fig. 7  a Sketch of the quantitative extraction of velocity profiles 
along x and y axes, from 2D PIV measurements. b Example of result-
ing profiles for the vertical streaming velocity vy versus y along the 
axis x = 0 (blue disks), which enables to determine vy,max and versus 
x along the axis y = ymax (red disks). The solid black line is a fitting 
curve allowing to determine the characteristic length of decay of the 
streaming flow la from Eq. (6)
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classical theories. This is to be related to the elongation and 
narrowing of outer vortices.

From the previously presented results, the stretching of 
outer eddies suggests that the vorticity is transported further 
away from the cylinder, something already observed quali-
tatively for streaming flows of vibrating spheres (Amin and 
Riley 1990; Blackburn 2002). Still, the location of maxi-
mal velocity ymax remains roughly fixed at a distance of the 
cylinder equal to d - and, to the best of our measurement 
accuracy, so does the location to maximal vorticity ( rm, �m).

Stuart (1966) and Davidson and Riley (1972) predicted 
that the thickness of the outer boundary layer D ∼ d (Res)

−
1

2 , 
which can be simplified as D ∼

d

A

(
�

�

)1∕2

=
d �

A
 . Further-

more, Stuart predicted that this outer layer was observed 
only if Res is large enough, in practice equal or larger than a 
few units. Several experimental studies corroborated this 

latter prediction (Davidson and Riley 1972; Bertelsen et al. 
1973; Tatsuno 1973), although none of them quantitatively 
investigated the thickness of the outer layer. Davidson and 
Riley (1972) mentioned that the streaming flow narrows 
along the vibration axis at high Reynolds number. In most 
of these experiments, A ≃ � and A ≪ d . Let us also note that 
this elongation was already observed (though not quantita-
tively investigated), in a previous study carried out in a con-
fined geometry (Costalonga et al. 2015). Incidentally in this 
study, the saturation of � at high forcing (see Fig 8d) was 
related to the stretching of vortices, as the conservation of 
the circulation yields �max d la ∼ Ustr d ∼ A2f  . Since �max 
saturates at high forcing, la must follow a A2f  increase to 
fulfill this conservation.

First, let us remind that the elongation starts to become 

significant when Res =
A2f

𝜈
=
(

A

𝛿

)2

> 3 . This is precisely 
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Fig. 8  a Maximum streaming velocity versus A2f∕d for different frequencies. b Maximum streaming velocity vmax along the vibration y axis, 
versus A2f∕d . c Location ymax of the maximal velocity on the y axis, with error bar. d Maximal vorticity versus A2f∕d2
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when the amplitude of oscillations starts to become larger 
than the thickness of the oscillating boundary layer. In this 
situation, the vibrating object periodically pierces through 
the boundary layer, which leads to a significant time-depend-
ent component of velocity out of the boundary layer. Hence, 
it is highly plausible that in this situation, a time-dependent 
component of the velocity exists outside the boundary layer 
of thickness � . This was confirmed here by our PIV measure-
ments of the unsteady velocity fields at different phases of 
the oscillation. Still, our experiments also showed that there 
is no significant unsteady vorticity outside the boundary 
layer. This situation was already emphasized by Wang 
(1968), who adopted the frame of decomposing the flow into 
an unsteady and a steady components, which can a priori be 
of the same order. This frame is more adapted to the present 
study than the classical decomposition utilized under weak 
forcing amplitude, presented in the introduction.

Following Wang’s study (Wang 1968), let us then decom-
pose the velocity � and vorticity � fields as:

where the subscripts u and s, respectively, stand for unsteady 
and steady components. Wang’s final expression (see the 
detailed calculation in “Appendix A”) relates the stationary 

(7)� = �u + �s

(8)� = �u +�s

Fig. 9  a Radial distance and b angular position of the center of sec-
ondary flow streamlines, versus A2f∕� , at different frequencies. See 
definition in Fig. 3. Typical error bars are indicated

(a)

(b)

Fig. 10  a Spatial scale of the streaming flow, quantified by the char-
acteristic length la of decrease in vy along the y axis, versus A2f∕� . b 
Angle � of the direction for the farthest decrease in the vorticity with 
respect to the axis of vibration versus A2f∕� (see text for details). 
Typical error bars are indicated
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velocity �� and vorticity �� with those of their unsteady 
counterparts, with dimensionless quantities:

where � = A∕d . The generation of vorticity usually comes 
from the first term, and the second one is neglected in most 
studies where 𝜖 ≪ 1 . While the first term corresponds to the 
generation of steady vorticity via the unsteady flow inside 
the viscous boundary layer, the second one corresponds to 
the convective transport of steady vorticity by the steady 
streaming flow itself.

As stated above, the effect of this convective transport 
is observed in Fig. 3 of Tatsuno and Bearman’s paper 
(Tatsuno and Bearman 1990). A recent numerical study 
also seems to have reproduced this effect (Nuriev et al. 
2018). From the trends given by our experiments, we can 
assume that this mechanism can explain at least partially 
the observed vortex stretching for two main reasons:

– no significant unsteady vorticity could be observed 
outside the boundary layer (see Fig. 6), which keeps 
the first term of Eq. (9) negligible outside the bound-
ary layer and makes this term unlikely to be a source 
of vorticity in the outer domain r > 𝛿 , even along the 
vibration axis. To check this point even further, we 
computed the term 

(
� × �u ×�u

)
 for all phases, based 

on the unsteady velocity and vorticity fields already 
computed. The corresponding movie presented in Sup-
plementary Information confirms that this term is neg-
ligible out of the boundary layer.

– the scaling of the length of stretching la is very much 
related to that of the maximal streaming velocity vy,max 
along (Oy), see Figs. 8b and 10a.

The decrease in the angle intersecting the middle of the 
vorticity lobes � with increasing Res could also be under-
stood as that the strongly directional streaming flow would 
tend to narrow the lobes along the vibration axis. This dis-
tortion of the vortices was emphasized in Milton-Andres 
and Ingard (1953) for the inner streaming vortices. The 
authors were attributing the distortion to fourth-order 
terms (i.e., ∼ �4 ), generally neglected for low-amplitude 
forcing (Holtsmark et al. 1954), which are contained here 
in the term 

(
�2� × �s ×�s

)
.

Finally, let us show another qualitative aspect of this 
convection of vorticity by extracting the trajectories of 
fluid particles from sequences at higher frames per second 
(here 2000 fps) during several forcing periods. A typical 
result is shown in Fig. 11 obtained under the same condi-
tions as in previous figures 5 to 7. The zig-zag-like trajec-
tories show that the unsteady and steady components of 

(9)−
(
� × �u ×�u

)
s
− �2� × �s ×�s =

�

Re1
��s

velocity can be comparable in magnitude, as assumed in 
the beginning of the discussion.

5  Conclusion

In conclusion, we investigated the steady streaming flow 
induced by vibrations of a cylinder immersed in a fluid, 
under conditions of high Reynolds number (still remain-
ing in A∗ and A regimes defined by Tatsuno and Bearman 
(1990)) where the outer vortices thicken and stretch along 
the vibration axis. This phenomenon was noticed in previ-
ous experiments (Davidson and Riley 1972; Tatsuno and 
Bearman 1990), but not quantitatively investigated nor 
explained. We reached regimes of large streaming Reyn-
olds number Res ≫ 1 , for which not only the typical flow 
velocity reaches up to a few cm/s, but also the outer vortices 
generated around the cylinder significantly stretch along the 
vibration axis up to 8 times the size they have at Res < 1 . 
The elongation comes together with a more directional sec-
ondary flow, as the angle of lobes of vorticity gets narrower 
along the axis of vibration. As the streaming velocity can be 
of the same order as the maximal unsteady one, we attribute 
the stretching to the convection of secondary vorticity by the 
streaming flow itself, an effect which is usually neglected 
within the frame of weak forcing.

The results shown in this study can be envisioned in a 
larger scope, including in applications of mixing and homog-
enization of fluids, which requires the generation of flow at a 
large distance from the source. Very recent studies focused 

Fig. 11  Extraction of the unsteady flow trajectories during sev-
eral consecutive periods, for same conditions as Figs. 5 to 7, which 
emphasizes that the unsteady and steady velocity can be comparable 
in magnitude. The arrow shows the direction of vibration
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on situations of a more complex geometry (Coenen 2016), 
microfluidics (Nama et al. 2014; Ovchinnikov et al. 2014; 
Vishwanathan and Juarez 2019) or nonlinear interactions 
between streaming and acoustic waves in acoustic stream-
ing (Daru et al. 2017). Depending on the size ratio between 
the mechanical actuator (or the acoustic wavelength) and 
the vessel, operating in conditions of high Reynolds number 
flows can generate a flow whose spatial extension can be as 
large as the vessel or channel size. Hence, the resulting outer 
streaming flow can cover the whole fluid domain, and as a 
counterpart be also influenced and mediated by the walls via 
the no-slip condition, precisely as the inner streaming flow 
in viscous fluids (Tatsuno 1973).

Appendix A: Details of the theory of Wang 
(1968)

Starting from the equation of transport of vorticity:

This yields two equations for both steady and unsteady 
components:

Let us mention that the first term in Eq. (12) comes from the 
steady component of the Reynolds stress generated by the 
first-order flow inside the time-periodic boundary layer. It 
is nonzero, as the cross-product of two time-periodic terms 
can produce a time independent flow, i.e., with nonzero 
time-average.

Continuing in Wang’s approach, we make dimension-
less the above equations, by normalizing the following way 
(primed quantities denoting the dimensionless quantities): 
time by 1∕� , length by d, unsteady velocity by V0 = A� 
and steady velocity by �V0 , � being a dimensionless ratio, 
unknown a priori. It yields:

(10)
��

�t
− � × � ×� = ���

(11)
���

�t
− � × �u ×�s − � × �s ×�u

−
(
� × �u ×�u

)
u
= ���u

(12)−
(
� × �u ×�u

)
s
− � × �s ×�s = ���s

(13)

[
V0�

d

]
���

�

�t
−

[
�V2

0

d2

](
� × ��u ×��

s + � × ��s ×��
u

)

−

[
V2
0

d2

](
� × ��u ×��

u

)
u
=

[
V0

d3
�

]
���

u ,

where the magnitude of the different terms is emphasized 
with brackets. Dropping the primes on the dimensionless 
quantities, and dividing the first above equation by 

(
V0�

d

)
 

and the second above equation by 
(

V2
0

d2

)
 , it yields:

defining S =
d�

V0

=
1

�
 as the Strouhal number. As the product 

Re1S = M2 ≫ 1 , the equation for unsteady terms (15) shows 
that, by dropping nonlinear terms, a boundary layer of 
O(Re1S)

−1∕2 outside which the unsteady vorticity decays. In 
order to balance this forcing term in the steady Eq. (16), the 
diffusive term must be of the order 1∕(Re1S) , which implies: 
� =

1

S
= � , from which Eq. (9) is obtained.
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