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INTEGRITY BASES FOR CUBIC NONLINEAR MAGNETOSTRICTION

J. TAURINES, M. OLIVE, R. DESMORAT, O. HUBERT, AND B. KOLEV

Abstract. A so-called smart material is a material that is the seat of one or more multiphysical
coupling. One of the key points in the development of the constitutive laws of these materials, either
at the local or at the global scale, is to formulate a free energy density (or enthalpy) from vectors,
tensors, at a given order and for a class of given symmetry, depending on the symmetry classes
of the crystal constituting the material or the symmetry of the representative volume element.
This article takes as a support of study the stress and magnetization couple (σσσ, mmm) involved in
the phenomena of magnetoelastic coupling in a cubic symmetry medium. Several studies indeed
show a non-monotonic sensitivity of the magnetic susceptibility and magnetostriction of certain soft
magnetic materials under stress. Modeling such a phenomenon requires the introduction of a second
order stress term in the Gibbs free energy density. A polynomial formulation in the two variables
stress and magnetization is preferred over a tensorial formulation. For a given material symmetry
class, this allows to express more easily the free energy density at any bi-degree in σσσ and mmm (i.e. at
any constitutive tensors order for the so-called tensorial formulation). A rigorous and systematic
method is essential to obtain the high-degree magneto-mechanical coupling terms and to build a free
energy density function at any order which is invariant by the action of the cubic (octahedral) group.
For that aim, theoretical and computer tools in Invariant Theory, that allow for the mathematical
description of cubic nonlinear magneto-elasticity, are introduced. Minimal integrity bases of the
invariant algebra for the pair (mmm,σσσ), under the proper (orientation-preserving) and the full cubic
groups, are then proposed. The minimal integrity basis for the proper cubic group is constituted
of 60 invariants, while the minimal integrity basis for the full cubic group (the one of interest for
magneto-elasticity) is made up of 30 invariants. These invariants are formulated in a (coordinate
free) intrinsic manner, using a generalized cross product to write some of them. The counting
of independent invariants of a given multi-degree in (mmm,σσσ) is performed. It is shown accordingly
that it is possible to list without error all the material parameters useful for the description of
the coupled magnetoelastic behavior from the integrity basis. The technique is applied to derive
general expressions Ψ⋆(σσσ,mmm) of the free energy density at the magnetic domains scale exhibiting
cubic symmetry. The classic results for an isotropic medium are recovered.

Introduction

A so-called smart material is a material which has one or more properties making them adaptive
and/or evolutive, and which can be modified in a controlled manner by mechanical stresses, tem-
perature, humidity, pH, electric or magnetic field. This includes magnetostrictive materials [18],
classical or magnetic shape memory alloys [40], piezoelectric materials [62], multi-ferroic media [9],
etc. Some of them are at the functioning basis of sensors or actuators, others are used for en-
ergy production or harvesting, and their properties are often intrinsic, resulting from a so-called
multiphysic coupling expressed through a constitutive law [15].

The study of electro-magneto-mechanical coupling phenomena is thus of growing interest in the
recent years, in particular given the development of computing capacities and the optimization
perspectives that their taking into account allows to glimpse. Indeed, the response of a magnetic or
dielectric material, if it is at first order function of the magnetic field or the electric field, also depends
very strongly on the applied stresses [16, 15]. These coupling effects can sometimes constitute an
issue (they are for example responsible for part of the vibrations of rotating machines or the noise
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emitted by electrical transformers [41]), they can also be exploited to serve as a basis for the design
of innovative devices for energy conversion, health control of structures or actuators [54], and even
for the design of new materials (often composites) [46].

The construction of constitutive laws often calls for the writing of a free energy (or enthalpy)
density whose derivative with respect to state variables produces the associated variables [38]. The
electro-magneto-mechanical coupled terms in the expression of free energy thus most often involve
isotropic invariant forms combining vectors or pseudo-vectors1 (electric field, magnetic field) and
second-order symmetric tensors (strain tensor for example). Furthermore, ferromagnetic or ferro-
electric materials are often polycrystals, each crystal exhibiting a certain degree of symmetry and
the assembly of which can lead to more or less strong symmetries than the symmetry observed at
the local scale. On the other hand, a decomposition of the microstructure in domains (magnetic
or ferroelectric) can be considered [31, 15]. Given the complexity of the materials, macroscopic ap-
proaches have long been key for the numerical simulation of the coupled behavior of these materials.
Multiscale approaches, using specific localization and homogenization rules, have developed thanks
to the general reduction in computation time, and because they often allow the observed experi-
mental behaviors to be more accurately represented [16, 15, 32] without requiring full field approach
(micromagnetism, phase field) that still remain highly time-consuming. In these approaches, the
behavior is described at a scale where most of the fields can be considered as homogeneous but
where the material cannot be considered as isotropic.

One of the key points in the development of constitutive laws at the local or global scale is
therefore to formulate a free energy (or enthalpy) density from vectors, tensors, at a given order
and for a given symmetry class, depending on the symmetry classes of the crystal constituting
the material or the symmetry of the representative volume element, of course avoiding to forget
terms in the operation. This article deals with the way in which it is possible to list without error
all the invariants and thus all the material parameters useful for the description of the coupled
behavior, involving one second-order symmetric tensor (e.g. the stress tensor σσσ), and a vector or a
pseudo-vector (e.g. the magnetization mmm).

We will therefore need a minimal integrity basis of the invariant algebra for pair (mmm,σσσ) under
a certain group G (that can be shown to be a subgroup of O(3) even if magnetic point groups
are in fact involved [37, 5, 55, 35, 63], see section 2). Many works concern the determination of
such bases for matrices and (pseudo-)vectors. As we will focus on cubic symmetry we will rely on
the work of Smith, Smith and Rivlin [59] for the crystal symmetry classes. Making use of modern
computational means, our work will be to check (and correct) these authors results for the proper
cubic (octahedral) group G = O

+ ⊂ SO(3) and for the full cubic group G = O. One achievement of
the present paper is an intrinsic (frame independent) writing of the corresponding cubic integrity
bases. To the best of our knowledge this point was not addressed in the literature. We give an
exact evaluation of the number of terms / of material parameters to be considered in a cubic free
energy (or enthalpy) density for non-linear magneto-elasticity.

Outline. We present in the next section a recent example of introduction of a second order stress
term in the Gibbs free energy density of a magnetic domain within a cubic crystal, and conclude
in the limitations of such a constitutive tensor based approach. This example highlights the re-
quirement for a rigorous and systematic method to obtain the high degree magneto-mechanical
coupling terms. We then introduce theoretical and computational tools (section 2) that allow for
the mathematical description of cubic nonlinear magneto-elasticity. The subsection 2.4 is especially
dedicated to the construction of a minimal integrity basis for the cubic groups O+ and O, allowing
for the closed form calculation of any magnetization/stress degree terms in Gibbs free energy. We

1The magnetic field, magnetic induction or magnetization are pseudo-vectors, which means that an improper
orthogonal transformation g (det g = −1) acts on them as (det g)g vvv = −g vvv (while g acts on a vector as g vvv).
Distinguishing between vectors and pseudo-vectors is important when considering material symmetries, because a
symmetry plane transforms, for instance, a direct basis into an indirect one.
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turn back to cubic magneto-elasticity applications in section 3, dealing with modeling at the do-
main scale. Finally, three appendices Appendix A, Appendix B and Appendix C have been added
to gather the technical details required to prove the two main theorems 2.10 and 2.8.

Preamble. In this paper all the energy quantities are energy densities (J/m3). Considering thermo-
magneto-mechanics, the arguments of the internal energy density u are the following thermodynam-
ics variables: the entropy density s, the magnetic induction bbb and the (small) strain ǫǫǫ. The intro-
duction of (Helmholtz) free energy density Ψ = u− Ts, by standard Legendre transform, allows for
the energy density to be defined as a function of the absolute temperature T instead of the entropy
density. The magnetic free enthalpy k = Ψ− hhh · bbb (Legendre transform on magnetic dual variables
(hhh,bbb)) allows for the energy density to be defined as a function of the magnetic field hhh instead of
the magnetic induction. The Gibbs free energy (or free enthalpy) density g = k − σσσ : ǫǫǫ (Legendre
transform on mechanical dual variables (σσσ,ǫǫǫ)) allows for the energy to be defined as a function of
the stress σσσ instead of the strain. On the other hand, due to the decomposition bbb = µ0(hhh +mmm)
(where µ0 is the vacuum magnetic permeability), a common simplification is to consider only ma-
terial contributions to the energy variation and not magnetic field contributions. The free energy
density Ψ⋆(σσσ,mmm) will be defined as a function of magnetization and stress, i.e. considered at a given
(reference) temperature.

1. Magneto-elastic coupling modeling: state of the art and objectives

The magneto-elastic coupling results in the existence of a deformation of magnetic origin: the
magnetostriction strain

ǫǫǫµ = ǫǫǫ− ǫǫǫe,

where ǫǫǫ and ǫǫǫe rely to total and elastic strains respectively, and a combined effect of the mechanical
stress σσσ on the magnetic behavior2.

The modeling of these phenomena has been the subject of numerous works at different scales [7,
11, 22, 28, 2, 13, 16]. The multiscale approaches have known recent developments [17, 18, 32]. For
some of them, the magnetic domains volume fraction is calculated from the Gibbs free energy den-
sity in each domain by a stochastic approach. A magnetic domain (Weiss domain) can be defined
as a material volume inside a ferromagnetic material (they are however present in ferrimagnetic
and antiferromagnetic materials) where the magnetization is uniform in direction and magnitude,
equal to the saturation magnetization considered as a material constant at the room temperature
[31]. At the demagnetized state, the matter is divided in numerous magnetic domains whose orga-
nization leads to an null average magnetization. Magnetic domains inside a grain are separated by
domain walls (Bloch walls) where the magnetization rotates from one direction to another usually
associated with the crystallographic axes. Their thickness is usually negligible comparing to the
other dimensions of the domain. Figure 1 illustrates the domains organization at the surface of
a Fe-27%Co polycrystalline alloy. This picture has been obtained using a Kerr effect set-up [52].
Each domain defines its own magnetization but also its own deformation by spin-orbit coupling
mechanism at the atomic scale [22]. It can be considered as a uniform free deformation over the
domain.

We here focus on existing modeling at the magnetic domain scale in which the local magnetization
mmm —defining the macroscopic magnetization MMM = 〈mmm〉 by spatial averaging— has a constant norm,
equal to the saturation magnetization ms. The equality

mmm = ms γγγ, ‖γγγ‖ = 1, (1.1)

2A different approach consists in considering the magnetostriction strain as the effect of a combination of volume
forces and torques following the work of Eringen and Maugin in the Seventies [24]. In this description magnetostriction
strain is an elastic strain function of magnetic and electric quantities at the very local (atomic) scale. This model is
not retained for the description of the magnetostriction strain in this paper. It is defined as a free strain dependent
on material constants as dilatation coefficients for a thermal strain.
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100 µm

Figure 1. Illustration of the magnetic domains structure at the surface of a Fe-
27%Co polycrystal [52] - Kerr microscopy.

defines then the magnetization direction vector γγγ.
In a first approximation, the magnetostriction is often considered as a stress independent free

strain ǫǫǫµ, quadratic in magnetization [11, 22] (linear terms in mmm are forbidden by the invariance of
the underlying microscopic systems under time reversal [37, 5, 23]). The corresponding magneto-
elastic free energy density Ψ⋆µσ(mmm,σσσ), defined at the magnetic domain scale, is:

Ψ⋆µσ(mmm,σσσ) = −σσσ : EEE : (mmm⊗mmm) = −σσσ : ǫǫǫµ (1.2)

The magnetostriction strain is obtained as the derivative, with respect to the stress, of the magneto-
elastic density:

ǫǫǫµ = −
∂Ψ⋆µσ

∂σσσ
= EEE : (mmm⊗mmm). (1.3)

m2
s EEE is the fourth-order magnetostriction tensor (Eijkl = Ejikl = Eijlk), function of three independent

material parameters in the cubic symmetry case. This number reduces to two constants (the
so-called magnetostriction constants λ100 and λ111 [7]) when further incompressibility condition
tr ǫǫǫµ = 0 is considered.

It is moreover observed that for some different iron-based ferromagnetic materials (such as iron-
silicon, iron-cobalt, steels) the mechanical stress has a non-monotonic effect on the magnetic be-
havior: such a non-monotony is characterized by a sudden decrease of the initial (macroscopic)
magnetic susceptibility with increasing stress. This point is illustrated in Figure 2 for Fe-27%Co
polycrystal.

It has been shown in [32] that a magneto-elastic term as defined by equation (1.2) is unable to
describe such a non-monotony effect. This observation suggests the presence of magneto-elastic
coupling terms of degree larger than 1 in σσσ, as Mason [42] did suppose.

The definition (1.2) of the magneto-elastic free energy density corresponds indeed to a first order
Taylor expansion in σσσ. A second order development in stress has been considered in [32], representing
the so-called morphic effect [22]. Its practical implementation involved the identification of the

3The microstructure of this material is presented in Figure 1.
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Figure 2. (a) Anhysteretic magnetic behavior (magnetization M as function of
applied magnetic field H in the direction of applied field) and (b) initial anhys-
teretic susceptibility χ0 (= ∂M/∂H|H=0) of a Fe-27%Co polycrystal3 subjected to
increasing uniaxial stress levels applied along the magnetic field direction [34].

components of a sixth-order tensor E (m2
s E being the morphic tensor), replacing expression (1.2)

by

Ψ⋆µσ(mmm,σσσ) = −σσσ : EEE : (mmm⊗mmm)−
1

2
σσσ : (σσσ : E : (mmm⊗mmm)) (1.4)

with then

ǫǫǫµ = −
∂Ψ⋆µσ

∂σσσ
= EEE : (mmm⊗mmm) + σσσ : E : (mmm⊗mmm)

A sixth-order constitutive tensor in the Euclidian space introduces 36 (=729) material parameters.
This number can be strongly reduced using the index symmetries of the stress and orientation tensors
and grand symmetries (namely Eijklmn = Ejiklmn = Eijlkmn = Eijklnm and Eijklmn = Eklijmn).

A further reduction can be achieved by taking into account the crystal symmetry of the material
(using Curie principle [12]). This work has been performed by Mason [42] for cubic symmetry and
by Kraus [36] for isotropy. The methods employed for these reductions lead however to some issues,
not strictly limited to magneto-elasticity (nonlinear piezo-electricity is also concerned):

• It is quite difficult to ascertain the exact number of independent material constants (i.e.
independent components of the morphic tensor);

• When several physics are involved, as for the magneto-elastic free energy density Ψ⋆µσ(mmm,σσσ),
it cannot be guaranteed that some (joined) invariants are not forgotten when the degrees of
the truncated Taylor expansions are increased;

• Related to previous point, the determination of closed form expressions for free energy
densities involving high order tensors is often tricky: using constitutive tensors of order
higher than 6 becomes almost impossible by this technique;

• The same remark applies if a material exhibits lower symmetry (such as orthotropy or as
monoclinic symmetry).

In the following, we focus our efforts on the determination of the relevant invariants for cubic
symmetry of a pair (mmm,σσσ) withmmm either a vector or a pseudo-vector and σσσ a second-order symmetric
tensor. The general mathematical framework allowing for the correct writing of constitutive models
involving material symmetries is known as Invariant Theory [61, 19] and corresponds to the study
of tensors subjected to group actions. If this theory goes back to the nineteenth century, the
exponential complexity of the calculations (illustrated in Appendix B) explains that applications
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are limited. This barrier has now been lifted thanks to current computing power (see for instance [3,
8, 48, 49, 39] for recent computations in this field).

2. Mathematical modeling of cubic constitutive laws involving a vector and a

second-order tensor

2.1. Cubic symmetry, decomposition and projectors. The symmetry group of a material is
the subgroup G of isometries leaving its crystal lattice invariant. According to the Curie princi-
ple [12], constitutive laws inherit material symmetries. In particular, when these laws can be de-
scribed by an energy density, this function is invariant by the material symmetry group G. Isotropy
as a possible symmetry of the model corresponds to invariance of the energy density by the full
group of orthogonal transformations O(3). Hemitropy (see Zheng and Boehler in [64]), as another
possibility, corresponds to invariance under the subgroup SO(3) of O(3), of orientation-preserving
orthogonal transformations (i.e. rotations).

In this paper, the free energy density Ψ⋆ is a function of magnetization mmm and stress σσσ and we
focus on cubic symmetry which is described by the octahedral (or cubic) group O, defined as

O = {g ∈ O(3); geeei = ±eeej} ,

where (eeei) is the canonical orthonormal basis of R3. The cubic group O is composed of 48 elements:
24 rotations, which form a sub-group of O denoted by O

+, and 24 orientation-reversing isometries.
A cubic invariant free energy density is thus a function Ψ⋆ of mmm and σσσ so that

Ψ⋆(g ⋆mmm, g ⋆ σσσ) = Ψ⋆(mmm,σσσ), ∀g ∈ O, (2.1)

where the action of g on magnetization and stress writes

g ⋆mmm = (det g) gmmm, and g ⋆ σσσ = gσσσgt. (2.2)

when mmm is a pseudo-vector, and

g ⋆mmm = gmmm, and g ⋆ σσσ = gσσσgt. (2.3)

when mmm is a vector.
The pair (mmm,σσσ) spans the vector space V = R

3⊕ S
2(R3), where S2(R3) is the space of symmetric

second-order tensors. This vector space V can be furthermore split into irreducible components,
i.e. stable subspaces that contains no other stable subspaces other than themselves or the trivial
subspace {0}. Concerning the action of the cubic group O on V , the stable subspace R3 (associated
to mmm) is itself irreducible but the stable subspace S

2(R3) (associated to σσσ) is made up of three
irreducible subspaces (see [44, 25]). The first one is one-dimensional and spanned by (trσσσ)1. The
second one is two-dimensional and consists of diagonal deviators σσσd. Finally, the third one is three-

dimensional and consists of symmetric deviators with vanishing diagonal σσσd. These tensors are
defined respectively in the canonical basis (eee1, eee2, eee3), as follows:

σσσd =





σ′

11 0 0
0 σ′

22 0
0 0 σ′

33



 , σσσd =





0 σ12 σ13
σ12 0 σ23
σ13 σ23 0



 , (2.4)

where σ′

ij = σij −
1
3σkk δij . The decomposition of σσσ into O-irreducible components (see [4]) writes

σσσ = σσσd + σσσd +
1

3
(trσσσ)1, (2.5)

where

σσσ′ = σσσ −
1

3
(trσσσ)1 = σσσd + σσσd,

is the usual deviatoric part of σσσ. Note that the decomposition of σσσ into its three irreducible
components is orthogonal (with respect to the canonical scalar product on S

2(R3)). Let Pd
O

and
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Pd
O
denote the orthogonal projectors of σσσ onto its irreducible components σσσd and σσσd respectively.

We have thus

σσσd := Pd
O : σσσ and σσσd := Pd

O : σσσ. (2.6)

where [51, 26],

Pd
O :=

1

2

∑

i<j

eij ⊗ eij , eij := eeei ⊗ eeej + eeej ⊗ eeei (i 6= j),

and

Pd
O := J−Pd

O, J = I−
1

3
1⊗ 1,

where I is the fourth-order identity tensor, with components Iijkl =
1
2(δikδjl + δilδjk), and J the

fourth-order deviatoric projector. However, the cubic material is not necessarily oriented along the
directions of the canonical cubic basis (eeei). As a consequence the axes of the underlying cube are
not necessarily the eeei (the symmetry group is a conjugate gOg−1 of canonical group O for some

g ∈ SO(3)) and the cubic projectors Pd
O
and Pd

O
have to be replaced by the projectors

Pd = g ⋆Pd
O, Pd = g ⋆Pd

O. (2.7)

In terms of components, this writes

(Pd)ijkl = gipgjqgkrgls(P
d
O)pqrs and (Pd)ijkl = gipgjqgkrgls(P

d
O)pqrs.

Remark 2.1. When the stiffness tensor C (or its inverse, the compliance tensor S) of a cubic material
is known in an arbitrary orthonormal basis, associated with group gOg−1, one can obtain the cubic

projectors Pd and Pd without computing the rotation g. This task can be done thanks to Kelvin’s

spectral decomposition of the matrix representation S
2(S2(R2)) of S, Pd and Pd being then the so-

called Kelvin’s projectors [51, 26, 21]. This can also be done thanks to its harmonic decomposition
[43].

Remark 2.2. The decomposition into O-irreducible components also applies to the second-order
magnetostriction strain. It writes

ǫǫǫµ = ǫǫǫµd + ǫǫǫµd +
1

3
λv1,

{

ǫǫǫµd = Pd : ǫǫǫµ

ǫǫǫµd = Pd : ǫǫǫµ
,

which details as

ǫǫǫµ =
3

2m2
s

(

λ100(mmm⊗mmm)d + λ111(mmm⊗mmm)d
)

+
1

3m2
s

λv tr(mmm⊗mmm)1,

where

(mmm⊗mmm)d = Pd : (mmm⊗mmm), (mmm⊗mmm)d = Pd : (mmm⊗mmm),

λ100, λ111 are the magnetostriction constants (they are elongations measured along the < 100 >
and < 111 > crystallographic directions during a magnetic loading of a perfect demagnetized single
crystal) and λv is the so-called volume magnetostriction. In the canonical cubic basis (eeei), one has

Pd = Pd
O
and Pd = Pd

O
, so that the usual expression [11, 22, 33]

ǫǫǫµ =
3

2





λ100(γ
2
1 −

1
3) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ
2
2 −

1
3) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ
2
3 −

1
3 )



+
1

3
λv1,

is recovered. Note that the volume magnetostriction λv is negligible for most metallic ferromagnetic
materials (for which tr ǫǫǫµ ≈ 0).
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2.2. Polynomial invariants and minimal integrity basis. In practice, it is more useful to study
polynomial invariant functions by a group G, rather than just arbitrary invariant functions since
algorithms are known to compute them. This is not a limitation if the energy density is a smooth
function as it can be expanded to a given order into polynomials which inherit its symmetry. Real
polynomial functions defined on a vector space V form an algebra, denoted by R[V ] (the sum and
the product of polynomial functions are polynomial functions). Given a linear action of a group G
on V , the polynomial functions on V which are invariant by G is a subalgebra of R[V ] (the sum and
the product of invariant polynomial functions are still invariant polynomial functions), denoted by
R[V ]G and called the invariant algebra of V under G.

It is a fundamental result of invariant theory that, when the group G is finite (like O) or compact
(like O(3) or SO(3)), the invariant algebra is generated by a finite number of invariant polynomi-
als [30, 61]. This means that each G-invariant polynomial function can be rewritten as a polynomial
function of these generators. Such a generating set is sometimes called an integrity basis. A gener-
ating set is called minimal if no proper subset of it is a generating set. It is always possible to find a
minimal integrity basis made of homogeneous polynomials. A minimal homogeneous integrity basis
is not unique but its cardinal and degrees of generators are uniquely defined.

Remark 2.3. An homogeneous polynomial invariant is called reducible if it can be written as the
product of two (non constant) homogeneous polynomial invariants, or more generally as a sum
of products of two (non constant) homogeneous polynomial invariants. Otherwise, it is called
irreducible. A minimal integrity basis contains only irreducible invariants.

Example 2.4. A minimal integrity basis of R[V ]O(3), where V = R
3 ⊕ S

2(R3) is provided by

‖mmm‖2 , trσσσ, trσσσ′ 2, trσσσ′ 3, mmm · σσσ′mmm, mmm · σσσ′ 2mmm.

Example 2.5. A minimal integrity basis of R[V ]SO(3), where V = R
3 ⊕ S

2(R3) is provided by

‖mmm‖2 , trσσσ, trσσσ′ 2, trσσσ′ 3, mmm · σσσ′mmm, mmm · σσσ′ 2mmm, det(mmm,σσσ′mmm,σσσ′ 2mmm).

The decomposition (2.5) of (mmm,σσσ) into its irreducible components (mmm,σσσd,σσσd, trσσσ) under the
action of the cubic group O allows to recast any polynomial function of (mmm,σσσ) as a polynomial

function of its components (mmm,σσσd,σσσd, trσσσ). The invariance of the free energy density by the cubic
group O, writes

Ψ⋆(g ⋆mmm, g ⋆ σσσd, g ⋆ σσσd, g ⋆ trσσσ) = Ψ⋆(mmm,σσσd,σσσd, trσσσ), ∀g ∈ O. (2.8)

Remark 2.6. Since trσσσ is an invariant, each invariant polynomial of (mmm,σσσd,σσσd, trσσσ) which contains
trσσσ, but not reduced to trσσσ (up to a constant multiplicative factor), is reducible according to
remark 2.3. Since a minimal integrity basis contains only irreducible invariants, a minimal integrity
basis of R[V ]O is made of trσσσ together with a minimal integrity basis of the invariant algebra of

R[V ′]O, where V ′ is the vector space spanned by (mmm,σσσd,σσσd).

2.3. Counting the number of independent multi-homogeneous invariants. A very useful
tool in invariant theory is the Hilbert series [61, section 2.2] (see also [6, Spencer, p. 181–184],
[45] and [56, 57, 60]). Indeed any polynomial invariant can be decomposed uniquely as a sum of
homogeneous polynomial invariants. In other words, the invariant algebra R[V ]G can be written as
the direct sum

R[V ]G =

∞
⊕

n=0

R[V ]Gn ,

where R[V ]Gn is the finite dimensional vector space of homogeneous polynomial invariants of degree
n. This makes the invariant algebra a graded algebra (by the total degree). The Hilbert series
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encodes the dimension an = dimR[V ]Gn of the different finite dimensional vector spaces R[V ]Gn and
is defined as

Hρ(z) =
∑

n

an z
n, with an = dimR[V ]Gn .

Thus, each coefficient an is the number of linearly independent homogeneous invariants of degree
n. The remarkable fact is that the Hilbert series can be computed a priori, using the Molien-Weyl
formula for finite groups [61, Theorem 2.2.1 p.29]

Hρ(z) =
1

|G|

∑

g∈G

1

det(I − zρ(g))
, (2.9)

where ρ(g) is the linear mapping on V defined by

ρ(g)(mmm,σσσ) = (gmmm, gσσσgt).

There are moreover several useful refinements of the Hilbert series, when the space V can be
decomposed into stable subspaces. For instance, V = R

3 ⊕ S
2(R3) (mmm ∈ R

3, σσσ ∈ S
2(R3)) splits

naturally into two stable vector spaces, one defined by the vector mmm and another defined by the
stress σσσ. In that case, any polynomial invariant can be decomposed into invariant polynomials
which are simultaneously homogeneous in mmm and σσσ. In other words, this splitting leads to a new
decomposition of the invariant algebra R[V ]G into the direct sum

R[V ]G =
⊕

α,β

R[V ]Gαβ,

where R[V ]Gα,β is the finite dimensional vector space of bi-homogeneous polynomial invariants of

degree α in mmm and degree β in σσσ. To this bi-graded algebra structure of R[V ]G corresponds the
two-variable Hilbert series

Hρ(zm, zσ) =
∑

α,β

aαβ z
α
mzβσ , where aαβ = dimR[V ]Gαβ .

and the Molien-Weyl formula writes

Hρ(zm, zσ) =
1

|G|

∑

g∈G

1

det(I − zmρm(g))

1

det(I − zσρσ(g))
,

where ρm is the matrix representation of G on mmm (considered here as a vector) and ρσ is the matrix
representation on σσσ,

ρm(g)mmm = g ⋆mmm = gmmm, ρσ(g)σσσ = g ⋆ σσσ = gσσσgt.

For the proper octahedral group G = O
+, we obtain

H(V,O+)(zm, zσ) =
1

24

1

1− zσ

{

1

(1− zm)3(1− zσ)5
+

6

(1− zm)(1 + zm)2(1− z2σ)
2(1 − zσ)

+
3

(1 + zm)(1 − z2m)(1 − zσ)(1− z2σ)
2
+

8(1 − zσ)

(1− z3m)(1− z3σ)
2

+
6(1 − zσ)

(1− zm)(1 + z2m)(1 − z2σ)(1− z4σ)

}

(2.10)

whereas for the full octahedral group G = O, we have

H(V,O)(zm, zσ) =
1

2

(

H(V,O+)(zm, zσ) +H(V,O+)(−zm, zσ)
)

.

Table 1 summarizes for the cubic invariant algebra R[V ]O (ρ = (V,O)) the number of linearly
independent bi-homogeneous invariants for different bi-degrees inmmm and σσσ. We recover in particular
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the fact that there are three (so-called purely elastic) invariants of bi-degree (0, 2), i.e. independent
of mmm and quadratic in the symmetric second-order tensor σσσ.

mmm
σσσ

0 1 2 3 4 5 6 7 8 9 10

0 1 1 3 6 11 18 32 48 75 111 160
2 1 3 9 20 42 78 138 228 363 553 819
4 2 6 19 44 95 180 323 540 867 1330 1980
6 3 10 32 78 168 324 585 984 1584 2442 3640
8 4 15 49 120 263 510 963 1560 2517 3885 5802
10 5 21 69 172 378 738 1338 2268 3663 5663 8463

Table 1. Number of linearly independent bi-homogeneous invariants for different
bi-degrees in (mmm,σσσ) and for G = O.

There is finally a third variation of the Hilbert series that will be useful for us and concerns the
space V ′ = R

3 ⊕H
2(R3), to which belongs the pair (mmm,σσσ′) and where H2(R3) is the vector space of

deviatoric second-order tensors. It is formulated using the tri-graduation of R[V ′]G induced by the

O-stable decomposition of V ′ into the variables (mmm,σσσd,σσσd). This makes the invariant algebra R[V ′]G

into a tri-graded algebra, i.e. each invariant polynomial p(mmm,σσσd,σσσd) can be decomposed uniquely

into the sum of polynomials which are multihomogeneous in mmm, σσσd and σσσd (multihomogeneous
simultaneously in all three variables). For instance, the invariant I210 in Table 2 writes

I210 = (mmm⊗mmm)d : σσσd = m2
1σ

′

11 +m2
2σ

′

22 +m2
3σ

′

33,

with σ′

11 + σ′

22 + σ′

33 = 0. It is homogeneous of degree 2 in mmm, of degree 1 in σσσd and of degree 0 in

σσσd and its total degree is 3. The invariant algebra R[V ′]G decomposes thus into the direct sum

R[V ′]G =
⊕

α,β,γ

R[V ′]Gαβγ ,

where R[V ′]Gαβγ is the finite dimensional vector space of polynomial invariants which are homoge-

neous of degree α in mmm, β in σσσd and γ in σσσd. The corresponding Hilbert series writes

Hρ(zm, zd, zd̄) =
∑

aαβγ zm
αzd

βzd̄
γ , where aαβγ = dimR[V ′]Gαβγ ,

and the Molien-Weyl formula gives us

Hρ(zm, zd, zd̄) =
1

|G|

∑

g∈G

1

det(I − zmρm(g))

1

det(I − zdρd(g))

1

det(I − zd̄ρd̄(g))
,

where, in addition to ρm, ρd is the matrix representation of G on σσσd, and ρd̄ on σσσd,

ρd(g)σσσ
d = g ⋆ σσσd = gσσσdgt, ρd̄(g)σσσ

d = g ⋆ σσσd = gσσσdgt.
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For G = O
+, we get

H(V ′,O+)(zm, zd, zd̄) =
1

24

(

1

(1− zm)3(1− zd)2(1− zd̄)
3
+

6

(1− zm)(1 + zm)2(1− z2d)(1 + zd̄)(1− zd̄)
2

+
3

(1 + zm)(1− z2m)(1− zd)2(1 + zd̄)(1 − z2
d̄
)
+

8(1 − zd)

(1− z3m)(1− z3d)(1− z3
d̄
)

+
6(1 − zd̄)

(1− zm)(1 + z2m)(1− z2d)(1− z4
d̄
)

)

(2.11)
and for G = O, we have

H(V ′,O)(zm, zd, zd̄) =
1

2

(

H(V ′,O+)(zm, zd, zd̄) +H(V ′,O+)(−zm, zd, zd̄)
)

. (2.12)

Remark 2.7. The coefficients aαβγ which are the dimensions of the vector spaces R[V ′]Gαβγ are then

computed using Taylor’s expansion of the rational functions (2.11) and (2.12).

2.4. Cubic minimal integrity bases. Generating sets for the invariant algebras R[V ]O and

R[V ]O
+

for V = R
3 ⊕ S

2(R3) seem to have been first proposed by Smith, Smith and Rivlin in
1963 [59]. The set of generators produced therein for the orientation preserving cubic subgroup O

+

is however not minimal as explained below. To produce a generating set of invariants is one thing,
which can be achieved by clever use of mathematics. Verifying that a generating set is minimal
requires powerful computation tools (see Appendix B), and it is easy to miss certain relations, as
acknowledged by Spencer himself in [6, Chapter 8, pages 163-164], and thus produce a wrong answer
if a systematic and lengthy calculation is not carried out carefully to the end. This explains why
an error has been found in [59] (one invariant is indeed reducible). Computation tools in the sixties
were certainly not sufficient. Another weakness of [59] is that generators are expressed using com-
ponents σij, mi of σσσ and mmm. The complexity of the formulas increase rapidly and it is not always
easy to calculate the constitutive model response with an energy density expressed in expanded
components.

In the present work, we propose new sets of generators, which are shown to be moreover minimal.
In addition, these generators are written in intrinsic form (not in components). They are detailed

in Table 2 and Table 3 where the notations adn := (ad)n and adn := (ad)n have been used. Their
expressions are thus much more compact and allow calculations — of their partial derivatives for
instance, as in next section — to be much easier. To obtain these formulas, we have used only two
fundamental tensorial operations. The first one is the classical contraction between two tensors, on
two or more indices. The second one is the generalized cross product between two totally symmetric
tensors of any orders, which was introduced in [50] (see also [1] for practical examples). Given
S

1 ∈ S
p(R3) and S

2 ∈ S
p(R3), it is defined by

S
1 × S

2 = −(S1 · ε · S2)s ∈ S
p+q−1(R3), (2.13)

where (·)s means the total symmetrization and where ε is the Levi-Civita third order tensor (εijk =
det(eeei, eeej , eeek) in any direct orthonormal basis eeei). Using these operations, has been produced a new
set of 60 O

+-invariants which are given in Table 2 and Table 3. The proofs of the following two
theorems are provided in Appendix A.

Theorem 2.8. The 60 invariants in Table 2 and Table 3 form a minimal integrity basis of

R[R3 ⊕ S
2(R3)]O

+

,

i.e. for the orientation-preserving subgroup O
+ ⊂ O.
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Remark 2.9. Polynomials in Table 2 are invariant by the full octahedral group O, and thus by its
subgroup O

+. Polynomials in Table 3 are only invariant by O
+ and change sign when the central

symmetry Ic is applied to them. They are indeed odd in magnetization mmm whereas Ic ⋆mmm = −mmm.

Theorem 2.10. The 29 invariants in Table 2, altogether with (J111)
2 where

J111 = tr
(

(σσσd ×mmm)σσσd
)

form a minimal integrity basis of R[R3 ⊕ S
2(R3)]O, i.e. for the full octahedral group O.

Remark 2.11. The above expression of (J111)
2 makes use of the generalized cross product (2.13).

It can advantageously be replaced by another invariant that is expressed only through tensors
contraction. For instance, one can use instead

I222 := (mmm⊗mmm)d :
(

σσσd(σσσd 2)dσσσd
)

, (2.14)

of multi-degree (2, 2, 2) in (mmm,σσσd,σσσd). Indeed,

(J111)
2 = −3I222 +

1

12
I020I002I200 −

3

2
I020I

a
202 − I020I

b
202 −

1

2
I002I220 + I012I210 −

1

2
I022I200. (2.15)

Remark 2.12. In Table 4 and Table 5, we have translated the integrity bases for O+ and O provided
by Smith et al in the new integrity basis provided by Table 2 and Table 3. The original set of
generators proposed by Smith et al is expressed using components of the tensors with the following
notations: Ei = mi and gij = σij . The notations Ik, Lk and JkKl used in the tables are those
introduced in Smith–Smith–Rivlin paper [59, Section 6]. In tables 4 and 5, all Smith–Smith–Rivlin
invariants restricted to (σσσ′,mmm) are expressed in terms of Iαβγ and Jαβγ .

The minimal number of generators of R[V ]O
+

is 60, i.e. one less than the number of generators
proposed by Smith et al in 1963. One of these invariants is therefore reducible. In order to check
which one rewrites polynomially as function of the others, the algorithm in Appendix B has been
applied to the list L of O+-invariants provided in Table 4 and Table 5 (with the bound N = 12 for
the highest total degree to be checked, see theorem C.3). As a result, a basis of the vector space of

homogeneous invariants of multi-degree (2, 2, 2) in (mmm,σσσd,σσσd) is spanned by

I2I4I10, I2I15, I2I16, I4I18, I7I14, I9I10, (L1)
2.

where Ik are the Smith–Smith–Rivlin invariants of Table 4. Indeed, I25 can be recast as a function
of the other Smith et al invariants as

I25 =
1

6

(

I2I4I10 − 3I2I15 + 4I2I16 − I4I18 − I7I14 − I9I10 − (L1)
2
)

.

Remark 2.13. In Table 2 and Table 3, almost all invariants have different multi-degrees (α, β, γ) in

(mmm,σσσd,σσσd). When there is no ambiguity and only one invariant of multi-degree (α, β, γ), it is denoted
as Iαβγ (Table 2) and Jαβγ (Table 3) in the fifth column. However, some pairs of invariants have the
same multi-degree. This is the case for the pairs of lines (13, 14), (18, 19), (35, 36), (45, 46), (47, 48),
and (49, 50). An exponent a or b has been added for a clear distinction. For instance, in Table 2,
the invariant in line 13 has been denoted by Ia202; it has been denoted Ib202 in line 14.
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deg(mmm) deg(σσσ) Expression Tri-graded notation

1 0 1 trσσσ –
2 0 2 σσσd̄ : σσσd̄ I002
3 0 2 σσσd : σσσd I020
4 0 3 tr(σσσd̄ 3) I003
5 0 3 σσσd̄ 2 : σσσd I012
6 0 3 tr(σσσd 3) I030
7 0 4 (σσσd̄ 2)d̄ : (σσσd̄ 2)d̄ I004
8 0 4 tr(σσσd̄σσσdσσσd̄σσσd) I022
9 0 5

(

σσσd̄(σσσd̄ 2)d̄σσσd̄
)

: σσσd I014
10 2 0 ‖mmm‖2 I200
11 2 1 (mmm⊗mmm)d̄ : σσσd̄ I201
12 2 1 (mmm⊗mmm)d : σσσd I210
13 2 2 (mmm⊗mmm)d : σσσd̄ 2 Ia202
14 2 2 (mmm⊗mmm)d̄ : σσσd̄ 2 Ib202
15 2 2 (mmm⊗mmm)d̄ : (σσσd̄σσσd) I211
16 2 2 (mmm⊗mmm)d : σσσd 2 I220
17 2 3 (mmm⊗mmm)d̄ :

(

(σσσd̄ 2)d̄σσσd̄
)

I203
18 2 3 (mmm⊗mmm)d :

(

(σσσd̄ 2)dσσσd
)

Ia212
19 2 3 (mmm⊗mmm)d̄ :

(

(σσσd̄ 2)d̄σσσd
)

Ib212
20 2 3 (mmm⊗mmm)d̄ :

(

σσσdσσσd̄σσσd
)

I221
21 2 4 (mmm⊗mmm)d :

(

σσσd̄(σσσd̄ 2)d̄σσσd̄
)

I204
22 2 4 (mmm⊗mmm)d̄ :

(

(σσσd̄ 2)dσσσd̄σσσd
)

I213
23 4 0 (mmm⊗mmm)d̄ : (mmm⊗mmm)d̄ I400
24 4 1 (mmm⊗mmm)d̄ 2 : σσσd̄ I401
25 4 1 (mmm⊗mmm)d̄ 2 : σσσd I410
26 4 2 (mmm⊗mmm)d̄ 2 :

(

σσσd̄ 2
)d̄ I402

27 4 2 (mmm⊗mmm)d̄ 2 :
(

σσσdσσσd̄
)

I411
28 6 0 tr

(

(mmm⊗mmm)d̄ 3
)

I600
29 6 1 tr

(

(mmm⊗mmm)d(mmm⊗mmm)d̄(mmm⊗mmm)dσσσd̄
)

I601

Table 2. O
+-invariants without cross product (deg(mmm) = α, deg(σσσ) = β+γ except

line 1).
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deg(mmm) deg(σσσ) Expression Tri-graded notation

30 1 2 (σσσd ×mmm) : σσσd̄ J111
31 1 3

(

(σσσd̄ 2)d̄ ×mmm
)

: σσσd̄ J103
32 1 3

(

σσσd̄ 2 ×mmm
)

: σσσd J112
33 1 3

(

σσσd̄ × (σσσdmmm)
)

: σσσd J121
34 1 4

(

σσσd̄ × (σσσd̄mmm)
)d̄

: σσσd̄ 2 J104
35 1 4

(

((σσσd̄ 2)dσσσd)×mmm
)

: σσσd̄ Ja
113

36 1 4
(

(σσσd̄ 2)d̄ × (σσσdmmm)
)

: σσσd̄ Jb
113

37 1 4
(

(σσσd̄ 2)d̄ × (σσσdmmm)
)

: σσσd J122
38 1 4

(

σσσd 2 × (σσσdmmm)
)

: σσσd̄ J131
39 1 5

(

(σσσd̄ 2)d̄ × (σσσd̄mmm)
)

: σσσd̄ 2 J105
40 1 5

(

(σσσd̄ 2)d̄ × (σσσdσσσd̄mmm)
)

: σσσd̄ J114
41 1 5

[

(

σσσd(σσσd̄ 2)σσσd
)d̄

×mmm

]

: σσσd̄ J123
42 1 5

(

σσσd̄ 2 × (σσσdmmm)
)

: σσσd 2 J132
43 3 1 (mmm⊗mmm)d̄ : (σσσd̄ ×mmm) J301
44 3 2 (mmm⊗mmm)d : (σσσd̄ × (σσσd̄mmm)) J302
45 3 2 (mmm⊗mmm)d̄ : (σσσd̄ × (σσσdmmm)) Ja

311

46 3 2 (mmm⊗mmm)d :
(

σσσd̄ × (σσσdmmm)
)

Jb
311

47 3 3 (mmm⊗mmm)d :
(

σσσd̄ ×
(

(σσσd̄ 2)d̄mmm
)

) Ja
303

48 3 3 (mmm⊗mmm)d̄ :
[

σσσd̄ ×
(

(σσσd̄ 2)d̄mmm
)

]

Jb
303

49 3 3
(

(mmm⊗mmm)d̄ × (σσσdmmm)
)

:
(

σσσd̄ 2
)d Ja

312

50 3 3
(

(mmm⊗mmm)d̄ × (σσσdmmm)
)

:
(

σσσd̄ 2
)d̄ Jb

312

51 3 3
[

(σσσd(mmm⊗mmm)d)× (σσσdmmm)
]

: σσσd̄ J321
52 3 3

(

(mmm⊗mmm)d̄ × (σσσd 2mmm)
)

: σσσd J330
53 5 1

[

(mmm⊗mmm)d̄ × ((mmm⊗mmm)d̄mmm)
]

: σσσd̄ J501
54 5 1

[

(mmm⊗mmm)d̄ × ((mmm⊗mmm)d̄mmm)
]

: σσσd J510
55 5 2

[

(mmm⊗mmm)d × ((mmm⊗mmm)d̄σσσd̄mmm)
]

: σσσd̄ J502
56 5 2

[

(mmm⊗mmm)d × ((mmm⊗mmm)d̄σσσdmmm)
]

: σσσd̄ J511
57 5 2

[

(mmm⊗mmm)d̄ × ((mmm⊗mmm)d̄σσσdmmm)
]

: σσσd J520
58 7 1

[

(mmm⊗mmm)d ×
(

((mmm⊗mmm)d̄(mmm⊗mmm)d̄)d̄mmm
)]

: σσσd̄ J701
59 7 1

[

(mmm⊗mmm)d̄ ×
(

((mmm⊗mmm)d̄(mmm⊗mmm)d̄)dmmm
)]

: σσσd J710
60 9 0

[

(mmm⊗mmm)d̄ ×
(

((mmm⊗mmm)d̄(mmm⊗mmm)d̄)dmmm
)]

: (mmm⊗mmm)d J900

Table 3. O
+-invariants with cross product (deg(mmm) = α, deg(σσσ) = β + γ).
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deg(mmm) deg(σσσ) Evaluation Smith et al Notation

1 0 1 trσσσ I1
2 0 2 − 1

2
I020 I2

3 0 2 1

2
I002 I4

4 0 3 1

3
I030 I3

5 0 3 1

6
I003 I6

6 0 3 −I012 I7
7 0 4 1

2
I004 I5

8 0 4 1

2
I022 I9

9 0 5 1

2
I014 I8

10 2 0 I200 I10
11 2 1 1

2
I201 I13

12 2 1 I210 I14
13 2 2 1

6
I200I002 − Ia202 I15

14 2 2 1

2
Ib202 I16

15 2 2 −I211 I17
16 2 2 − 1

6
I020I200 + I220 I18

17 2 3 1

4
I002I201 − I203 I19

18 2 3 1

6
I210I002 −

1

3
I012I200 − Ia212 I20

19 2 3 −Ib212 I21
20 2 3 1

2
I221 I22

21 2 4 1

2
I204 +

1

6
I200I004 I23

22 2 4 − 1

6
I002I211 −

1

4
I012I201 −

1

2
I213 I24

23 2 4 1

2
I222 I25

24 4 0 1

2
I400 I11

25 4 1 1

2
I401 I26

26 4 1 −I410 I27
27 4 2 1

2
I402 I28

28 4 2 −I411 I29
29 6 0 1

6
I600 I12

30 6 1 1

9
I201(I200)

2 − 1

6
I401I200 +

1

2
I601 I30

Table 4. mmm-even Smith–Smith–Rivlin invariants (evaluated for σσσ′ except line 1).
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deg(mmm) deg(σσσ) Evaluation Smith et al notation

31 1 2 −J111 L1

32 1 3 −J103 L2

33 1 3 J112 L3

34 1 3 J121 L4

35 1 4 −J104 L5

36 1 4 −2Ja
113 + Jb

113 − 1

6
I002J111 L6

37 1 4 J122 L7

38 1 4 3Ja
113 − 3Jb

113 J1K1

39 1 4 1

2
I020J111 + 3J131 J1K2

40 1 5 − 1

4
J103I002 −

1

2
J105 L8

41 1 5 − 1

2
I002J112 − 1

2
I003J111 − 3J114 J2K1

42 1 5 1

2
I002J121 + 1

2
I020J103 + 3J123 J1K4

43 1 5 − 1

2
I020J112 − 3J132 J2K2

44 3 1 J301 L9

45 3 2 J302 L10

46 3 2 −J111I200 + 2Ja
311 − Jb

311 L11

47 3 2 3Ja
311 − I200J111 − 3Jb

311 J1K7

48 3 3 − 1

2

(

J103I200 + Ja
303 + Jb

303

)

L12

49 3 3 1

2

(

J103I200 + J301I002 + 3(Jb
303 − Ja

303)
)

J1K8

50 3 3 −Ja
312 J0K1

51 3 3 J330 J0K2

52 3 3 I200J112 −
3

2

(

1

2
I201J111 + Ja

312 + Jb
312

)

J2K7

53 3 3 1

2
I020J301 + 3J321 J1K10

54 5 1 J501 L13

55 5 1 −J510 J0K7

56 5 2 −J520 J0K10

57 5 2 J502 − 1

2
I201J301 J0K8

58 5 2 −I200J
a
311 + 1

2
I400J111 − 2I210J301 + 3J511 J1K21

59 7 1 I400J301 + I200J501 − 3

2
J701 J1K6

60 7 1 −J710 J0K21

61 9 0 −J900 J0K6

Table 5. mmm-odd Smith–Smith–Rivlin invariants (evaluated for σσσ′).
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3. Application to cubic magneto-mechanical coupling at the domain scale

A first objective here is to obtain, in closed forms, general expressions of the magneto-mechanical
free enthalpy density for cubic symmetry such as those given in section 1, i.e. as polynomial
expansions truncated at a given degree deg(σσσ) in stress for instance. A second objective is to obtain
the associated constitutive laws in an intrinsic manner (thanks to the tensorial expressions provided

by invariants and to the use of the cubic projectors Pd and Pd).
We have to point out that, in the physical problem studied, the sought enthalpies Ψ⋆(σσσ,mmm)

are functions of the stress tensor σσσ and of the magnetization pseudo-vector mmm (the action of the
isometries g on magnetization and stress being given by (2.2)). Rather than the cubic subgroup O of
isometries (with mmm a pseudo-vector), we have to consider the magnetic point group O

ε = O×{±1}
[55]. In practice, however, it boils down to the fact that Ψ is O–invariant under the standard
action (2.3) (rather than (2.2)) [63], implying that the sought enthalpies are even in magnetization
mmm [24]. One can then use the integrity basis of R[R3⊕S

2(R3)]O for full octahedral group O in order
to derive a polynomial form of cubic magneto-mechanical free energy density.

In order to shorten formulas,

• the terms depending only on stress tensor σσσ are gathered in the pure elastic free energy
density

Ψ⋆e = −
1

2
σσσ : S : σσσ, ǫǫǫe = −

∂Ψ⋆e

∂σσσ
= S : σσσ, (3.1)

with ǫǫǫe the elastic strain tensor and where the compliance tensor S satisfies Sijkl = Sjikl =
Sijlk = Sklij,

• the terms depending only on the magnetization mmm are gathered in the pure magnetic free
energy density Ψ⋆µ(mmm) (classically of degree six in magnetization),

• the so-called first order magneto-mechanical terms, linear in stress and quadratic in mmm, are
gathered in the free energy density Ψ⋆µσ

1 (mmm,σσσ),
• the so-called second order magneto-mechanical terms, quadratic in stress and quadratic in
mmm, are gathered in Ψ⋆µσ

2 (mmm,σσσ) (defined in (1.2) and (1.4)),
• the dependency with respect to pair (mmm,σσσ) is written through the first cubic invariants Iαβγ

of Table 2 (and I222 and trσσσ), where the multi-degree in (mmm,σσσd,σσσd) is (α, β, γ).

We have then

Ψ⋆ = Ψ⋆e(σσσ) + Ψ⋆µσ
1 (Iαβγ , trσσσ) + Ψ⋆µσ

2 (Iαβγ , trσσσ) + Ψ⋆µ(mmm). (3.2)

The strain is given by the state law

ǫǫǫ = −
∂Ψ⋆

∂σσσ
,

derived, thanks to the chain rule, from

∂f(Iαβγ , trσσσ)

∂σσσ
=

∂f

∂Iαβγ

(

Pd :
∂Iαβγ
∂σσσd

+Pd :
∂Iαβγ
∂σσσd

)

+
∂f

∂ trσσσ
1, (3.3)

using the fact, by (2.6)–(2.7), that the fourth-order cubic projectors are equal to

∂σσσd

∂σσσ
= Pd,

∂σσσd

∂σσσ
= Pd,

and finally that

∂Iαβγ
∂ trσσσ

= 0,
∂Iαβγ
∂σσσd

: Pd = Pd :
∂Iαβγ
∂σσσd

and
∂Iαβγ
∂σσσd

: Pd = Pd :
∂Iαβγ
∂σσσd

.

Magnetic field is given by the state law:

µ0hhh = −
∂Ψ⋆

∂mmm
= −

∂Ψ⋆

∂Iαβγ

∂Iαβγ
∂mmm

,
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where µ0 is the vacuum permeability. The O-invariant Iαβγ are even in magnetizationmmm. Moreover,
their dependency inmmm has been recast in Table 2 as a dependency inmmm⊗mmm. This is also the case for
I200 = ‖mmm‖2 = tr(mmm⊗mmm) and J2

111 preferably replaced by I222 thanks to (2.15). Setting furthermore

(mmm⊗mmm)d = Pd : (mmm⊗mmm) and (mmm⊗mmm)d = Pd : (mmm⊗mmm) we have then, for all the invariants Iαβγ
of Table 2,

∂Iαβγ
∂mmm

=

(

∂Iαβγ
∂(mmm⊗mmm)d

: Pd +
∂Iαβγ

∂(mmm⊗mmm)d
: Pd

)

:
∂(mmm⊗mmm)

∂mmm

= 2





(

∂Iαβγ
∂(mmm⊗mmm)d

)d

+

(

∂Iαβγ

∂(mmm⊗mmm)d

)d


mmm.

and
∂I200
∂mmm

= 2mmm.

3.1. Elastic free energy density. Using Table 2, the elastic free energy density writes:

Ψ⋆e(σσσ) = c020 I020 + c002 I002 + c010,010 (trσσσ)
2

= c020 σσσ
d : σσσd + c002 σσσ

d : σσσd + c010,010 (trσσσ)
2,

(3.4)

and the elastic strain as

ǫǫǫe = −
∂Ψ⋆e(σσσ)

∂σσσ
. (3.5)

This leads to the linear elastic constitutive relationship

ǫǫǫe = −2c020σσσ
d − 2c002σσσ

d − 2c010,010 tr(σσσ)1,

to be compared to the cubic linear Hooke’s law [21]

ǫǫǫe =
1 + ν

E
σσσd +

1

2µ
σσσd +

1

9κ
trσσσ 1,

where E is the Young modulus, ν is the Poisson ratio, µ is the shear modulus and κ = E/3(1− 2ν)
is the compressibility modulus. We get thus

c020 = −(1 + ν)/2E, c002 = −1/4µ, c010,010 = −1/18κ = −(1 + ν)/6E.

Remark 3.1. An isotropic free energy density corresponds to the particular case where

µ = E/2(1 + ν), and σσσd + σσσd = σσσ′.

We get then

Ψ⋆e = −
1 + ν

2E
σσσ′ : σσσ′ +

1− 2ν

6E
(trσσσ)2 1, and ǫǫǫe =

1 + ν

E
σσσ′ +

1− 2ν

3E
trσσσ 1.

3.2. Magnetic free energy density. The purely magnetic part of (3.2) which is the most general
O-invariant polynomial of degree six in mmm, writes as

Ψ⋆µ(mmm) = c200I200 + c200,200(I200)
2 + c200,200,200(I200)

3 + c400I400 + c200,400I200I400 + c600I600,

where
I200 = ‖mmm‖2 , I400 = tr

(

(mmm⊗mmm)d 2
)

, I600 = tr
(

(mmm⊗mmm)d 3
)

.

From the usual assumption ‖mmm‖ = ms = constant at the magnetic domain scale, some terms group
together. Introducing the direction cosines γi of mmm we further get:

I400 = 2m4
s (γ

2
1γ

2
2 + γ21γ

2
3 + γ22γ

2
3), I600 = 6m6

s γ
2
1γ

2
2γ

2
3 .

Indeed, the standard cubic form [7, 11]

Ψ⋆µ(mmm) = K0 +K1(γ
2
1γ

2
2 + γ21γ

2
3 + γ22γ

2
3) +K2(γ

2
1γ

2
2γ

2
3)
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is recovered by setting

K0 =c200 m
2
s + c200,200 m

4
s + c200,200,200 m

6
s,

K1 =2m4
s

(

c400 + c200,400 m
2
s

)

,

K2 =6m6
sc600,

where K0, K1 and K2 are the so-called magneto-crystalline constants for cubic symmetry.

Remark 3.2. An isotropic free energy density corresponds to the particular case where

Ψ⋆µ = a ‖mmm‖2 + b ‖mmm‖4 + c ‖mmm‖6 = am2
s + bm4

s + cm6
s,

defining, here at degree six, no preferential direction.

3.3. First-order magneto-mechanical energy density term. The so-called first-order magneto-
mechanical term is linear in σσσ and quadratic in mmm. Its most general O-invariant polynomial expres-
sion is

Ψ⋆µσ
1 (mmm,σσσ) = c210I210 + c201I201 + c200,010I200 trσσσ

= c210(mmm⊗mmm)d : σσσd + c201(mmm⊗mmm)d : σσσd + c200,010 ‖mmm‖2 trσσσ

which can be recast as

Ψ⋆µσ
1 (mmm,σσσ) =

(

c210(mmm⊗mmm)d + c201(mmm⊗mmm)d + c200,010 ‖mmm‖2 1
)

: σσσ.

The associated strain is

ǫǫǫµ1 = −
∂Ψ⋆µσ

1 (mmm,σσσ)

∂σσσ
= −c210(mmm⊗mmm)d − c201(mmm⊗mmm)d − c200,010 ‖mmm‖2 1.

This form is to be compared to the classical expression of the magnetostriction strain tensor
reported in equation (2.2) [11, 22], illustrating the following correspondences between material
constants:

λ100 = −
2

3
c210m

2
s, λ111 = −

2

3
c201m

2
s, λv = −3c200,010m

2
s.

Remark 3.3. Isotropy corresponds to the case c201 = c210, λ111 = λ100, i.e. to

Ψ⋆µσ
1 (mmm,σσσ) = −

3λs

2m2
s

(mmm⊗mmm)′ : σσσ′ −
λv

3m2
s

‖mmm‖2 trσσσ,

where λs is the so-called isotropic magnetotrictive constant verifying λs = λ100 = λ111.

3.4. Second-order magneto-mechanical free energy density term. The so-called second-
order magneto-mechanical term is quadratic both in σσσ and mmm. Its most general O-invariant poly-
nomial expression is

Ψ⋆µσ
2 (mmm,σσσ) = c220I220 + c211I211 + ca202I

a
202 + cb202I

b
202 + c210,010I210 trσσσ + c201,010I201 trσσσ

+ c200,020I200I020 + c200,002I200I002 + c200,010,010I200(trσσσ)
2,

(3.6)

which details as

Ψ⋆µσ
2 (mmm,σσσ) = c220(mmm⊗mmm)d : σσσd 2 + c211(mmm⊗mmm)d : (σσσdσσσd) +

[

ca202(mmm⊗mmm)d + cb202(mmm⊗mmm)d
]

: σσσd 2

+ trσσσ
[

c210,010 (mmm⊗mmm)d : σσσd + c201,010 (mmm⊗mmm)d : σσσd
]

+ ‖mmm‖2
[

c200,020 σσσ
d : σσσd + c200,002 σσσ

d : σσσd + c200,010,010 (trσσσ)
2
]

.

According to Mason [42], the morphic effect involves six measurable material constants, (3.6) is in
agreement with this assertion. Indeed, the last three terms in Ψ⋆µσ

2 (mmm,σσσ),

m2
s

[

c200,020 σσσ
d : σσσd + c200,002 σσσ

d : σσσd + c200,010,010 (trσσσ)
2
]
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do not depend on the orientation of the magnetization and thus cannot be distinguished from the
purely elastic terms (3.4) in the total free energy density (3.2). Therefore, the nine initial terms are
reduced to finally six measurable constants and we then set

c200,020 = c200,002 = c200,010,010 = 0.

The associated strain

ǫǫǫµ2 = −
∂Ψ⋆µσ

2 (mmm,σσσ)

∂σσσ
splits into three parts

ǫǫǫµ2 = ǫǫǫµ d
2 + ǫǫǫµd

2 + ǫǫǫµ2v,

where, using (2.6),

ǫǫǫµd
2 = Pd : ǫǫǫµ2 , ǫǫǫµd

2 = Pd : ǫǫǫµ2 , ǫǫǫµ2v =
1

3
(tr ǫǫǫµ2 ) 1.

We get

ǫǫǫµd
2 = −2c220 (mmm⊗mmm)dσσσd −

1

2
c211

(

(mmm⊗mmm)dσσσd + σσσd(mmm⊗mmm)d
)d

− c210,010 (trσσσ) (mmm⊗mmm)d,

ǫǫǫµd
2 = −

1

2
c211

(

(mmm⊗mmm)dσσσd + σσσd(mmm⊗mmm)d
)d

− c201,010 (trσσσ) (mmm⊗mmm)d

−
[(

ca202(mmm⊗mmm)d + cb202(mmm⊗mmm)d
)

σσσd + σσσd
(

ca202(mmm⊗mmm)d + cb202(mmm⊗mmm)d
)]d

,

ǫǫǫµ2v = −
(

c210,010 (mmm⊗mmm)d : σσσd + c201,010 (mmm⊗mmm)d : σσσd
)

1.

In the canonical cubic basis (eeei), they correspond respectively to the deviatoric diagonal part, the
out-of-diagonal part and the volumetric (hydrostatic) part of ǫǫǫµ2 .

Remark 3.4. Using example 2.5, the most general expression for an isotropic quadratic free energy
density writes

Ψ⋆µσ
2 = A (mmm⊗mmm)′ : σσσ′ 2 +B(trσσσ)(mmm⊗mmm)′ : σσσ′ + ‖mmm‖2

(

C tr(σσσ′ 2) +D (trσσσ)2
)

.

At the magnetic domain scale, since we have

mmm · (σσσ′nmmm) = (mmm⊗mmm) : σσσ′n, and (tr(mmm⊗mmm)1) : σσσ′n = ‖mmm‖2 tr(σσσ′n),

for n = 1, 2, where σσσ′n = (σσσ′)n, we get

Ψ⋆µσ
2 = A (mmm⊗mmm)′ : σσσ′ 2 +B (trσσσ)(mmm⊗mmm)′ : σσσ′ +m2

s

(

C tr(σσσ′ 2) +D (trσσσ)2
)

.

There are indeed four material constants, in accordance with Kraus [36], but the last two terms
associated with material constants C and D do not depend on the orientation of the magnetization
and cannot be distinguished from the purely elastic terms. Therefore, we set

C = D = 0.

Since

σσσ′ = σσσd +σσσd = Pd : σσσ +Pd : σσσ, and σσσd : σσσd = 0,

an isotropic free energy density Ψ⋆µσ
2 expands as

Ψ⋆µσ
2 = A

(

(mmm⊗mmm)d + (mmm⊗mmm)d
)

: (σσσd 2+2σσσdσσσd+σσσd 2)+B(trσσσ)
(

(mmm⊗mmm)d : σσσd + (mmm⊗mmm)d : σσσd
)

.

By comparison with (3.6) and using the fact that (mmm⊗mmm)d : σσσdn = 0 and

(mmm⊗mmm)d : (σσσdσσσd) = tr[(mmm⊗mmm)dσσσdσσσd] = ((mmm⊗mmm)dσσσd) : σσσd = 0,
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one sees that isotropy corresponds to

A = c220 = ca202 = cb202 =
1

2
c211, and B = c210,001 = c210,010.

Isotropic second-order magnetostriction strain tensor expresses then as

ǫǫǫµ2 = −A ((mmm⊗mmm)′σσσ′ + σσσ′(mmm⊗mmm)′)′ −B
(

(trσσσ)(mmm⊗mmm)′ + ((mmm⊗mmm)′ : σσσ′)1
)

where A and B can be expressed as functions of the Kraus constants [36] λ′

s and λ′′

s

A =
3

2

λ′′

s

m2
s

, B = −
1

2

3λ′

s + λ′′

s

m2
s

.

3.5. Higher-order free energy densities. In the above subsections, we have recovered known
free energy densities using several bi-homogeneous polynomial expansions and expressed them in
an intrinsic form. The knowledge of a minimal integrity basis of 29 invariants given in Table 2
together with I222 (by theorem 2.10 and remark 2.11) allows us to easily generate the most general
expression of a bi-homogeneous invariant polynomial of an arbitrary bi-degree (α, β) in (mmm,σσσ).
The methodology used avoids the tedious calculations associated with the enforcement of the cubic
symmetry for constitutive tensors of order six or more (see for instance [58]). Any higher order,
both in magnetization and in stress, are now reachable for cubic symmetry and the number of
invariants involved at each degree in magnetization and stress is given in Table 1 (which includes

the invariants function of I200 = ‖mmm‖2).
Note however, that the numbers of bi-homogeneous invariants involved in the free energy density

expressed at the magnetic domain scale are not necessarily equal to the numbers of associated
material parameters. Indeed, the further relationship ‖mmm‖2 = m2

s (a material parameter then)
due to constant norm of the magnetization mmm has to be considered. We propose to illustrate this
subtlety in the case of an energy density of degree 2 in magnetization and 3 in stress (bi-degree

(2, 3)). According to Table 1, 20 bi-homogeneous invariants span the vector space R[V ′]O2,3:

• I203, I002I201, I003I200
• Ia212, I

b
212, I002I210, I012I200, I

a
202 trσσσ, I

b
202 trσσσ, I200I002 trσσσ

• I221, I020I201, I201(trσσσ)
2, I211 trσσσ

• I020I210, I030I200, I200(trσσσ)
3, I210(trσσσ)

2, I220 trσσσ, I020I200 trσσσ

Among these invariants, 6 depends on I200 = ‖mmm‖2 = m2
s = constant. Being related to the non-

linear elasticity terms I003, I012, I002 trσσσ, I030, I020 trσσσ, which are magnetization independent, they
cannot be distinguished from these initial elasticity terms. Therefore, 14 coefficients instead of
20 are necessary to describe cubic magneto-elastic phenomena at the domain scale, of degree 2 in
magnetization and 3 in stress.

This illustrating case can be generalized to any order in a straightforward manner as only the
invariant I200 is a constant. Consequently, for a degree α in magnetization, the invariants of a bi-
degree (α, β) are all those of degree α in magnetization not depending on I200 plus all those of degree
α − 2 in mmm multiplied by I200. Thus, it is enough to subtract two consecutive lines from Table 1
to obtain the number of material coefficients at each bi-degree. These results are summarized in
Table 6.

4. Conclusion

This paper takes as a study support the magnetization and stress couple (mmm,σσσ) in order to build
a free energy density, expressed as a polynomial function of mmm and σσσ, suitable for magnetostrictive
materials with cubic microstructures. An application of so-called second-order4 magneto-elasticity
was shown to account for the non-monotonic sensitivity to stress of both the magnetic suscepti-
bility and the magnetostriction of some soft magnetic materials [32]. It introduces a sixth-order

4in fact of degree 2 in stress and magnetization.
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mmm
σσσ

0 1 2 3 4 5 6 7 8 9 10

0 – 1 3 6 11 18 32 48 75 111 160
2 0 2 6 14 31 60 106 180 288 442 659
4 1 3 10 24 53 102 185 312 504 777 1161
6 1 4 13 34 73 144 262 444 717 1112 1660
8 1 5 17 42 95 186 378 576 933 1443 2162
10 1 6 20 52 115 228 375 708 1146 1748 2661

Table 6. Number of material parameters associated with different bi-degrees in
(mmm,σσσ).

constitutive tensor, the morphic tensor. The extension to higher bi-degrees in (mmm,σσσ) involves then
constitutive tensors of high order, and using tensors of order higher than 6 (with cubic symmetry)
becomes rather tedious using such techniques.

A polynomial formulation has thus been preferred rather than constitutive tensor formulations
in order to express the free energy density for any bi-degree in magnetization and stress. For this
purpose, new minimal integrity bases {trσσσ, Iαβγ , Jαβγ} for the orientation preserving octahedral
group (O+) and {trσσσ, Iαβγ} for the full octahedral group (O) have been computed. TheO+–integrity
basis is constituted of 60 invariants (i.e. one less than in the initial Smith-Smith-Rivlin integrity
basis) when the O–integrity basis is constituted of 30 invariants (all even in mmm). Furthermore, we
have proved that both the proposed O

+– and O–integrity bases are minimal.
The novelty is that these new integrity bases are expressed in a simple intrinsic way. Contrary

to Smith-Smith-Rivlin invariants, the proposed cubic invariants are not expressed in a particular
coordinate system (and thus, nor their partial derivatives with respect to σσσ and tommm, as provided in
a systematic manner in section 3). Theses new (coordinate free) invariants allow general expressions
of the free energy density Ψ⋆(σσσ,mmm) and the magneto-elastic coupling at the magnetic domains scale,
for material exhibiting cubic symmetry.

This work leads moreover to the following perspectives concerning magneto-elasticity:

(1) the introduction in the free energy density of terms of higher degree in stress and/or functions
of invariants: this introduction in a multiscale model may help to model the saturation of
the magnetoelastic phenomena (magnetostriction especially) still not reachable yet [32];

(2) the extension to macroscopic constitutive laws: this extension is possible by considering
the magnetization mmm as a non-constant norm quantity. Of course the number of invariants
increases compared to the case ‖mmm‖ = ms = constant and cubic symmetry might be not
relevant (the texturized materials are usually orthotropic). The cubic symmetry remains
however relevant for highly texturized materials and/or materials that can be described by
their texture components [14]. It is worth pointing out that any cubic energy density is also
a function (not necessarily polynomial) Ψ⋆(trσσσ, Iαβγ), because an integrity basis is also a
functional basis;

(3) the identification of material constants via dedicated experiments: this is another relevant
perspective. We may include in this strategy some complementary hypothesis like incom-
pressibility. Experimental results (magnetostriction and magnetic behavior under stress)
can on the other hand help to define the relevant invariants.

Last, the methodology developed is not limited to magneto-elasticity and may be used for the
modeling of any other coupled phenomena involving, in the cubic symmetry case, a second order
tensor and a (pseudo-)vector.
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Appendix A. Proofs

In this section, we provide proofs of theorems 2.8 and 2.10.

Proof of theorem 2.8. Observe first that, if {J1, . . . , Jr} is a minimal integrity basis of the invariant
algebra

R[R3 ⊕H
2(R3)]O

+

,

then, {trσσσ, J1, . . . , Jr} is a minimal integrity basis of

R[R3 ⊕ S
2(R3)]O

+

.

Now, verifying that the set F of invariants obtained by those in Table 2 (but omitting the first in-

variant trσσσ) and those of Table 3 is a minimal generating set for R[R3⊕H
2(R3)]O

+

has been achieved
using the algorithm described in Appendix B and the Computer Algebra System Macaulay2 [29],
a software specialized in algebraic geometry and effective in polynomial computations. The crucial
degree bound N = 12, used to terminate the algorithm was obtained a priori by theorem C.3
in Appendix C. �

Remark A.1. In the proof, the algorithm of Appendix B has been applied to the family F of the 60
invariants in Table 2 and Table 3. Since the output was F itself, we conclude that F is minimal basis

of R[R3 ⊕H
2(R3)]O

+

. But, when applied to the family of the 61 invariants in Smith–Smith–Rivlin
paper [59, Section 6], the algorithm lead to the discovery of the superfluous invariant I25.

We will now proceed with the proof of theorem 2.10. For this goal, we will introduce the Reynolds
projector, a very efficient tool in invariant theory. This operator RG is defined for any finite group
G and any representation V of G.

Definition A.2. The Reynolds projector is a linear projector from R[V ] onto the invariant algebra
R[V ]G, defined as

RG(p) :=
1

|G|

∑

g∈G

g ⋆ p, p ∈ R[V ], (A.1)

where |G| is the order of the group G and g ⋆ p := p(ρ(g)−1vvv) for vvv ∈ V .

Proof of theorem 2.10. The full cubic group O can be decomposed as the disjoint union

O = O
+ ⊔ IcO

+, (A.2)

where O+ is the subgroup of positive symmetries of the cube and where Ic is the central symmetry.
We get thus in particular, by (A.1)–(A.2),

RO(p) =
1

2

(

RO+(p) + Ic ⋆ RO+(p)
)

.

Consider now a polynomial p invariant under O. We have then RO(p) = p and since p is obviously
invariant under O+, we get thus

p = RO(p) =
1

2
(p+ Ic ⋆ p) . (A.3)

Now p is invariant by O
+, we can thus write p (using theorem 2.8) as a polynomial function of the

29 invariants Iαβγ from Table 2 and the 31 invariants Jα′β′γ′ from Table 3 and will write

p = P (Iαβγ , Jα′β′γ′).

where, we have moreover

Ic ⋆ Iαβγ = Iαβγ , Ic ⋆ Jα′β′γ′ = −Jα′β′γ′ .

We get thus
Ic ⋆ p = P (Iαβγ ,−Jα′β′γ′).
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Now, using (A.3), we get

p =
1

2

(

P (Iαβγ , Jα′β′γ′) + P (Iαβγ ,−Jα′β′γ′)
)

.

Therefore, in the expansion of p, only monomials in Iαβγ and Jα′β′γ′ with an even number of Jα′β′γ′

remain. We conclude that R[V ]O is generated by the Iαβγ and the products JαβγJα′′β′′γ′′ which are
invariant under O. This family is thus a generating set but it may not be minimal. However, the
fact that it is a generating set provides us with the following precious information: the maximum
degree of the generators of a minimal basis is less than

max
{

maxdeg(Iαβγ),max deg(Jα′β′γ′Jα′′β′′γ′′)
}

≤ 18,

because the maximal degree is obtained for the square of J900 (the last invariant in Table 3). The
family provided in the theorem has been checked to be a minimal integrity basis using the algorithm
described in this section with degree bound N = 18, which is known a priori by the argument
above. �

Appendix B. An algorithm to extract a minimal integrity basis

In this section, we formulate an algorithm which, starting from a finite set F = {I1, . . . , Ip}
of homogeneous invariants, checks if this set generates the invariant algebra, and, if the answer
is positive, extracts from it a minimal integrity basis MB = {Ii1 , . . . , Iir}. It is derived from
an algorithm introduced in [20] to clean up a generating set F from its redundant elements and
thus produce a minimal integrity basis MB. Since in the present case, F is not assumed to be a
generating set, the procedure in [20] has to be modified.

In these algorithms, calculations are executed in finite dimensional vector spaces of polynomials
of a given degree and a degree bound N must be furnished in order to terminate the computations.
If we know that the family F is generating, then this bound N can be defined as the maximum
degree of the polynomials in the family F (as done in [49, 20]). However, in the present case, we do
not know a priori that the family F is a generating set and more mathematics are required. Since
we deal with a finite group, a degree bound on the generators of the invariant algebra is already
known. It is given by Noether’s theorem (see Appendix C) and equals the order of the group. In
our case, this order is 48 for O and 24 for O+, much higher than our computation means, since the
computation time is exponential in the total degree n as illustrated in Figure 3. We had therefore
to use more sophisticated tools of group theory in order to reduce this bound. This has been done
in Appendix C, where we have reduced this a priori bound to N = 12 for O+ and N = 18 for the
full octahedral group O. These lower bounds have allowed to decrease drastically the computation
time, approximately from one month to one second !

In the following, we set V ′ = R
3 ⊕ H

2(R3) and G stands either for O or O
+. We recall that V ′

splits in three irreducible representations of G, which have been described by the three independent

variables mmm, σσσd and σσσd. Moreover, the invariant algebra R[V ′]G can be split into the direct sum of
vector spaces

R[V ′]G =

∞
⊕

n=0

R[V ′]Gn ,

of homogeneous polynomials inmmm, σσσd and σσσd which are of total degree n. We need thus to check that
each finite dimensional vector space R[V ′]Gn is spanned by the products Ia11 · · · I

ap
p of total degree n.

This procedure seems, at first, never-ending, because we need to check this for all n ∈ N. However,
if we can show a priori that degrees of the homogeneous polynomials in a minimal integrity basis
are smaller than some bound N (see Appendix C for explicit estimations of such a bound), then,
one needs only to check this for n ≤ N . Indeed, then, all homogeneous polynomials of degree n > N
are reducible.

The inputs/output of the algorithm are
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Figure 3. Computation time versus total degree n on an eight-core machine with
a CPU frequency of 1197 MHz and 32 GB of RAM.

• Inputs :
(a) A finite set F of homogeneous polynomial invariants in R[V ′]G.
(b) The coefficients an (for n ≤ N) of the Hilbert series

Hρ(z) =
∑

an z
n, where an = dim

(

R[V ′]Gn
)

.

• Output : A minimal integrity basis MB extracted from F , if F is a generating set, and
otherwise an error message.

Remark B.1. For the proper octahedral group G = O
+ and V ′ = R

3 ⊕ H
2(R3), the Hilbert series

writes

H(V ′,O+)(z) =
1

24

(

1

(1− z)8
+

6

(1− z2)4
+

3

(1− z2)4
+

8(1 − z)

(1 − z3)3
+

6

(1− z4)2

)

= 1 + 3 z2 + 6 z3 + 17 z4 + 33 z5 + 81 z6 + 141 z7 + 282 z8

+ 480 z9 + 828 z10 + 1326 z11 + 2137 z12 +O
(

z13
)

.

For the full octahedral group G = O and V ′ = R
3 ⊕H

2(R3), it writes

H(V ′,O)(z) =
1

24

(

1 + 3z2

(1 + z)3(1− z)8
+

6

(1− z)(1 − z2)4
+

3

(1− z)(1 − z2)4

+
8(1 − z)

(1 + z3)(1− z3)3
+

6

(1 + z)(1 − z4)2

)

= 1 + 3 z2 + 5 z3 + 13 z4 + 22 z5 + 52 z6 + 84 z7 + 164 z8

+ 268 z9 + 456 z10 + 714 z11 + 1141 z12 + 1697 z13 + 2560 z14

+ 3692 z15 + 5310 z16 + 7413 z17 + 10317 z18 +O
(

z19
)

.
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Let n0 be the smallest positive integer n for which the coefficient an of the Hilbert series Hρ does
not vanish (a0 is always equal to 1), and for each n ≥ 1, define Fn as the subset of elements of F
of degree n. The algorithm consists in three main steps, and is summarized below.

The algorithm.

Initialization n = n0: Extract a subfamily Bn0
from Fn0

of maximal rank (and linearly indepen-
dent) in the vector space R[V ′]Gn0

. If rank(Bn0
) = an0

, increment n by one, otherwise, return
an error message.

Iteration step n (n0 < n ≤ N): Suppose that we have obtained, at step n − 1, the family Bn−1.
Note that Bn−1 may contain homogeneous polynomials of different degrees but all of them
are lower than n.

• Generate the familyRn of all reducible homogeneous invariants of degree n which can be
written as products of polynomials in Bn−1 (this can be done by solving a Diophantine
equation [20, Section 6]).

• If rank(Rn) = an, then set Bn := Bn−1 and increment n by one.
• Otherwise, extract from Fn a minimal subset In such that rank(Rn ∪ In) = an. This
can be done by ordering the elements of Fn (if Fn is not empty), adding iteratively an
element of Fn to Bn−1 and checking the rank of the new family.

• If, at the end, the new set Bn satisfies rank(Bn) = an, increment n by one, otherwise,
return an error message.

Termination n = N : If all the steps of the algorithm have matched, then, one can conclude that
the output MB := BN is a minimal integrity basis of R[V ′]G.

Remark B.2. In practice, it may be advantageous to refine the algorithm in the following way, in
order to optimize the computation time. Rather than using the mono-graduation given by the total
degree, we can use the tri-graduation defined by the decomposition

R[V ′]G =
⊕

α,β,γ

R[V ′]Gαβγ ,

of multi-homogeneous polynomials of respective degree α, β, γ in mmm, σσσd and σσσd. We need then to
define a total order on multi-indices (α, β, γ). The appropriate choice corresponds to the graded
lexicographic order, which is denoted by � and defined as follows:

(α1, β1, γ1) � (α2, β2, γ2),

if the total degree α1+β1+γ1 of (α1, β1, γ1) is lower than the total degree α2+β2+γ2 of (α2, β2, γ2),
or if they have the same total degree and the first non-vanishing difference α1−α2, β1−β2, γ1− γ2
is negative. For instance, we have

(0, 0, 1) � (0, 1, 0) � (1, 0, 0) � (0, 0, 2) � (0, 1, 1) � · · ·

Then, the corresponding algorithm is the same with the only difference that the iteration must be
done using multi-degrees (α, β, γ) and the graded lexicographic order, rather than the total degree
n = α + β + γ and its natural order. In that case, one must use the tri-graded Hilbert series
Hρ(zm, zd, zd̄) (see (2.11) and (2.12)).

Appendix C. Degree bounds

The termination of the algorithm provided in Appendix B is crucially dependent on the existence
of a bound on the total degree of the generators of a minimal integrity basis which must be known
a priori. Group theory is required to estimate such a bound. In this appendix, we will state a few
fundamental results on such bounds for the problem we consider i.e. the action of the cubic groups
O and O

+ on some vector space V .
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Let G be a finite group acting linearly on a vector space V . We call such an action a representation
of G on V . It is known since 1916, thanks to a theorem of Emmy Noether [47] [61, Theorem 2.1.4],
that the invariant algebra R[V ]G can always be generated by homogeneous polynomials with total
degree lower than |G|, the order of the group. In particular, the algebra R[V ]G is finitely generated
and the degrees of the elements of a minimal integrity basis are lower than |G|. However, this result
is far from optimal and there are many situations where this bound can be lowered [53, 45].

As already stated, a minimal integrity basis of R[V ]G is not unique but the degrees of the
generators of a minimal integrity basis and their number are well defined and independent of the
choice of a particular basis (like the number of elements in a basis of a vector space is independent of
a particular basis and defines the dimension of the space). We will denote by β(G,V ) this maximum
degree. The problem is that there is no general algorithm to compute this number β(G,V ), but to
compute a minimal integrity basis of R[V ]G. Let us now define

β(G) = sup
V

β(G,V ),

where V runs over all finite dimensional representations of G. Of course, by Noether’s theorem [47]
we get

β(G) ≤ |G| , (C.1)

but there are finite groups for which a better bound can be explicitly computed. This is the case,
for instance, for the dihedral group Dn of index n. This group can be realized as the subgroup of
isometries of the plane generated by the rotation by angle 2π/n and by the reflection with respect
to the x-axis. It is of order 2n and Noether’s bound leads to

β(Dn) ≤ 2n.

However, it was proved in [53] the following optimal result, which is an important improvement
compared to Noether’s bound.

Theorem C.1. Let Dn be the dihedral group of index n. Then,

β(Dn) = n+ 1.

The second ingredient required to achieve our goal is an abstract but very useful result from group
theory, lemma C.2 below, which was formulated and proved in [53, Lemma 3.1]. To understand its
statement, recall first that a subgroup N of G is said to be normal if it stable by conjugacy, which
means that

gNg−1 = N, ∀g ∈ G.

The important property is that if N is a normal subgroup of G, then the quotient space (the set of
left classes)

G/N := {gN ; g ∈ G}

is also a group, where the group operation is defined as

g1N ⋆ g2N := (g1g2)N.

Lemma C.2. Let G be a finite group and N be a normal subgroup of G. Then,

β(G) ≤ β(G/N)β(N).

We are now able to formulate the main result of this section and provide a proof for it.

Theorem C.3. Let O+ be the subgroup of positive isometries which preserve the cube. Then, we
have

β(O+) ≤ 12.

Remark C.4. It has not been checked that the bound proposed in theorem C.3 is optimal.

In order to make our proof as simple as possible, we will recall first the following facts.
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(1) The group O
+ is isomorphic (as an abstract group) to the permutation group of four ele-

ments, noted S4. It corresponds, indeed, to the permutations of the four main diagonals of
the cube (see [10, 15.4 p. 273] and [27], for instance).

(2) The subset of the permutation group S4 generated by double transpositions

{e, (12)(34), (13)(24), (14)(23)}

is a normal subgroup of S4 which is isomorphic (as an abstract group) to the dihedral
group D2 and the quotient group S4/D2 is isomorphic (as an abstract group) to S3, the
permutation group of 3 elements.

(3) The permutation group of 3 elements S3 is isomorphic (as an abstract group) to the dihedral
group D3 [10, 27].

Proof of theorem C.3. Since O
+ is isomorphic (as an abstract group) to S4, we have

β(O+) = β(S4).

Now, using the fact that the subgroup ofS4 generated by double transpositions is a normal subgroup
isomorphic (as an abstract group) to D2 and that the quotient group S4/D2 is isomorphic (as an
abstract group) to S3 we deduce from lemma C.2 that

β(S4) ≤ β(S3)β(D2). (C.2)

Finally, since S3 is isomorphic (as an abstract group) to D3, we get that β(S3) = β(D3) and hence
that

β(S4) ≤ β(D3)β(D2) = 12

by virtue of theorem C.1. This achieves the proof. �
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et Technologie, 91190, Gif-sur-Yvette, France

Email address: julien.taurines@ens-paris-saclay.fr
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(Olivier Hubert) Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMT - Laboratoire de Mécanique
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