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Abstract. The influence of solidification on the spreading of liquids is
addressed in the situation of an advancing liquid wedge on a cold sub-
strate at Tp < Tf , where Tf is the melting temperature, and infinite
thermal conductivity. We propose a model of contact-line dynamics
derived from lubrication theory, where equilibrium between capillary
pressure and viscous stress is at play. Here it is adapted to a quadruple
line geometry, where vapour, liquid, frozen liquid and basal substrate
meet. The Stefan thermal problem is solved in an intermediate region
between molecular and mesoscopic scales, allowing to predict the shape
of the solidified surface. The apparent contact angle versus advancing
velocity U takes a minimal value, which is set as the transition from
continuous advancing to pinning. We postulate that this transition cor-
responds to the experimentally observed critical velocity, dependent on
undercooling temperature Tf − Tp, below which the liquid is pinned
and advances with stick-slip dynamics. The analytical solution of the
model shows a qualitatively fair agreement with experimental data, and
the best agreement is obtained from the adjustment of a mesoscopic
cut-off length as fitting parameter. We discuss of the dependence of
this cut-off length on Tp

1 Introduction

Contact line dynamics is a still challenging problem motivating many studies. The
multi-scale nature of the problem, the existence of several conflicting models, com-
bined with the difficulty to obtain exhaustive and reproducible data has left this
problem still open [1–3]. Of special difficulty is the case in which the contact line
motion is combined with phase change, like for instance evaporation/condensation
of the liquid [4–7], colloids or particles deposition [8–11], or solidification of a liquid
moving on a cold substrate [12–17]. In this latter case, as well as in that of colloid
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deposition [8], it is observed that the continuous advancing or receding of a con-
tact line can be interrupted when one reduces the velocity U down to a threshold
Uc for contact line pinning [16], below which stick-slip behaviour can be observed
as well [14,17]. Understanding these phenomena is of crucial importance for several
applications, including 3D printing [18], or aircraft icing [19].

To account for this transition, models are still lacking. Schiaffino and Sonin
[12,13,16] developed what can be understood as a “four phases” contact line model
(substrate, air, liquid, frozen liquid) that they carried out numerically. Their pecu-
liar situation was that of a thin liquid layer, fed from successive impacting droplets,
and spreading on an already frozen solid base formed on the cold substrate. A dif-
ficulty that they noticed is that, just as the same way as the evaporation rate for
colloid deposition (“coffee stain” problem) [20,21], a divergence of heat flux appears
near the contact line, which should similarly imply a divergence of solid freezing
rate. The liquid layer flowing above the basal solid deposit then should freeze much
faster than the characteristic time of the flow. This singularity has led the authors
to introduce a mesoscopic cut-off length in the micron range, of yet unknown origin.
In view of these problems, Tavakoli et al. [14] postulated a different structure for the
solid/liquid interface. In this quasi-static approach, the interface should correspond to
an isotherm and would intersect the liquid/air interface with a right angle - based on
the assumption that the thermal flux is negligible within the vapour phase [22]. The
equilibrium is supposed to be broken when the total deposited volume remains below
some threshold. The agreement with experiments is fair, but the threshold volume
is an unknown, empirically adjusted parameter. Furthermore, the question of how
the liquid flows at higher velocity remains elusive and unspecified in this approach.
Another way to tackle the problem has been proposed by de Ruiter et al. [15], and
consists in admitting some lag in solidification, denoted as kinetic undercooling, that
depends on the contact line velocity. This leads to a critical temperature in the vicin-
ity of the contact line, below which the liquid locally freezes. This should lead to
the arrest of the spreading in agreement with experiments [15]. This feature was also
reproduced with thermoresponsive polymer solutions [23] on hot substrates. Let us
note that the experiments did not exhibit stick-slip dynamics, as the liquid was not
continuously forced to spread on the substrate [15]. Another difficulty of the subject
is a lack of a model that could give elements for a semi-quantitative analysis, in a way
similar to a model of advancing contact-line or “a la Voinov”, i.e. a hydrodynamical
framework in the lubrication approximation [24].

In the present paper, we aim to build such a framework while trying to reconcile
the aforementioned three approaches. We consider a four-phases contact line advanc-
ing on a cold plate of infinite thermal conductivity (see Fig. 1). The angles θs(x) and
θL(x) respectively stand for the angle formed by the solid with the substrate and by
the liquid/air interface with the horizontal. These two angles are expected to (slowly)
depend on the horizontal coordinate x. We assume total wetting conditions of the
liquid on the solid phase (θe = θL − θs = 0 for U = 0), and interfaces with small
slope so that lubrication approximation can be applied. Let us here note that the
liquid-on-solid equilibrium angle can be nonzero for liquid water on ice [25], where
values around 10◦ were measured. This is presumably due to the peculiar molecular
structures of liquid water and ice. Though, the assumption θe shall be acceptable
for most liquids, in particular for low-surface energy alcanes for which experiments
are available. We assume that at a certain mesoscopic scale, thereafter denoted as b,
there is a crossover between the first two aforementioned approches and we develop
a simple model deduced from Voinov’s theory [24], completed with a Stefan kinetic
condition at the solid/liquid front. The microscopic length scale is denoted as the
cut-off length a, and shall be considered as the molecular size. A steady solution for
this four phases contact line can exist only if a specific condition is set between the
advancing velocity and the speed of the solid-liquid front. Our study investigates this
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Fig. 1. Sketch of the quadruple line geometry, combining Schiaffino & Sonin’s [12,13,16]
and Tavakoli et al.’s [14] approaches. Let us note that the curvature of the free-surface (due
interface bending induced by viscous shear stress) and the curvature of the solid-liquid front,
have opposite signs.

condition of existence. Let us note that the case of supercooled liquids is not consid-
ered in this study. This would involve a delay in solidification, especially within the
range where the substrate temperature is close to the freezing one [26].

We first describe the equations of the model (Sect. 2.1), then we show the main
predictive plots (Sect. 2.2), and finally we discuss on the limitations of the model,
the physical meaning of the cut-off length b and the importance of its adjustment,
and we finally conclude on the prospectives.

2 A quadruple dynamical contact-line

Let us consider a liquid wedge (density ρ, viscosity η and surface tension γ) in contact
with a substrate of temperature Tp smaller than the melting temperature Tf , so that
liquid is partially frozen along the contact area with the substrate. We focus on the
vicinity of the contact-line, hence in a typical situation of a moving sessile drop or
a climbing meniscus. For sake of simplicity, we adopt here a two-dimensional (2D)
geometry.

We assume that the liquid and solid wedges, of angles respectively equal to θL− θs
and θs, are in contact with each other and form altogether an apparent contact angle
θL with the substrate, which holds until the nanometric scale, see Figure 1. Let us
assume a steady situation where both wedges advance at the same velocity U with
respect to the substrate. This condition of steadiness shall impose a relationship
between the line velocity and the liquid-solid front dynamics.

We also assume total wetting condition (θe = 0 for U = 0) and a steady advancing
contact-line, i.e. U remains constant and positive. As set in Figure 1, the solid/liquid
wedge is divided into three distinct domains:

– a nanometer-scale region (x < a) of molecular size,

– an intermediate mesoscopic region (a < x < b) defining the quadruple contact
line, where the free-surface, the liquid/solid and the solid/substrate interfaces
co-exist. It is in this region that viscous shear stress develops,
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– a macroscopic quasi-static region (x > b) where the solidification front corre-
sponds to the isotherm T = Tf in the liquid bulk.

The substrate temperature is kept constant at Tp < Tf , which is assumed to be
uniform. This assumption is valid if the substrate thermal conductivity κP is large
enough. The approach of dynamical contact-lines proposed within the intermediate
region is inspired from the hydrodynamic model of Voinov [24].

Let us finally underline that the sketch of Figure 1 is of course an oversimplification
of the real solid-liquid front profile. However, it suggests that:

– in the macroscopic domain, the front is ruled by a classical Stefan problem at
thermal equilibrium where, due to the negligible conduction of the ambient air,
the T = Tf isotherm has to be normal to the fluid free-surface,

– in the mesoscopic domain, the front is out of equilibrium and is ruled by a
balance between thermal conduction, viscous shear stress and capillary forces
near the contact-line. This is the domain investigated in our model. The sudden
change of slope of the solid profile, which is possibly less sharp in reality, reflects
this crossover.

2.1 Model of contact line dynamics a la Voinov with solidification

2.1.1 Voinov model in the intermediate region

Shear stress coupled to capillary forces at the contact-line induces what is commonly
denoted as viscous bending, a framework classically used to predict the dynamics of
triple contact lines in the hydrodynamical context [1,2,24]. This viscous shear has no
reason to be uniform within the whole wedge and generally depends on x [1,2]. Hence,
the curvature of the free-surface and that of the liquid/solid interface are supposedly
nonzero and taken into account.

The liquid region forms an angle θL − θs advancing with the solid front. A steady
state situation (U = cte) like that depicted in Figure 2 is possible only if it is assumed
that the liquid free-surface and liquid/solid interface advance at the same velocity
U (that of the quadruple line), so that the interface adopts a steady shape in the
moving frame. This condition of existence thus implies a condition relating U and
the solid/liquid front dynamics at any x > 0, which itself depends on the wedge
geometry.

A flow is established in the liquid wedge of height hl(s), s being the coordinate
along the solid front. In our case, the curvature of the solid front is assumed to be
small - i.e. its radius of curvature is much larger than the mesoscopic length b, along
this wedge. This yields a continuity equation:

∂hl
∂t

=
∂(hl〈u〉)
∂s

= U cos θs
∂hl
∂s

, (1)

where 〈u〉 is the average velocity in the liquid, slowly varying with s, that
approximately reads:

〈u〉 ' γh2
l

3η

∂3ξ

∂s3
,

where y = ξ(s) denotes the profile of the free-surface.
We also define Us as being the front velocity, in the direction perpendicular to

the solid/liquid front, and similarly we get Us = U sin θs.
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The slope of the interfaces remains small (θL �1 and θs �1). Under these assump-

tions, we can assume that cos θs ' 1 in equation (1) and we replace ∂3ξ
∂s3 by ∂3hl

∂s3 , which
yields the classical equation [27]:

∂3hl
∂s3

' 3
Ca

h2
l

, (2)

where Ca = ηU
γ stands for the dimensionless capillary number. Also with θe = 0, this

equation leads to the well-known Tanner solution that gives the angle θL(s) at the
distance s from the corner:(

θL(s)− θs(s)
)3

' 9 Ca log
s

a
. (3)

The determination of θs involves a balance in thermal flux, which must be
considered in order to predict the complete evolution of θL with U .

Let us note that the validity of the usual hydrodynamic equations, commonly set
on a straight substrate, and considered here on a slightly curved solid, implies that
the solid radius of curvature be weak compared to the value of b, in order that the
previous equations remain valid at first order. This assumption is to be checked later
in the paper, and we shall show that it is generally true, providing one pays attention
on the choice of b.

2.1.2 Thermal equilibrium in the wedge

We assume an infinite thermal conductivity of the substrate, and also the heat transfer
between liquid and the ambient atmosphere is assumed to be negligible. Considering
these assumptions, the heat flux is dominated by conduction within the solid wedge.
The heat flux generated across the liquid-solid interface by the substrate at Tp, rules
the solid angle θs within the liquid wedge. This flux is determined by the heat equa-
tion, which in a steady situation where convection is neglected, reads as the classical
Laplacian equation:

∇2T (r, φ) = 0. (4)

Equation (4) is solved in a wedge of angle θs(x) at any x > 0, with T = Tp
and T = Tf respectively as boundary conditions along the horizontal substrate/solid
interface and along the solid/liquid interface, for any x > 0. The Laplacian equa-
tion is solved in polar coordinates with radial and angular spatial variables r and φ
represented in Figure 2.

Applying the classical separation of variables, the resolution of equation (4) yields:

T (r, φ) = F(r)G(φ) = (a0 +b0 ln r)(A0 +B0φ)+(αrυ+βr−υ)(A cos(υφ)+B sin(υφ)),
(5)

where a0, b0, A0, B0, α, β, A and B are constants. The following boundary conditions
allow us to determine the constants:

T (r, 0) = Tp and T (r, θs) = Tf . (6)

We set ∆T = Tf −Tp > 0 as the main control parameter of this thermal problem.
The temperature remains finite in the vicinity of the corner, so that β = 0. It yields
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Fig. 2. Zoomed sketch of the quadruple line within the intermediate region, with the
continuous hydrodynamic approach by Voinov [24], i.e. a finite and spatially dependent
curvature of the film and solid front, to rule the visco-capillary balance in the liquid. The
figure also shows the sketch of the thermal Stefan problem in the wedge.

a general expression for the solution of equation (5):

T (r, φ) = Tp +

(
∆T

θs

)
φ+

∞∑
n=1

αnr
nπ
θs sin

(
nπφ

θs

)
. (7)

In the simpler situation of a solid wedge forming a constant angle θs, the solution
of the temperature field T (r, φ) would only contain lowest order terms, and would
express as:

T0(r, φ) = Tp +

(
∆T

θs

)
φ. (8)

Our present situation is that of a (weakly) curved solid/liquid interface, i.e the
wedge angle θs is weakly dependent on x (or r). To account for this higher order
correction, let us introduce the small parameter ε such that θs = θs(εr). We now seek
for a solution of the stationary diffusion equation (4) for the temperature of the form:

T (r, φ) = Tp +

(
∆T

θs(εr)

)
φ+ εT 1(r, φ). (9)

After injecting the equations (9) into (4) and (6) and expanding in powers of ε,
we obtain the following solution up to zeroth order in ε:

T (r, φ) = Tp +
∆T

θs(0)
φ− εr∆Tθ′s(0) sinφ

θs(0) sin θs(0)
. (10)
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Let us recall that the flux across the liquid-solid interface is:

Js(s, φ = θs) = −κ
s

∂T

∂φ
= κ

∆T

sθs
, (11)

where κ stands for the thermal conductivity of the solid. This heat flux rules the
Stefan condition at the interface, which progresses at velocity Us, and is related to
the advancing velocity U . This enables us to determine the solidification front kinetics
from (11):

Js(s, φ = θs) = ρLUs = ρLU sin θs, (12)

where L stands for the liquid/solid latent heat. This flux through the liquid/solid
interface can be evaluated from a simple integration of equations (11) and (12),
under the assumptions of small angle and small curvature.

Back to equation (10), we obtain in the limit of small angles:

κ∆T

sθs(0)
− εκ∆Tθ′s(0)

θs(0)2
= ρLUθs(εr), (13)

which, from a formal identification at the zeroth order in ε, yields:

κ∆T

sθs(εs)
= ρLUθs(εs). (14)

The solution of equation (14) above is reduced to:

θs(s) =

(
κ∆T

ρLUs

) 1
2

. (15)

Let us note that under the assumption of θs � 1, and assuming small enough
curvature, in what follows we can substitute the curvilinear coordinate s by x in
equation (15).

2.1.3 The dependence of θL on U yields a transition to unstable dynamics

Returning to the Voinov-Tanner equation (3), an expression for the apparent
dynamical contact angle θL reads:

θL(x) =

(
κ∆T

ρLUx

) 1
2

+

(
9 Ca log

x

a

) 1
3

. (16)

Thus, θL depends on the substrate temperature Tp – i.e. on the undercooling offset
∆T , and on the advancing velocity U .

Figure 3a shows θL versus U from equation (16), for various ∆T and a value
of the mesoscopic length x = b set at 1 µm. We took values for solid and liquid
hexadecane, for which ρ = 833 kg.m−3, κ = 0.15 W.m−1.K−1, L = 2.3× 105 J.kg−1,
η = 3× 10−3 Pa.s, γ = 0.028 N.m−1 and a = 0.845 nm.

Let us note that the model is surely not valid as U approaches zero. Actually,
our framework is based on that when U < U∗, the solid front moves faster than the
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Fig. 3. (a) Apparent advancing angle θL versus advancing velocity U and various values of
∆T (a = 0.845 nm (molecular size) and x = b = 1 µm). Except in the isothermal case, θL
shows a minimum for a critical velocity U∗, which is taken as the value for the transition to
unsteady dynamics. (b) Same as (a) but with different values of b and ∆T .

advancing contact-line. Therefore, the dynamics becomes unstable (in experiments,
it corresponds with the appearance of stick-slip) and our framework of steady solid
front and liquid wedge is not valid anymore. Therefore the divergence of θL as U tends
to 0 then reflects the mechanism related to the model, namely that the solidification
induces the pinning of the contact line.

Let us also note that for ∆T = 0, the angle θs equals zero, and that we retrieve
the isothermal situation. For ∆T > 0, hence in the situation of partial solidification
of the liquid, the evolution of θL for relatively large U follows a trend similar to
the isothermal situation, with an increase of θL with U . However, at relatively low
velocity, i.e. below a critical velocity (U < U∗), our model predicts a sharp decrease
of θL with U . Therefore, our model leads to a non-monotonous dependence of θL
upon U . We emphasize the fact that θL is the apparent contact angle of the liquid,
i.e. the slope of the liquid-air interface with respect to the cold substrate, while the
relative slope with respect to the formed solid θL − θs is much smaller and reduces
to Voinov solution without solidification displayed on the same figure. In consistence
with the lubrication assumptions, this relative angle remains small enough, and is
here smaller than 40◦.

Figure 3b shows θL versus U for different sets of values for b and ∆T . Clearly
the value of x = b strongly influences the location of U∗. Comparisons with existing
experiments, to be shown later, will enable to better justify the choice of b = 1 µm.

At this stage, we state that the existence of a minimum for θL(U) implies an
unstable situation from a mechanical point of view. Let us here remind the general
expression of the capillary motile force, here expressed per unit length of contact-line,
from the unbalanced Young’s equation:

Fcap = γπ(cos θe − cos θL) ' γπ
(
θ2
L

2
+
θ4
L

24

)
. (17)

In a steady situation U = cte, this capillary force is usually balanced by a vis-
cous friction force Fv ∼ ηU originating from shear stress within the wedge between
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microscopic and macroscopic scales. Keeping the first order term in the development,
it yields:

Fv ∼ γπ
(
θ2
L

2

)
. (18)

The fact that Fv [N.m−1] be proportional to θ2
L, means that the liquid/substrate

friction decreases with velocity in the domain U < U∗. Intuitively, when a higher U
leads to a smaller friction force Fv (here expressed per unit length), the situation is
dynamically unstable. Therefore, in analogy with solid friction [28,29], we postulate
that this decreasing branch is unstable and can lead to stick-slip dynamics below
some critical velocity U∗. We then assume that U∗ corresponds to the location of the
minimum of θL(U), which delimitates the transition between continuous and stick-slip
dynamics. Therefore, this framework allows us to analytically calculate an estimate
for U∗ and for the related critical (apparent) contact angle θ∗L = θa.

2.2 Prediction of critical velocity and arrest angle

The minimum of the apparent angle with U is given by
∂θL
∂U

(U∗) = 0, determined

from equation (16). The resulting critical velocity reads:

U∗ =

(
3

2

) 6
5
(

6η

γ
log

b

a

)− 2
5
(
k∆T

ρLb

) 3
5

. (19)

We note that U∗ follows a scaling law with the undercooling temperature: U∗ ∼
∆T

3
5 . As underlined in Figure 3, the cut-off length b, which is an adjustable parameter

of our model, has significant influence on U∗. Figures 4a and 4b show typical trends of
U∗ versus ∆T , for various values of b from 0.15 to 9 µm. A larger b tends to decrease
the critical velocity, for the same ∆T . In other terms, the range of stability is wider
in velocity for smaller values of b.

A prediction for the critical apparent angle θa is obtained by combining
equations (16) and (19):

θa =

( (
3

2

)− 3
5

+

(
3

2

) 3
5
) (

9ηκ∆T

γρLb
log

b

a

) 1
5

. (20)

The predictions for θa versus ∆T , given by equation (20), are plotted in Figure 5.
We assume that the determination of the apparent angle is carried out at a distance
of the quadruple line equal to the mesoscopic length r = b. In Figure 5, the value
of b is varied from 0.01 to 9 µm, hence within a range extended to smaller values
compared to Figure 4.

Schiaffino and Sonin [16] theoretically determined mesoscopic cut-off lengths for
wax paraffine (denoted there as λ) and proposed temperature-dependent values. For
instance, for ∆T ' 7 ◦C, λ = 0.77 µm, and for ∆T ' 34 ◦C, they found λ = 0.12 µm.
Since the length λ has a similar physical meaning as our parameter b, we are confident
that our choice for the range of b is realistic.
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Fig. 4. (a) Critical velocity versus ∆T , for different values of b. Data points are experiments
from de Ruiter et al. [15] and Herbaut et al. [17]. (b) Same as (a) in Semilogarithmic axes.

Fig. 5. (a) Apparent angle θa of liquid on substrate, versus undercooling ∆T , predicted
by equation (20). The different curves correspond to different values of the mesoscopic cut-
off length b, (a is set to 0.845 nm). Data points are experiments from de Ruiter et al.
[15] and from Tavakoli et al. [14]. (b) Same as (a) with an offset in temperature added in
equation (20), ∆Tc = 2.46◦.

2.3 Comparison with existing experiments

2.3.1 Critical velocity and its relationship to spreading arrest condition

First, let us remark that our model gives a criterion for the existence of a steady
dynamics for an advancing quadruple line, which is based on a temperature-dependent
critical advancing velocity. This is to be related to recent experiments by de Ruiter
et al. [15] and Herbaut et al. [17].

In Figures 4 and 5, we inserted data points from different experiments of previous
studies, to be compared with the results of the model. Let us first comment on how
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Fig. 6. Mesoscopic cut-off length b versus the critical temperature ∆T ∗(U∗), with U∗ being
the critical velocity obtained from de Ruiter et al. [15] and Herbaut et al. [17]. The value

for the prefactor is ζ = 7.053 10−6 m.K− 3
2 .

these data were obtained. The critical velocity U∗ was extracted from experiments
of a single drop spreading on a cold substrate [15], and of a liquid bridge driven on
a cold substrate put on a translation stage at constant velocity [17]. In both cases,
U∗(∆T ) corresponds to the limit velocity below which the liquid on a substrate at
Tp = Tf −∆T stops spreading and gets its contact-line pinned. In [17], it corresponds
to the occurrence of a stick-slip dynamics. In our model, it may correspond to the
limit of the steady advancing dynamics given by the temperature-dependent critical
velocity.

Quantitatively, experiments showed a power-law dependence of U∗ = c∆Tχ, with
the exponent χ = 1 in de Ruiter et al. [15] and χ ' 2.65 in Herbaut et al. [17]. Let
us remark that this discrepancy in the values of exponents was attributed to the
morphological differences of the solid front: isotropic in de Ruiter et al. [15] and den-
dritic in Herbaut et al. [17] (see also [30]). Furthermore, the two experimental studies
were carried out under different conditions of wettability. Our model rather predicts
χ = 3

5 , see equation (19). Though, a common point between these studies is that the
criterion for pinning and unsteady dynamics, is based on a critical temperature in
the vicinity of the triple – or here quadruple – line, and that this criterion comes
from the phenomenon of kinetic undercooling [15,17].

Still, for the realistic values taken for b, our model captures a good order of
magnitude for the critical velocity. In order for the model to be more quantitatively
predictive, and inspired by the approach of Schiaffino and Sonin [16], one has to
choose b as being temperature-dependent. Figures 4a and 4b indeed suggest such a
dependence, i.e. that b should decrease with ∆T in order to get a better agreement
between experiments and theory. Hence, we plotted the value of b obtained for the
best fit of our model with two series of experimental data of U∗ versus ∆T ∗ with
hexadecane from de Ruiter et al. and Herbaut et al. [15,17]. The plot in Figure 6
shows that the value of b decreases with ∆T and is roughly compatible with a power-
law of exponent −3/2. Still, in the absence of direct measurements of b, we are unable
to comment further.
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Let us now reconsider the physical meaning of this critical velocity U∗, calculated
from the minimal value of θL versus U (see Fig. 3). In experiments, a steady situation
is observed when U > U∗, so that the solid/liquid front remains at some distance from
the contact-line. Hence, the situation of a quadruple line shown in Figure 3 can be
envisioned in two peculiar situations:

– the spreading of a liquid at an advancing velocity U slightly larger than U∗,
so that the solid front remains at very short distance, of the order of a few
molecular lengths, to the triple line. This situation prevents the solid front to
catch the contact line, which would lead to an additional pinning force and to
a dynamics of stick-slip [17]. As U & U∗, the front advances faster than the
spreading and the dynamics turns unsteady. In this sense, our model describes
a situation at the limit of pinning, in analogy with the limit of sliding in solid
friction [28,29];

– the spreading of a liquid on its own previously formed solid, on a cold sub-
strate, enabling the growth of the solid-liquid front together with - and toward
a direction normal to - the liquid spreading. To the best of our knowledge, this
situation was investigated experimentally only in [13].

We come back to an initial assumption that the radius of curvature of the solid
front remains smaller than the value of b, which allowed to apply the usual equations
of hydrodynamics of wetting on a straight solid. According to equation (15), an
order of magnitude for the radius of curvature of the solid-front is obtained from a

simple derivation: rc ' 2r3/2
(
ρLU
κ∆T

)1/2

. As our assumption is rc > b, we evaluate the

ratio rc
b for r = b, and we find rc

b ' 2
(
bρLU
κ∆T

)1/2

. With the experimental values of

hexadecane, and the values of b giving the best fit for corresponding ∆T and U , we
find: rcb ' 4 for ∆T = 10◦ (taking b = 0.25 µm) and rc

b ' 9 for ∆T = 2◦ (taking b =
3 µm), see Figure 4. Therefore, our assumption can be considered as roughly valid,
and the corrections due to solid curvature should be negligible, although a more
detailed calculation should take these second-order terms into account. In any cases,
the curvature of the front is far too weak to induce a shift in the freezing temperature
via the so-called Gibbs-Thomson effect.

2.3.2 Critical angle and the offset in ∆T

Figure 5 shows that the model, namely equation (20), provides qualitative agreement
with existing experiments, namely those of Tavakoli et al. [14] and of de Ruiter et al.
[15]. Those from Herbaut et al. were excluded because they were obtained in different
conditions of wetting, namely with a surface treatment which achieved partial wetting
conditions with hexadecane and pentadecane.

Still, experimental data points seem to show an offset in temperature, roughly
equal to ∆Tc = 2.46◦, below which the angle of arrest was not measurable. This
offset does not appear in Herbaut et al.’s experiments, which are conducted in a
permanent regime and where a solid front always exists within the liquid bridge [17].
Figure 5b indeed shows a better agreement between the model and experiments.
Indeed, it could be possible that for low ∆T the stability of supercooled liquid is
sufficiently high to allow a characteristic time of nucleation larger than for experiment
of single drop unsteady spreading (unsteady states) [14,15] but not in steadily driven
liquid bridges [17]. In both cases, the agreement with experiments is improved if b is
made temperature-dependent.
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3 Conclusion: limitations and prospectives

A model of quadruple line advancing at steady velocity U , which combines hydro-
dynamic lubrication with solidification in a weakly curved wedge, and calculated
between microscopic and mesoscopic cut-off lengths, offers a fair qualitative agree-
ment with experiments of advancing solidifying contact-lines, concerning the pre-
diction of a condition for arrest (pinning). In practice, this can be related to the
transition between continuous and stick-slip dynamics occurring under a temperature-
dependent threshold velocity. Analytical solutions of the models predict power-laws
relating arrest angle θa with undercooling ∆T , as well as for the critical velocity U∗

with ∆T .
However, the model predictions are questionnable in two points:

– the exponents are different from those deduced from drop spreading experi-
ments. Still, when one allows an adjustable parameter, the cut-off length b,
to become temperature-dependent - a possibility emphasized in Schiaffino and
Sonin’s theoretical approach, the agreement between θa, U∗ and ∆T becomes
quantitatively better. The physical significance of these cut-off length values
and their dependence on ∆T , although falling within a range of values which
are physical sound, remains unexplained;

– an offset (or threshold) value for the undercooling ∆T has to be introduced
in order to fit correctly experimental data of the critical angle of arrest. This
threshold, of relatively small magnitude, could be explained by a slight super-
cooling effect, which prevents the appearance of solidification germs close to
the melting point. Indeed, such an offset does not appear when one reaches a
permanent regime of spreading with constant driving velocity [17], as a solid
phase continuously exists nearby the contact-line.

Despite these limitations, our model predicts a criterion for pinning based on a
critical spreading velocity, which is temperature dependent. The geometry of quadru-
ple line also suggests possible experiments mimicking this situation as, for instance,
the spreading of a liquid drop on its own solid. We hope this will motivate further
studies in the field.
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