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Key Points:9

• Characteristic double-branch signatures in the electron Velocity Distribution10

Function (VDF) are observed simultaneously with a whistler wave.11

• The wave, applied to test-particles, produces signatures in the VDF through12

Landau and cyclotron resonances.13

• This resonant wave-particle interaction cannot be diagnosed in the Magneto-14

spheric MultiScale (MMS) observations through the dissipative E · J term.15
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Abstract16

Simultaneous observation of characteristic 3-dimensional (3D) signatures in the elec-17

tron velocity distribution function (VDF) and intense quasi-monochromatic waves by18

the Magnetospheric Multiscale (MMS) spacecraft in the terrestrial magnetosheath are19

investigated. The intense wave packets are characterised and modeled analytically as20

quasi-parallel circularly-polarized whistler waves and applied to a test-particle sim-21

ulation in view of gaining insight into the signature of the wave-particle resonances22

in velocity space. Both the Landau and the cyclotron resonances were evidenced in23

the test-particle simulations. The location and general shape of the test-particle signa-24

tures do account for the observations, but the finer details, such as the symmetry of the25

observed signatures are not matched, indicating either the limits of the test-particle26

approach, or a more fundamental physical mechanism not yet grasped. Finally, it is27

shown that the energisation of the electrons in this precise resonance case cannot be28

diagnosed using the moments of the distribution function, as done with the classical29

E.J “dissipation” estimate.30

1 Introduction31

Resonant wave-particle interactions are one of the few mechanisms in collisionless32

plasmas that enable a net transfer of energy from oscillating electromagnetic fields to33

moving charged particles. They play a fundamental role in various regions of the near-34

Earth plasma environment, such as the bowshock, the radiation belts, the polar cusp35

or the magneto-tail (Mazelle et al., 2000; Grison et al., 2005; Thorne, 2010; Fujimoto36

et al., 2011; Krasnoselskikh et al., 2013). In (fully developed) plasma turbulence,37

wave-particle interactions are also thought to play a leading role in dissipating energy38

as the turbulent cascade proceeds from large (fluid) to small (kinetic) scales (Bruno39

& Carbone, 2013; Sahraoui et al., 2020). In the solar wind (and to some extent40

the magnetosheath), the most debated dissipation processes are the Landau damping41

(Landau, 1946; Howes et al., 2008; Schekochihin et al., 2009; Gary & Smith, 2009;42

Sahraoui et al., 2010; Podesta et al., 2010; Sulem & Passot, 2015; Kobayashi et al.,43

2017), cyclotron damping (Leamon et al., 1998; Kasper et al., 2008; Cranmer, 2014; He44

et al., 2015) and stochastic heating (Chandran et al., 2010), which all would involve45

different spatial or temporal scales. Often magnetic reconnection is also evoked as46

a potential dissipation process in localized current sheets that self-consistently form47

in turbulence plasmas (Matthaeus et al., 1984; Retinò et al., 2007; Sundkvist et al.,48

2007; Chasapis et al., 2015). However, even within such localized coherent structures,49

Landau damping is shown to be very effective in numerical simulations of collisionless50

magnetic reconnection (TenBarge & Howes, 2013; F. et al., 2013; Numata & Loureiro,51

2015).52

Despite their role in energy dissipation, a direct diagnosis of wave-particle res-53

onances in numerical simulations and in-situ data remains elusive. The difficulty to54

approach these processes stems from the need to measure simultaneously the 7D VDF55

(3 spatial dimensions, 3 velocity dimensions, and time) with high temporal and veloc-56

ity space resolutions to access the kinetic scales, and the 4D structure of the electric57

and magnetic fields. While the latter could have been achieved at the magnetohydro-58

dynamic (MHD) and ion scales using the Cluster data and appropriate data analysis59

techniques (Sahraoui et al., 2006; Narita et al., 2010; Sahraoui et al., 2010), the former60

became possible only in recent years thanks to the MMS mission (Burch et al., 2016).61

MMS indeed provides us with the highest ever achieved resolution of the particle VDFs,62

both in time and velocity space (Pollock et al., 2016). Furthermore, thanks to its small63

inter-spacecraft separations (∼ 10 km) MMS allows us to probe in 3D kinetic spatial64

scales of the fluctuations fields. On the other hand, the increasing computer capabil-65

ities allows achieving Vlasov simulations with high-enough phase space resolution to66

unravel the complex nature of the kinetic dissipation in turbulent collisionless plasmas67

(Cerri et al., 2018). The present article is part of the ongoing efforts in this direction.68
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A few observational approaches on signatures of such mechanisms were previously69

proposed, and here we focus on studies manipulating 3-dimensional VDFs. Kitamura70

et al. (2018) reported the unambiguous observation of wave-ion resonances leading71

to particle acceleration, associated with an ion cyclotron wave, in the Earth mag-72

netosphere, displaying clear agyrotropic signatures (phase bunching) and their time73

evolution. In the work of Gershman et al. (2017), at the magnetopause, the energy74

exchange between electrons and kinetic Alfvén waves was studied in terms of the dis-75

sipative E.J term, and trapped electrons were found in the wave minima. In the76

radiation belts, Min et al. (2014) proposed empirical indications for Landau resonance77

signatures in the electron VDFs, as local minima in their velocity derivatives close to78

the parallel resonant velocity, in the presence of Chorus waves. He et al. (2015) and79

Marsch and Bourouaine (2011) show indications in the solar wind of resonances in the80

proton VDFs, composed of a diffused, anisotropic core and secondary beam, which81

were linked to kinetic waves. In the Earth magnetosheath and using a field-particle82

correlation technique, Chen et al. (2019) presented structures in the fluctuating elec-83

tron VDF close to the electron therrmal speed, which the authors linked to electron84

Landau damping.85

The method followed in the present study is similar to the approach of Kitamura86

et al. (2018) and Gershman et al. (2017), in that we first identify a neat electromagnetic87

wave, as intense and monochromatic as possible, study its potential effect on particle88

Velocity Distribution Functions (VDF), and then compare the expected signatures89

with the VDF observed outside and inside the region where the wave is observed. This90

approach enables an unequivocal, 3-dimensional comparison of resonant signatures in91

the VDF between observations and the simulation.92

The wave studied in this work is a high-frequency quasi-parallel whistler mode,93

ubiquitous in both magnetospheric and the solar wind plasmas (Tao et al., 2012;94

Lacombe et al., 2014; Stansby et al., 2016). Electrons are therefore the species of95

interest, and the frequencies of both the wave and the electron motion (gyration)96

are much higher than the fastest particle instruments operating in space, though in97

the reach of wave sensors. Anisotropies in the electron distribution functions are98

fundamental for the generation of whistler waves, as shown in various contexts such as99

the solar wind (Tong et al., 2019), magnetic reconnection regions (Huang et al., 2016;100

Yoo et al., 2018, 2019), or mirror mode magnetic holes or other coherent structures in101

the magnetosheath (Huang et al., 2017; Ahmadi et al., 2018). Verscharen et al. (2019),102

Vocks et al. (2005) and Seough et al. (2015) have explored the theoretical link between103

whistler waves and solar wind electrons, in either the formation or the scattering104

of strahl and halo electrons. In their numerical approach, Hsieh and Omura (2017)105

show how oblique whistler mode chorus in the magnetosphere can lead to electron106

acceleration up to a few MeV, via Landau, cyclotron, and higher order resonances.107

To go beyond the 1-dimensional description of wave-particle resonances, in which108

a resonance is reduced to its associated (scalar) parallel speed, we explore the possi-109

bilities offered by a test-particle approach for a more comprehensive description of110

the mechanism and a direct comparison with the observations. This approach also111

presents the great advantage of isolating the effect of the wave on the particles, with112

no feedback allowed. A succinct view on particle energisation is also proposed, in order113

to appreciate whether the energy gained by the resonant particles can be quantified in114

observations.115

2 Particle data analysis116

The particle data used in this study were recorded by the Fast Plasma Inves-117

tigation (FPI) of the Magnetospheric Multiscale (MMS) mission (Burch et al., 2016;118

Pollock et al., 2016). We work in a reference frame in which the average plasma flow119

velocity u(t) = meue(t)+miui(t)
me+mi

is zero, and the local magnetic field B0 – averaged over120
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each 30 ms FPI measurement – is aligned with the z-direction. We define a spherical121

grid-of-interest in this reference frame, of arbitrary extent and resolution. For each FPI122

measurement of the VDF, this grid-of-interest is rotated and shifted to the instrument123

reference frame (cf. Appendix A) using the measured background magnetic field B0124

and flow velocity, as well as the probe motion. The VDF is then interpolated at each125

node of the transformed grid, using a tricubic interpolation scheme, documented and126

tested in Appendix B. The use of a spherical grid allows us to represent an averaged127

VDF in the (v⊥, v‖)-plane without the need of a binning process, which is a source128

of systematic artifacts when working with multidimensional data. These aspects are129

illustrated in Appendix A. In Figure 1, the left-hand polar plot shows the result for 10130

time-averaged VDFs, with the parallel velocity given along the vertical axis. A regular131

spherical grid-of-interest of 200x200x200 nodes was used with a maximum extent of132

1.5 · 107 m/s. To further ease the reading of the plots, a filled-contour representation133

is used.134

Our goal is to study how the shape of the VDF may be affected by the presence135

of a wave. We wish to go further than the reduced description of the VDF given136

by its first order moments, namely its number density, its number flux density (∼137

bulk velocity) and its momentum flux density tensor (∼ temperature in the thermal138

equilibrium case). For this purpose, we need a process that enhances potential patterns139

which might be “hidden” by the order zero distribution, or background distribution140

(not necessarily Gaussian/Maxwellian). In the example used in Figure 1, the VDF141

stretches over more than 6 orders of magnitude in the covered velocity space. The142

most obvious, order-0 shape found in the raw, original VDF is a centered, somewhat143

isotropic peak. A closer look may reveal obvious departure from the isotropy, with144

noticeably straight isocontours for parallel velocities around 0 m/s. We want a process145

which highlights these characteristics.146

In a numerical context, such a background, or equilibrium distribution f0 is147

usually subtracted from f(t), with the similar goal of enhancing higher order features148

(in such a case, the departure from f0). It is often defined as the initial VDF f(t =149

0), and sometimes as the time averaged distribution < f(t) >. But the resulting150

fluctuating distribution δf(t) = f(t) − f0 might not be a valid concept when dealing151

with observations, as the background, order-0 distribution itself is generally varying152

– slightly or significantly – during the time interval of interest. In other words, as153

the plasma flows and the spacecraft moves, we never probe plasmas with the same154

parameters, which may be the case in a controlled simulation box. Using such a f0155

with observations results in significant patterns in velocity space, which should be156

avoided for studying instantaneous, fine details of the VDF.157

With this motivation, we propose two different treatments of the VDF which do158

not rely on any other information than the instantaneous distribution itself. These two159

treatments provide two complementary views of the VDF, with different advantages160

and drawbacks discussed in the following sections. The first treatment is a scaling,161

during which we consider each energy level of the spherical grid-of-interest separately.162

For each of these spherical shells, the minimum value of the interpolated VDF is set to163

0 and the maximum value set to 1. Values are then averaged over the gyro-angle (angle164

around the background magnetic field). This scaling is closely related to classical pitch-165

angle distributions, in which the VDF is shown for a few selected energy ranges, with166

the color-plot dynamics ranging from the lowest to the highest distribution value of167

each energy range (see also Appendix B). In the proposed scaling, we virtually display168

200 concentric, time-averaged pitch-angle distributions. In the next section, we will169

use a scaled pitch-angle distribution, by selecting only one limited energy range of the170

scaled VDF and plotting it over time (Figure 5).171

In the second treatment, each VDF values is normalized to a reference value,172

which we choose to be the VDF value at the same energy for v‖ = 0 (i.e., a pitch-173
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Figure 1. An example of an original VDF to the left, integrated over 300 ms, its scaled view

in the middle, and its normalized view to the right.

angle of 90◦). All these central (equatorial) values are therefore set to one, appearing174

in white tones, while higher values appear as red tones and lower values as blue. A175

decimal logarithm is applied to the normalized values when plotted.176

These two treatments do not have a physical motivation, they are only arbitrarily177

chosen to highlight VDF features.178

In Figure 1, the effect of the scaling on the original distribution is remarkable,179

with two parallel branches of values larger than 0.5 (i.e. red tones) stretching at180

constant parallel velocities. Properly speaking, these two structures are thick disks in181

the 3-dimensional velocity space. Another structure is found along the anti-parallel182

direction, a strahl-like structure greatly highlighted in comparison with the original183

VDF. The circular features of constant speed are unavoidable artifacts of this scaling,184

in which all energy levels are treated regardless of the others: the continuity of the185

VDF across energy is lost, and some energy shells are scaled differently compared186

to the neighbouring shells, resulting in circular visual artifacts. The normalization187

we introduced here-above was applied on the original VDF, in order to conserve this188

continuity across energy, for a complementary representation given in the right-most189

plot of Figure 1. The circular artifacts vanished from the two branches – or disks – of190

higher density, which are now reaching to even higher perpendicular velocities. In this191

view, the strahl-like component is perceived as broader than in the scaled VDF. The192

normalization puts different weights on details compared to the scaling, and though193

being much less sharp, it appears in this case to be more sensitive to details at high194

velocities.195

We now have a comprehensive and constraining way of examining an instanta-196

neous VDF, with two different views of it. The 0-to-1 scaling and the normalization197

have different properties, already illustrated above and further appreciated in the fol-198

lowing test-particle approach, which makes them a great tool for comparing numerical199

and observational results. These two methods are easy to implement and come with200

barely any computational cost. Together with the interpolation approach, they may201
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Figure 2. (a)-(b) B-field and E-field power density spectrograms. The electron gyrofrequency

is indicated by the solid lines (fce and 0.4 fce). (c) Filtered E- and B-field wave forms. (d) Origi-

nal B-field Power Density Spectra and its Butterworth filtered copy.

offer interesting applications for characterising the multi-dimensional VDF in other202

heliophysics and planetary physics contexts.203

3 Wave analysis and theoretical linear model204

In order to study wave-particle resonances in observational data, we have isolated205

one case displaying a clear wave activity within an otherwise “quiet” magnetosheath206

environment. Captured on the 8th of March 2019, the 3 minute-long interval starting207

at 13:56:10 displays contrasted, strong wave packets seen in the power density spec-208

trograms of Figure 2 (a-b). The central frequency of these packets is about 250 Hz,209

getting slightly higher on the second half of the observation. It is comprised between210

0.3 and 0.5 electron gyrofrequency fce.211

We focus on the central event of constant frequency, selected in Figure 2 (a-b).212

The fields components are band-pass filtered using a Butterworth filter. The result is213

displayed in Figure 2 (d). The reference frame is aligned with the background magnetic214

field B0 averaged over the duration of the selected interval. We find that the parallel215

component of both fields is significantly smaller than the perpendicular components,216
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however not null. In this frequency range, magnetic fluctuations up to 0.5 nT are217

observed around an average background magnetic field 25 nT strong (Figure 2 (c)).218

The electric field fluctuations are seen sometimes surpassing 1 mV/m.219

We zoom-in once more to study a single wave packet, highlighted with a grey220

background in the time series of Figure 2 (c) and expanded in Figure 3. The back-221

ground magnetic field B0 is now calculated over this shorter period. The fields compo-222

nents exhibit remarkably clean sinusoids within the envelope defining the packet. The223

two perpendicular (x and y) components of both fields are almost equal in magnitude224

and separated in time by a phase of π/2, corresponding to an almost perfect right-225

handed circular polarisation. The polarisation is also nicely seen in the hodogram of226

Figure 3, given in the local minimum variance reference frame (the frame in which the227

variance along an axis – here the z-axis – of the vector time series is the smallest, 65228

times smaller than the two other variances, almost equal to each other).229

Whereas the four perpendicular components are defined by a similar envelope230

in the fields E and B, the parallel (blue) component, also sinusoidal, follows a dif-231

ferent time variation in E and B, and has a slightly higher frequency compared to232

perpendicular components, in both fields (not shown). Given its right-handed circular233

polarisation and its non-zero parallel component, we identify the wave as a quasi-234

parallel whistler mode wave. Studying the same mode, Lacombe et al. (2014) and235

Stansby et al. (2016) report its observations in a range from 0.1 to 0.6 gyro-frequency,236

a range in which the present case falls perfectly. Because of the wave right-handed237

circular polarity and its frequency, electrons are the species of interest for this study.238

We use the following dispersion relation of the whistler mode, derived from the239

Appleton-Hartree relation (Hsieh & Omura, 2017) in the limit of ω � ωpe, valid in240

our case with ω < 10−2ωpe:241

Y =
X2

X2 + 1
cos(θ) (1)

with the normalized spatial frequency X = k · de, the normalized angular fre-242

quency Y = ω/ωce, k the amplitude of the wave vector, ω the wave angular frequency,243

de the electron inertial length, ωpe the electron plasma frequency, ωce the electron244

(angular) gyrofrequency, and θ the angle between the background magnetic field and245

the wave vector.246

Because of apparent monochromatic nature of the observed waveforms, we can247

determine the wave vector angle θ with regard to the magnetic field using a minimum248

variance analysis over a sliding window as wide as the wave temporal period. In other249

words, we consider one pseudo-circle at a time, described by the wave vector, and find250

the orientation of the plane containing this circle. The result of this sliding minimum251

variance analysis is shown in the fourth row of Figure 3 for the magnetic field. We find252

that the wave is propagating with angles between 0 and 20 degrees from the background253

magnetic field. Finally, to determine if this quasi-parallel wave is propagating along or254

against the background magnetic field, we calculated the components of the Poynting255

vector E×B , which is parallel to the wave vector (see for instance the comprehensive256

work of Stansby et al. (2016) on single-spacecraft estimation of whistler mode wave257

properties). The Poynting vector S (Figure 3 third row) is mostly parallel to the258

background magnetic field, as evidenced by its largest and positive parallel component:259

the wave propagates in a mostly parallel direction. We now have the frequency and the260

wave vector direction of the wave, and an estimation of the wave vector amplitude.261

It was also verified that the probe velocity in the plasma frame (in which u = 0,262

see Section 2) is not significant with regard to the phase speed of the wave, and the263

observed wave frequency found in the spectrograms is not Doppler affected.264
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data point of the series is indicated by a cross.
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Despite how clean the observed waves are, they are still limited to one point265

in space. If we are to study the possible resonant interactions between the particles266

and this precise type of wave, we need its temporal and spatial description, or model.267

Hsieh and Omura (2017) developed an analytical expression for the components of a268

quasi-parallel whistler mode wave, based on the electric field linear system proposed by269

Stix (1962) and obeying the Faraday’s law. With the k-vector lying in the (x, z)-plane,270

the wave fields are given by the authors as271

Bw = exB
w
x cos(Ψ) + eyB

w
y sin(Ψ)− ezB

w
z cos(Ψ)

Ew = exE
w
x sin(Ψ)− eyE

w
y cos(Ψ) + ezE

w
z sin(Ψ)

Ψ = ωt− kxx− kzz
(2)

Following Hsieh and Omura (2017) in the limit ω � ωpe, we get the following272

polarizations273

As = Y +
Y 2 − 1

cos(θ)− Y
; Ap =

sin(θ) cos(θ)

sin2(θ)− 1 + cos(θ)/Y
(3)

Finally, the wave fields components are expressed as274

Bw
y = As(1−Ap tan(θ))Bw

x ; Bw
z = tan(θ)Bw

x ,

Ew
x = Asvp‖B

w
x ; Ew

y = vp‖B
w
x ; Ew

x = AsApvp‖B
w
x ,

Bw
x =

Bw√
cos2(Ψ) +A2

s(1−Ap tan(θ))2 sin2(Ψ) + tan2(θ) cos2(Ψ)
,

(4)

with the parallel phase speed vp‖ = ω/k‖ .275

The observed and modeled wave and plasma parameters for the packet shown in276

Figure 3 are gathered in Table 1. Using these parameters, we have estimated the wave277

vector amplitude using Equation 1, also given in the same table. We can now obtain278

the fully analytical, temporal and spatial model of the wave, using Equation 4. We279

note that no information about the electric field is fed to the analytical model, this280

field is thus completely constrained by the model.281

The result for a fixed point in space is given in the lower-right panels of Figure282

2 over a few wave periods. The analytical model results in a slightly higher Ew/Bw283

ratio, but provides satisfactory wave forms and Poynting vector form and amplitude,284

additionally obeying Maxwell’s equations. We can now use this model to investigate285

resonant wave-particle interactions.286

4 Resonant test-particles vs. observed VDF287

We will now examine the potential effect of the modeled wave on the electron288

dynamics, and see whether or not signatures in the electron VDF can be found. Before289

considering simulating the situation with a self-consistent model (fields and particles290

feedback on each other according to Maxwell’s equations), we explore the possibilities291

offered by a test-particle approach. The fields and waves are analytically described292

with constant frequency and wave-vector through time: there is no feedback from293

the particles on the fields. Thus, the presence of other particles, or the shape of the294

distribution, does not affect a single particle dynamics, which can be solved on its295

own. This allows for a very cheap, flexible first study of the resonant dynamics in the296

case of our simplified wave. A considerable advantage is that by doing so, we isolate297
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Observed modeled

B0 25.4 nT 25.4 nT
ne 16.3 cm−3 16.3 cm−3

Bw [0.2, 0.7] nT 0.5 nT
Ew [0.5, 1.4] mV/m 1.5 mV/m

ω (ω/ωce) 1571 rad/s (0.35) 1571 rad/s (0.35)
k (k · de) ∅ (∅) 5.9 · 10−4 rad/m (0.77)

θ [0◦, 20◦] 20◦

T‖ 45 eV 45 eV
T⊥ 41 eV 45 eV
βe 0.46 ∅

Table 1. Wave parameters for the observation and the model, and additional plasma parame-

ters.

the effects of the wave on the particles, and not the other way around, which is not298

directly possible in a self-consistent description.299

In the absence of collisions and gravity, and using the analytical wave discussed in300

the previous section, we know the force experienced by a particle at any time and any301

position. The particles dynamics are solved according to this force using the classical302

Boris scheme (Boris, 1970), widely used by the Particle-In-Cell community because of303

its straightforward implementation and its great accuracy for this precise problem –304

charged particles moving in electromagnetic fields. We initialise 200 million particles305

following a 3-dimensional isotropic non-drifting Maxwellian distribution, characterised306

by the observed electron (parallel) temperature of 45 eV. These particles are homoge-307

neously distributed in physical space, in a 2-dimensional periodic box, extending over308

one projected wavelength (parallel for one axis, perpendicular for the other). Results309

are given for a simulation time of 25 ms, corresponding to a bit more than 6 wave310

periods and about 15 electron gyrations.311

The Landau resonance is obtained for particles with a parallel velocity close312

to the wave parallel phase speed: seen from these particles’ perspective, the parallel313

component of the wave is almost static, and continuously accelerates them. This gives314

us a first resonant speed, vLandau = ω/k‖. Because of their angle from the background315

magnetic field, the observed and modeled waves have a projected parallel component,316

which therefore enables this resonance. Particles with a parallel speed slightly slower317

than the parallel phase speed are being caught up by the wave and gain kinetic energy,318

whereas faster particles experience the opposite phenomenon. These resonant particles319

migrate in phase space, with a motion dependent on their initial phase space position.320

The wave we consider here has a dependence along the perpendicular direction: as321

a particle gyrates, its perpendicular position evolves, and so does the magnetic and322

electric wave components it experiences. A deeper, 3-dimensional description of these323

resonant motions, depending on v‖ and v⊥ is beyond the scope of this article, despite324

its great interest. These dynamics quickly result in a mixing of the particles in phase325

space around the parallel Landau speed. It is noteworthy that if one initialises the326

simulation with a flat velocity distribution (i.e. no density gradient in velocity space),327

no signature of this mixing can be found in velocity space. A density signature is indeed328

only visible if the resonant speed corresponds to high VDF gradients, which happens329

to be the case here. Very quickly, in just 6 wave periods, the resonant particles form an330

under/over-density centered on the Landau resonant speed, as seen in the scaled and331

normalized VDF of Figure 4 (the Landau resonant speed is displayed by the dashed332

horizontal line).333
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Figure 4. Test-particle results (top) compared to the observation (bottom), for an integration

time of 60 ms. The Landau parallel resonant velocity is given by the horizontal dashed line and

the cyclotron one by the solid lines.
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The cyclotron resonance is only met in the presence of a circularly polarised wave.334

Particles with different parallel speeds experience a wave with a different frequency, a335

simple Doppler effect dependent on the particles velocity. For one particular parallel336

speed, given by vCyclo = (ω − ωce)/k‖, with ωce the electron gyrofrequency, the wave337

is seen with an angular frequency equal to the electron (angular) gyrofrequency: the338

particles gyrate synchronously with the rotation of the circularly polarised Bw and339

Ew. Note that because ω < ωce, this resonant speed is negative (if k‖ > 0): resonant340

particles are moving against the wave, which in turn significantly decreases the time341

during which they may interact with the wave. As discussed in the Landau case, such342

particles are continuously accelerated by the wave, and migrate in phase space, in343

an even more complex manner. The mixing of a high density gradient region again344

results in an under/over-density organised around the cyclotron speed given by the345

solid line in Figure 4, with a sign opposite to the one of the Landau resonant speed.346

The over-density is found for lower parallel speeds but higher perpendicular speeds,347

corresponding to higher total speed for these particles.348

The lower row of Figure 4 gives a comparison to the VDF observed during the349

same wave packet. We use only two FPI observations, corresponding to an integration350

time of 60 ms. There as well, two over-densities are found just above the two resonant351

speeds, at the same location as for the test-particles. The scaled view of the test-352

particle VDF exhibits two strong, perfectly circular artefacts, which were discussed353

in the first section. The normalized view, conserving the continuity along the radial354

dimension, does not display such structures. An additional feature is also found along355

the anti-parallel direction. We will see in the next section that this beam does not356

correlate with the presence of the wave. The thermal parallel speed is indicated in357

the observed distributions. The speed is the same as the central speed of the over-358

densities: the resonant mixing of particles indeed happens where the VDF velocity359

gradient ∂f/∂v‖ is high, which could lead to an efficient damping of the wave. We360

note however that the relevance of this thermal speed is limited, when considering the361

large departures of the observed VDF from a Maxwellian distribution.362

The over densities are observed around similar absolute parallel velocities, despite363

the absolute value of the resonant parallel velocities being clearly different: the over-364

densities tend to be fairly symmetric with regard to the (v‖ = 0)-plane. Note that this365

fact holds for the plasma and wave parameters analysed here. If the position of the two366

over-densities are matching nicely between the test-particles and the observed VDF,367

strong discrepancies in the shape of these signatures exist and are discussed below.368

5 VDF time evolution369

To verify if this double branch signature indeed correlates with the presence of370

the wave over longer time scales, we show In Figure 5 (c-d) two additional electron371

VDFs integrated over a longer time of ten FPI measurements, corresponding to an372

integration time of 300 ms. In both cases, a strahl-like (beam) component is found373

along the anti-parallel direction, with a constant perpendicular width. In the absence374

of wave activity (last VDFs), we find a clearly anisotropic distribution, with a strong375

equatorial signature in the scaled view.376

When analysed during the maximum power of the wave activity, the VDF dis-377

plays the double-branch signature. It was checked that during the entire time interval,378

no significant (i.e. higher than the measurement noise) agyrotropy are to be found.379

Ions (not shown here) present a similarly anisotropic distribution, virtually static over380

the time interval.381

Figure 5 (b) gives a view on the temporal evolution of the scaled VDF and its382

double-branch feature. For this representation, each 30 ms scaled VDF was averaged383

over a limited speed range between 5.8 and 6.3 106 m/s (indicated on the scaled view384

in panel (c)), and the result was plotted in the time t and pitch-angle Θ dimensions in385
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Figure 5. (a) B-field power density spectrogram. (b) scaled pitch-angle distribution for a

speed range indicated in (c). (c)-(d) time-integrated VDFs and their scaled view, with the inte-

gration time indicated on the time series.

panel (b). Note that scaled pitch-angle distributions and classical pitch-angle distribu-386

tions qualitatively converge as the energy range decreases. In this energy range, scaled387

values above 0.5 (red tones) form a striking feature centered on 90 degrees. When the388

waves are observed in the magnetic field spectrogram (panel (a)), the feature splits into389

two branches, corresponding to the double-branch pattern observed in velocity space.390

We note that such a pitch-angle distribution looks very similar to electron distribu-391

tions in mirror modes, explored by Breuillard et al. (2018), where the envelope of the392

pitch-angle distribution is shown to correlate with a critical pitch-angle, under which393

electrons get trapped in one mirror structure. We note, however, that in our case, the394

signature is ordered by (constant) parallel velocities, and not constant pitch-angles395

when all the energy range is considered.396

6 Particle energisation397

We can follow the energisation of the test-particles either by summing up the398

total kinetic energy of all particles, or simply by taking the center of mass of their399
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parallel and perpendicular. Time is given in unit of wave period Twave.

distribution (order 1 moment) and expressing it as a current density, with one parallel400

and one perpendicular component. The total kinetic energy and the two components401

of the current density are given in Figure 6. We find that with the physical parameters402

of our problem, the maximum energisation happens very fast, in about 2 wave periods,403

or 5 gyroperiods. Therefore, the wave packets are sufficiently long to exchange energy404

with the particles. After about 5 wave periods, the overall energy gained by the test-405

particles, as well as the parallel current density, stabilise to a non-zero value. The406

test-particle approximation does not hold anymore, as this current would necessarily407

alter the electric and magnetic fields, which would act to decrease it back to zero.408

For this reason, it is likely that this estimated current for the present resonant wave-409

particle interaction is an upper bound for the self-consistent interaction. Barely any410

perpendicular current is found, indicating that the VDF remains gyrotropic at all411

times. The fact that the total kinetic energy of all particles and their parallel current412

have almost the same time evolution illustrates that these resonant interactions mostly413

result in an increase of the bulk velocity and only some of the energy is transformed414

into “temperature”, or change of the pressure tensor.415

A crucial point is indicated by this time evolution and verified in the time evolu-416

tion of the simulated VDF (not shown) is that the resonant signatures are not periodic:417

they remain at the same position (in velocity space) with the same over/under densi-418

ties through time. This is a necessary condition for it to be observed by an instrument419

with an integration time longer than the wave period.420

In Figure 7, the observed electron current density (parallel and perpendicular)421

are displayed, together with the cropped spectrogram of the magnetic field. The422

parallel current is varying around 0, and no correlation with the wave activity can be423

found. Despite the strength and duration of the wave packets, the background current424

density turns out to be significantly larger than the estimated (upper bound) current425

rising from the resonant particle signatures. Alternative moments were also calculated426

ignoring the core of the distribution (using different speed threshold), showing barely427

any changes in the electron current. In turn, the dissipative term E · Je, using an428

electric field averaged over the electron integration time, shows no correlation with the429

wave activity.430

7 Discussion & Conclusions431

We have first shown that VDF features originally hidden under high gradients432

of the background VDF can be highlighted using some scaling and normalization,433
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without the use of a reference VDF f0. We then isolated a strong, fairly narrow-434

band, quasi-parallel whistler mode wave, which could be analytically mimicked. We435

applied this analytical wave to a collection of test-particles to get a first sense of its436

potential effects on the electrons. We could map where and how particles resonate,437

and have found that the initial Maxwellian distribution is reshaped by Landau and438

cyclotron resonances. Test-particles and observed VDFs display two branches of higher439

density, around constant parallel velocities, in the scaled and normalized views of the440

VDF. The observed signatures were found to correlate nicely with the wave activity.441

Finally, this wave-particle interaction could not be detected in the observed current442

or the observed E.Je product, as both E and Je (observed) present fluctuations of443

larger amplitude than the current and electric field used by or resulting from the444

model. Strong discrepancies between the simulation and the observations remain to445

be discussed.446

Firstly, the strongest discrepancy between the observed VDF and the simulated447

one is the strong symmetry of the observed signatures around the (v‖ = 0)-plane,448

further illustrated by the time evolution of the scaled pitch-angle distribution in Figure449

5. As such, it is difficult to prove that the Landau resonance, providing an already faint450

signature in the perfect test-particle set-up, may cause a resonant branch as strong as451

the observation, and so symmetric to the cyclotron branch. It actually appears as if452

a mirrored cyclotron branch shows up systematically with the wave activity, despite453

our wave analysis only bringing out one single mode, propagating in one well defined454

direction. Such symmetric signatures have been displayed in the works of Min et al.455

(2014) (in the magnetosphere) and Chen et al. (2019) (in a nominal, or fully developed456

turbulence case), in which the authors did not isolate one single mode, and interpret457

the symmetric signatures as caused by waves propagating in both directions, parallel458

and anti-parallel. This symmetry remains the foremost open question of our study.459

Secondly, the test-particle model cannot account for the transformation from the460

already strongly anisotropic VDF out of the wave activity (shown in panel (d) of Figure461
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5) to the 2-branch signature. The disturbance of the VDF caused by resonances in the462

test-particle case is a local phenomenon in velocity space, it certainly cannot reshape463

macroscopically the distribution, make a large amount of the electron population mi-464

grate over large velocities. Were we able to easily initialise the particles according465

to the observed VDF outside the wave activity, the strong equatorial structure would466

remain there, with additional resonant signature expressed on the sides. While the467

test-particle simulation enlighten us on the micro-physics of the interaction during a468

very brief snapshot of the observations (when an intense wave activity is observed),469

the macroscopic configuration of the fields (magnetic gradients, mirrors, etc) should470

be considered to fully understand the time evolution of the electron VDF.471

The limitations of the test-particle simulation are numerous, if one is to thor-472

oughly compare its results and the observations. Instead, we suggest that this approach473

only points at the very first step of the full self-consistent wave-particle interaction.474

It shows us where and how in velocity space resonances should occur for a given a475

monochromatic wave, and gives a first hint on their phase density signatures. Most476

importantly, it also gives us a good sense of how fast these resonances can produce477

signatures in the VDF, and their efficiency. But it obviously cannot go further in the478

physics of the interaction, both an advantage and a drawback.479

This numerical approach is limited to the case of a purely monochromatic wave480

with a constant amplitude and a constant normal angle, whereas the observed wave481

packets exhibit some spectral breadth, a parallel component at a slightly higher central482

frequency, and additionally a propagation direction constantly evolving. Because of the483

periodic boundaries necessary for the simple test-particle approach, such a wave cannot484

be easily modeled. We refer to the work of Tao et al. (2012), in which the authors485

specifically highlighted the effect of the amplitude modulation of chorus emissions486

in the magnetosphere, on particle acceleration. They, however, do not reconstruct487

distribution functions, and can therefore do without the periodicity constraint.488

The feedback of the particles on the wave is a different problem entirely, in terms489

of numerics at least. Thus the comparison should not be over-interpreted. We have490

shown that the observed wave is expected to have clear signatures on the electron491

distribution function, signatures matching well in position and somewhat in shape the492

observed signatures.493

494

The visualisations (scaling and normalization) developed for this study are a key495

element for a better, deeper characterisation of the particles distributions. It is in the496

numerical aspect of our work that these views reveal best the effect on the distribution,497

getting us rid of the need for an additional information (e.g. distributions at other498

times). They show great flexibility and versatility, which may be useful for other499

applications on observations and simulation data, and mostly their comparisons.500

Such an exploration of wave-particle resonances in 3 dimensions, and its direct501

comparison to observations, is – to the best of our knowledge – novel. It familiarises502

us with resonant dynamics and signatures, at a low cost and without the intrinsic503

complexity a self-consistent model adds to physical interpretations. This approach504

may present real promises for a more systematic recognition of resonant signatures in505

a more complex data, such as those of fully developed turbulence in the solar wind or506

the magnetosheath507
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Appendix A Binning versus interpolating514

In various publication, when handling multidimensional Velocity Distribution515

Functions (VDF), authors choose the somewhat more intuitive of rotating the data516

from the instrument frame to the frame of interest, to then bin the data within a517

defined grid, as illustrated in Figure A1 in the first row. During this process, one518

measurement point ends up in one single cell of the grid-of-interest, and one cell of the519

grid-of-interest may receive zero one, or many measurements. Empty cells will appear520

on the representation, producing visual artifacts, and it is necessary to average the521

binned data over at least one dimension in order to fill as much as possible the grid-522

of-interest. We give such an example in a cylindrical representation of the VDF, right-523

most plot of the first row of Figure A1, which shows about thirty electron distributions524
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binned in a 2-dimensional grid defined, in the classical (v‖, v⊥)-plane. The binned525

data show strong artifact along the energy dimension, as the instrument energy levels526

are log-distributed: the higher the energy, or speed, the greater the energy steps.527

Therefore one regular Cartesian grid cannot be suitable for the entire energy range of528

the instrument: its resolution will be too coarse at low energies – where weighting of529

the binned data has to be taken into account properly – and too fine for high energies,530

leaving empty most of the grid-of-interest. The binning approach can only be used over531

a restricted range of energies, and is anyway not suitable for 3-dimensional analyses.532

The interpolation approach is illustrated in the second row of Figure A1. First,533

we define a 3-dimensional grid-of-interest – an array/set of coordinates – within the534

reference frame of our choice, with arbitrary extent and resolution. We apply the535

opposite rotation, shift, and scaling to a copy of the grid-of-interest, from the reference536

frame to the instrument frame, as illustrated in Figure A1. The values of the data537

are then interpolated at each node of the transformed grid (see next section): the538

data are continuously evaluated over the entire grid, leaving no room for artifacts, and539

avoiding additional weighing operation. All the results in the article use a spherical540

grid-of-interest, allowing at no additional cost the scaling and normalization of the541

VDF, and their straightforward representation in the (v‖, v⊥)-plane.542

But interpolation with an order higher than 2 presents complications, and this543

approach is not universal and cannot be applied blindly.544

Appendix B Interpolating velocity space distributions545

We have tested three different interpolation schemes, namely nearest-neighbour546

(order 0, only one point of the measured VDF is used), trilinear (order 1, 8 data points547

are used), and tricubic (order 2, 64 data points are used). The two first schemes are548

taken from the main scientific python library, SciPy, while the third was implemented549

by (Lekien & Marsden, 2005), with one wrapper made available by the authors for a550

usage with Python.551

We now have a 3-dimensional array of interpolated VDF values, with two different552

sets of coordinates, one in the instrument frame (used for the interpolation), one in553

the reference frame of the study (the originally defined Grid-of-Interest). This array554

can be either analysed and visualised on its own, or added up to other arrays in order555

to average the data over a longer duration, all within the same frame. For instance,556

Figure B1 presents results using only one single electron VDF, which is the most557

challenging test for the methods, because of low detection rates for higher energies.558

This method has one invaluable interest: any resolution can be used without any559

of the risks inherent to a binning process, illustrated in Figure A1. Another great560

advantage when using a Cartesian grid-of-interest is that velocity derivatives of the561

data can be easily and straightforwardly computed. The advantage of using a spherical562

or cylindrical grid-of-interest was already illustrated. The method has one drawback,563

namely the computational cost. The interpolation in itself is more computationally564

demanding than a simple binning, and for most purposes we will have many more565

elements in the grid-of-interest than in the instrument grid, resulting in as many more566

calculations to compute.567

In Figure B1, a single electron distribution is used to illustrate the differences568

between the three interpolation schemes, using three different visualisations. In the569

first row, we give the profile (1-dimensional) of the interpolated values along the paral-570

lel direction. For this representation and in order to increase slightly the statistics, all571

values within an angular distance from the parallel axis (+B) are selected and aver-572

aged, using a conic selection π/6-wide. For this purpose, a spherical grid-of-interest is573

a better choice, allowing one to simply average the interpolated data over one angular574

dimension, avoiding a binning process.575
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The energy/speed levels of the instrument are also indicated as vertical lines,576

regularly spaced in this logarithmic representation. For this analysis, we only rotated577

the frame, without a shift, so the energy levels of the instruments remain centered on578

the origin of the Grid-of-Interest, making the results more readable.579

Another representation is proposed on the second row of Figure B1, in which580

we selected a specific speed range, averaged the data over this range, resulting in the581

given angular maps (2-dimensional). Here as well, using a spherical Grid-of-Interest582

makes this selection straightforward, selecting only one radial range in the array, again583

avoiding a binning process. The parallel axis is vertical and intersects these maps at584

their poles, and the equator correspond to a pitch angle of 90 degrees.585

In the parallel 1-dimensional profiles previously described, the nearest-neighbour586

interpolation results in steps centered around the instrument energy levels, as expected587

from such a scheme. This curve is reported in the two other VDF profiles for the588

trilinear and tricubic cases, in order to verify that all three interpolations indeed589

meet at the instrument speed levels, an important convergence test. These steps in590

the nearest-neighbour case directly correspond to the “pixels” found in the left-most591

angular map. This is the way particle data are often displayed, implying that within an592

instrument “pixel”, the observed flux is constant. This assumption is also widely used593

when integrating the plasma moments, which simply corresponds to a Riemann sum594

of the area under a function. The instrument poles are misaligned with the magnetic595

field direction, and can be seen close to the equator, 180 degrees apart, with triangular596

pixels meeting in one point.597

The trilinear interpolation provides a smoother, more continuous profile. Think-598

ing in one dimension, between two measurement points, interpolated values will follow599

a linear relationship. In this logarithmic representation, these linear segments show600

up as arc segments in-between each instrument energy/speed level. This is obviously601

an unwanted visual artifact, generated by the choice of the representation. Just as the602

1-dimensional profile, the angular map shows a smoother result than in the nearest-603

neighbour case. In the same way that the nearest-neighbour can be linked to a Riemann604

sum, this linear interpolation converge to a trapezoidal rule in terms of VDF integral.605

Finally, the tricubic interpolation provides the smoothest and most continuous606

curve for speeds up to 7000 km/s, for which the VDF is relatively high. At higher607

energies, strong artifacts are found, with oscillations between the last instrument speed608

levels. Two phenomena can account for this behaviour. The first could be the Runge’s609

phenomenon, namely oscillations at the edges of the interpolation interval when using610

polynomials of high degree (higher than two). We note however that we only use a611

third degree polynomial interpolation, which should limit this phenomenon, and these612

oscillations are only visually found for low fluxes, high speeds. The second phenomenon613

occurs when the VDF contains zero values. But most of all, this interpolation scheme,614

as derived and implemented by Lekien and Marsden (2005), can result in negative615

VDF values. This nonphysical result should be monitored, so these negative values616

remain small and insignificant for the analysis we want to perform.617

Remark : these interpolations and their unavoidable artifacts and drawbacks are618

not well suited for all purposes. For instance, the tricubic interpolation is valid only619

for strong signals, high VDF values, and should anyway be used with great caution,620

so these artifacts are not interpreted as physical features.621

As a first test, we have already verified that the three schemes converge at the622

instrument speed levels. A second important test is to make sure that the three623

interpolations do not show artifacts at the instrument poles. Indeed, the trilinear and624

tricubic schemes we use assume that the data are defined over a grid with cuboid625

elements: evenly spaced along each dimension, with possibly different spacings along626

each dimension. The poles of the instrument spherical grid should therefore present627

errors, as the array elements there strongly depart from cuboids. To test the overall628

error from each scheme, we have defined artificial, ideal instrument measurements,629
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namely a drifting1 Maxwellian distribution. This way, we also know the real value of630

the distribution at the nodes of the rotated, shifted, scaled grid-of-interest, and can631

compare these analytical values to the interpolated ones. It allows us to creates error632

maps, presented in Figure B2. The first row shows one chosen Cartesian cut through633

the error distribution, while the second row gives one angular cut, or angular map. The634

nearest-neighbour interpolation results in the largest errors, just as expected from the635

steps seen in the 1-dimensional profiles of Figure B1: the interpolation is alternately636

much smaller and much larger than the real analytical value of the distribution. These637

errors can largely surpass the 50 percent level, because of the steepness of the VDF.638

Since the Maxwellian distribution is convex for high energies/speed, the error given by639

the linear interpolation is positive-only for high speed values, as seen in the first row,640

middle panel. At these higher speeds, the error can reach up to 50 percent, whereas at641

lower speed values – of greater interest for us – the error becomes arbitrarily low. The642

tricubic interpolation shows the smallest error in this plane with mostly positive values.643

We note a slightly stronger error-ring at the lowest speeds covered by the instrument,644

which we link to the Runge’s phenomenon. At the high VDF values usually observed645

at these energies, this error may become significant for some purposes, though it has646

not been found to be the case for our analyses.647

The instrument poles are not intersected by this plane, but we expect to find the648

greater error there. They however show up in any angular map, as seen in the second649

row of Figure B2. The poles still have the same position as previously, and can be650

easily spotted in each interpolation error map. The worst qualitative result is obtained651

for the tricubic interpolation, with relatively strong errors localised at the instrument652

poles, though the absolute error remains low (a few percents) and indeed extremely653

localised. We conclude that for our purpose, the three schemes are sound, resulting in654

acceptable errors where the observed VDF values are high, i.e. for speeds lower than655

104 m/s.656

1 The drift is important for the significance of the test, as it misaligns the center of the artificial distri-

bution, and the center of the instrument grid, testing the errors over all three dimensions.
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Figure B3. Moments tests.

As a third test, we have verified that the electron density, resulting from integrat-657

ing the interpolated values using a simple Riemann integral, calculated for the three658

interpolations, matches the density provided by the instrument team. Their densi-659

ties are also the plasma moment of order 0, but directly integrated in the instrument660

spherical coordinate system. The result is shown in the first row of Figure B3, and661

one can find that the four curves are barely distinguishable.662
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