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Abstract. Sea ice concentration (SIC) in the eastern Arctic and snow cover extent12

(SCE) over central Eurasia in late autumn have been proposed as potential predictors13

of the winter North Atlantic Oscillation (NAO). Here, maximum covariance analysis14

is used to further investigate the links between autumn SIC in the Barents-Kara15

Seas (BK) and SCE over Eurasia (EUR) with winter sea level pressure (SLP) in16

the North Atlantic-European region over 1979-2019. As shown by previous studies,17

the most significant covariability mode of SIC/BK is found for November. Similarly,18

the covariability with SCE/EUR is only statistically significant for November, not19

for October. Changes in temperature, specific humidity, SIC/BK and SCE/EUR in20

November are associated with a circulation anomaly over the Ural-Siberian region21

that appears as a precursor of the winter NAO; where the advection of climatological22

temperature/humidity by the anomalous flow is related to SCE/EUR and SIC/BK23

anomalies.24
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1. Introduction26

The North Atlantic Oscillation (NAO) is the most prominent pattern of atmospheric27

circulation variability in the Euro-Atlantic sector and has a strong influence on the28

regional surface climate (e.g., ?, ?). Understanding the processes that potentially drive29

the NAO state is crucial to improve its predictability. Many recent studies have stressed30

the potential predicting role of eastern Arctic sea ice and continental snow over Eurasia31

in autumn, with a reduction of sea ice concentration (SIC) in the Barents-Kara Seas32

and an increase of snow cover extent (SCE) across Siberia that would favor a negative33

NAO phase during the subsequent winter (e.g., ?, ?, ?, ?, ?).34

Sea ice reduction acts as a source of heat and moisture fluxes that can impact35

both local and large-scale atmospheric circulation. Observational studies (e.g., ?, ?)36

and numerical simulations with both atmospheric general circulation models (AGCMs)37

(e.g., ?, ?, ?, ?) and coupled climate models (e.g., ?, ?) have found that an anomalous38

anticyclone over northern Eurasia related to low SIC/BK in late-autumn tends to evolve39

into a negative NAO-like pattern in winter through a lagged stratospheric pathway.40

The tropospheric anomalies related to low SIC/BK display a Rossby wave-like anomaly41

crossing Eurasia, reinforcing the climatological wave pattern. An upward propagation42

of wave activity finally reaches the stratosphere and weakens the polar vortex. The43

downward response decelerates the westerlies in the North Atlantic sector shifting the44

storm-tracks southward, which is tied to a negative NAO phase (e.g., ?, ?). Yet, causality45

in this chain of processes has to be confirmed (?, ?, ?).46

Snow cover variations affect the atmosphere via changes in reflected shortwave solar47

radiation (albedo), emissivity of longwave radiation, insulation of the atmosphere from48
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the soil layers below, and latent-heat and water release in association with melting (e.g.,49

?). Observational studies (e.g., ?) and GCM experiments (e.g., ?, ?, ?, ?, ?, ?, ?)50

showed that an increase in the continental SCE over Eurasia (SCE/EUR) in late51

autumn can also favor a negative NAO phase in winter via troposphere-stratosphere-52

troposphere interactions. The mechanism relies on the regional radiative cooling induced53

by positive SCE anomalies over central Eurasia, which modifies the structure and54

vertical propagation of planetary-scale wave activity eventually triggering a similar55

stratospheric pathway as described above. But again, as for SIC/BK, causality related56

to SCE/EUR has yet to be fully established (?, ?).57

The stationarity of the SIC-NAO and SCE-NAO relationships has been questioned58

(e.g., ?, ?) due to the shortness of the observational record and the modulation of the59

polar vortex by the Quasi-Biennal Oscillation (?, ?). Besides, the connection between60

these two potential predictors of the winter NAO, i.e. SIC/BK and SCE/EUR, is still an61

open question (?). Although previous observational and modeling studies have shown62

that sea-ice reduction over the eastern Arctic is associated with increased snowfall over63

Siberia (e.g., ?, ?, ?, ?, ?, ?, ?, ?), the physical processes underlying this relationship are64

unclear. There is also a lack of consensus to determine both the respective contributions65

of sea-ice and snow-cover anomalies to the winter NAO predictability and the exact66

timing of their lagged influence on the atmospheric circulation (e.g., ?).67

The aim of this study is to comprehensively set the observed statistical relationship68

between SIC/BK and SCE/EUR with the winter NAO and discuss the associated69

atmospheric circulation, in order to assist model validation in targeted sensitivity70

experiments to come (?, ?). The novelty relies on getting insight into the dynamics71

underlying the SIC/BK and SCE/EUR anomalies linked to the atmospheric precursor72

of the winter NAO, namely the Ural-Siberian pattern.73
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2. Data and Methodology74

In this study, empirical orthogonal function (EOF; ?) and maximum covariance analysis75

(MCA; ?) are used to describe the spatio-temporal structure of SIC/BK and SCE/EUR76

variability as well as their covariability with winter SLP anomalies over the period 1979-77

2019. EOF analysis has been employed to test the robustness of the MCA results. The78

NAO index is defined as the leading principal component (PC), namely standardized79

time series, corresponding to the leading mode (first EOF) of sea level pressure anomalies80

in the North-Atlantic-European region (Figure 1a)(NAE: 20oN− 90oN, 90oW − 40oE;81

e.g. ?).82

MCA is a singular value decomposition (SVD) applied to the covariance matrix of two83

fields that share a common sampling dimension (the actual time) but can be spatially84

independent. The output consists of pairs of spatial patterns, each one corresponding85

to a field, and associated standardized time-series called expansion coefficients (ECs).86

Each MCA mode is characterized by the squared covariance (sc) which is the eigenvalue87

of the covariance matrix, the squared covariance fraction (scf) which is a measure of the88

fraction of explained covariance compared to other modes, and the correlation between89

the expansion coefficients (cor).90

MCA is respectively applied to SIC in the Barents-Kara Seas (BK: 50oN− 90oN, 30oW − 120oE91

), and Eurasian SCE (EUR: 20oN− 90oN, 0o − 150oE) for autumn (from September to92

November) as predictor fields and winter SLP/NAE as predictand field (seasonal aver-93

age for DJF). The first MCA mode is analyzed in both cases. A Monte Carlo test based94

on 100 permutations shuffling only the atmospheric field (i.e. SLP) with replacement is95

performed to determine the statistical significance of these MCA modes. By performing96

MCA upon each resampling we generate a probability density function (PDF) that is97

used to compute the significance level (hereafter simply p-value) which corresponds to98
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the number of randomized values (sc, scf or cor) that exceed the actual value being99

tested (e.g., ?).100

Monthly SIC data are provided by HadISST (Hadley Center Sea Ice and Sea101

Surface Temperature; ?) at 1.0o × 1.0o resolution and SCE data from the Global Snow102

Laboratory at Rutgers University (?). For SCE, October is defined as the average of the103

calendar weeks 40-44 (?), and November of the weeks 44-48. Compared to ? for SCE104

and ? for SIC, our choice of dataset does not affect results. Monthly data of atmospheric105

variables are given by ERA-Interim reanalysis available from the European Center for106

Medium-Range Weather Forecasts (ECMWF) at 2.5o × 2.5o resolution (?). Forecast-107

accumulated turbulent (sensible plus latent) and radiative (shortwave plus longwave)108

heat fluxes initialized twice a day (00, 12h) from ERA-Interim are also used; upward109

is positive, from surface to atmosphere. All anomalies are detrended before analysis110

to focus on the interannual variability, aiming to exclude any long-term relationship111

among variables. Different detrending methods (1st-, 2nd- and 3th-order polynomial112

fits) have been evaluated to assess robustness of the results; in the manuscript we only113

show cubicly detrended anomalies because of the strong non-linear trends in SIC/BK,114

but the results are largely insensitive to the detrending method.115

To explore the dynamics involved in the statistical relationships, regression maps116

are computed by projecting different anomalous fields onto a time-series, either the NAO117

index or the MCA expansion coefficients. In this case, the statistical significance of the118

regressed anomalies is evaluated with a two-tailed Students t-test at 95% confidence119

level.120
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3. Results121

3.1. Covariability: SIC/BK and SCE/EUR122

The leading MCA mode based on September SIC/BK anomalies explains 58% of scf123

(p-value 29%), with a sc of 1.35× 107 (p-value 16%) and yields a cor of 0.56 (p-value124

27%)(Table 1). These high p-values indicate a low confidence level for this relationship,125

associated with a low signal-to-noise ratio and non-significant predictability (e.g., ?, ?).126

For October, the leading MCA mode explains 85% of scf (p-value 1%), with a sc of127

5.09× 107 (p-value 0%),and yields a cor of 0.60 (p-value 3%)(Table 1). The leading128

MCA mode based on November SIC/BK anomalies explains 82% of scf (p-value 2%),129

with a sc of 3.35× 107 (p-value 0%) and yields a cor of 0.63 (p-value 1%)(Table 1).130

The MCA-SIC/BK in October is also significant, but there is no clear atmospheric131

mechanism responsible for a lagged relationship with the winter NAO (see ?). According132

to ?, the potential influence of October SIC/BK anomalies on the winter Euro-Atlantic133

climate would rely on its contribution to November SIC/BK anomalies. On the other134

hand, the dynamics associated with SIC/BK anomalies in November are much more135

plausible and largely reported. It could involve a stratospheric pathway (e.g., ?, ?, ?)136

and represent a suitable predictability source of the winter Euro-Atlantic climate (e.g.,137

?, ?, ?, ?). Thereby, the analysis is focused hereafter on November SIC/BK variability.138

To simplify the nomenclature, we will refer to the MCA covariability mode between139

SIC/BK in November and SLP/NAE in winter as MCA/SICN.140

Figure 1b shows the regression map of SIC anomalies in November onto the141

SIC expansion coefficient of MCA/SICN. The resulting SIC pattern shows negative142

anomalies (i.e. sea-ice reduction) over the northern Barents Sea and the whole Kara143

Sea. The SLP covariability pattern of MCA/SICN (not shown) strongly resembles the144

negative phase of the NAO (Figure 1a). The SLP expansion coefficient of MCA/SICN145
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Figure 1. (a) Leading EOF of detrended sea level pressure anomalies (hPa) in winter

(DJF) over the North Atlantic-European (NAE) region, with a fraction of explained

variance of 47.9 % ; note that the negative phase of the NAO is shown. Leading MCA

mode between (b) SIC over Barents-Kara Seas (%) and (c) SCE over Eurasia (%) in

November with winter (DJF) SLP over the North Atlantic-European region (hPa).

Statistically significant areas at 95 % confidence level based on a two-tailed Student’s

test are contoured. Green contours stand for the climatological sea-ice edge estimated

at 15% in (b) and the climatological snow cover edge estimated at 50% in (c); the full

field of SIC and SCE climatology can be found in Figure S1.

has indeed a correlation of -0.99 with the winter NAO index, illustrating that the NAO146

has been effectively captured as predictand.147

Caution is required to assert cause and effect based on observational data and MCA148

results. Concerning the former, several studies using AGCM simulations (e.g., ?, ?, ?)149

have also found a lagged teleconnection between SIC/BK anomalies and the NAO,150

although the timing may be model dependent (?). As for the latter, we further explore151

the suitability of SIC/BK as predictor. The SIC expansion coefficient of MCA/SICN is152

compared with the leading principal component (PC1) of SIC over the eastern Arctic153
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and over the Northern Hemisphere in November: the SIC expansion coefficient yields154

a high correlation with both the regional PC1 (0.98) and the hemispheric PC1 (0.93).155

Likewise, the lagged regressions of winter SLP onto the two PC1s are almost identical to156

that of the SIC expansion coefficient (not shown), which is consistent with alternative157

approaches based on area-averaged SIC indices (?, ?). Hence, the covariability mode158

of MCA/SICN is associated with a leading mode of SIC variability per se. Note that159

the SIC pattern of MCA/SICN corresponds to the second EOF of turbulent heat flux160

in ?, with a strong ocean-to-atmosphere forcing (see also ? and ?); which is unrelated161

to the so-called “Warm Arctic-Cold Siberia” (WACS) pattern in winter. It follows162

that November SIC/BK anomalies can be considered as a potential predictor of the163

subsequent winter NAO. Lagged regression of SIC anomalies in November onto the164

winter NAO index (Figure S2a) support this conclusion.165

Analogous to the procedure followed for SIC/BK, MCA based on SCE/EUR166

anomalies in late autumn (October, November) have been performed. Note that167

September has not been considered because there is almost no snow cover over the168

continent at that time of the year (e.g., ?). The leading MCA mode for October169

SCE/EUR anomalies explains 52% of scf (p-value 45%), with a sc of 1.90× 107(p-170

value 26%), and yields a cor of 0.69 (p-value 33%). For November, the leading MCA171

explains 74% of scf (p-value 0%), with a sc of 4.89× 107(p-value 0%) and yields a172

cor of 0.76 (p-value 13%). Extending the period using reanalyzed SCE data (instead173

of satellite-derived products) would probably not lead to better statistical results (?)174

especially when considering the potential non-stationarity of the snow-NAO relationship175

(?). In contrast to previous studies that suggested a statistically significant relationship176

between October SCE/EUR and the winter NAO (e.g., ?, ?, ?), these results reveal that177

the covariability of October SCE/EUR with winter SLP/NAE is largely statistically178
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non-significant, namely not discernable from noise. However, we found that November179

SCE/EUR anomalies tend to be followed by NAO-like atmospheric variability, a result180

consistent with the monthly analysis of ?.181

This finding is supported by the lagged regression maps of autumn SCE/EUR182

anomalies onto the winter NAO index, where October does not show statistically183

significant anomalies over Eurasia (not shown) but November does so (Figure S2b).184

Thus, in the following the analysis is restricted to November SCE/EUR. As for SIC,185

we will refer to the leading MCA covariability mode between SCE/EUR in November186

and SLP/NAE in winter as MCA/SCEN for the sake of readability. Figure 1c shows the187

covariability mode of SCE from MCA/SCEN, exhibiting statistically significant positive188

anomalies (i.e. snow cover increase) over central-eastern Eurasia. The SLP covariability189

of MCA/SCEN displays a negative NAO-like pattern (not shown, but similar to Figure190

1a) and its expansion coefficient correlates at -0.99 with the winter NAO index.191

The SCE expansion coefficient of MCA/SCEN attains only a correlation of 0.58192

(0.30) with the first (second) EOF of November SCE/EUR. The fraction of explained193

variance of the two leading EOFs is very low (EOF1=15%, EOF2=12%), indicating194

that they are not well separated statistically (following ?) and illustrating that SCE is195

a noisy field. This result implies, as opposed to the case of November SIC/BK, that196

the covariability of MCA/SCEN does not rely on a dominant variability mode of snow197

cover itself, which questions the feasibility of using SCE/EUR as a potential predictor198

for the NAO.199

Repeating the analysis with snow depth (SD) from ERA-Interim yields consistent200

results: namely, the MCA with October SD not being significant and the one with201

November SD showing hints of significance. In the latter case, as opposed to using202

satellite-derived SCE, sc and scf are higher but above 10% significance level, while the203
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September October November

(MCA/SICN)

scf (p-value) 58 % (29%) 85 % (1%) 82% (2%)

sc (p-value) 1.35× 107(16 %) 5.09×107(0%) 3.53× 107 (0%)

cor (p-value) 0.56 (27 %) 0.60 (3%) 0.63 (2%)

(MCA/SCEN)

scf (p-value) / 52 % (45%) 74 % (0%)

sc (p-value) / 1.90× 107(26%) 4.89× 107 (0%)

cor (p-value) / 0.69 (33%) 0.76 (13%)

Table 1. Results of the MCA covariability analysis between autumn SIC/BK and

SCE/EUR with winter SLP/NAE for the period 1979-2019. The squared covariance

fraction (scf), the squared covariance (sc) and the correlation between the expansion

coefficients (cor) are listed for each mode, together with the significance level (p-value).

correlation between expansion coefficients is smaller but significant at 3% (cor=0.52).204

The MCA/SDN pattern (not shown) and the regression of November SD/EUR anomalies205

onto the winter NAO index (Figure S3) display positive anomalies over central Eurasia,206

particularly west of the Baikal Lake.207

3.2. Ural-Siberian anticyclone (SCAND)208

To shed light on the large-scale atmospheric circulation in November preceding the209

winter NAO, the climatology and variability of SLP over Eurasia is analysed. This210

is compared to contemporaneous SLP anomalies associated with MCA/SICN and211

MCA/SCEN, together with the SLP precursor of the NAO obtained by regressing212

November SLP anomalies onto the winter NAO index.213

Figure 2b shows the regression map of Northern Hemisphere (NH) SLP anomalies214

onto the first EOF of November SLP anomalies over Eurasia (20oN− 90oN, 0o − 150oE;215

EOF1). This regional EOF1 strongly resembles the hemispheric EOF1 (not shown;216

r=0.89), which is also a dominant mode of variability later in the season - in winter217

(?). The pattern is dominated by an anticyclonic circulation anomaly over the subarctic218

Eurasian region, but exhibits a dipole-like structure with a weaker center of opposite sign219
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(a) Climatology SLP (Nov)

990 996 1002 1008 1014 1020 1026
hPa

(b) EOF SLPEUR (Nov)

-11 -9 -7 5 -4 -3 -2 -1 1 2 3 4 5 7 9 11
hPa

(d) SLPN x MCA/SCEN(c) SLPN x MCA/SICN (e) SLPN x NAODJF

-5.0 -4.0 -3.0 -2.0 -1.01.0 2.0 3.0 4.0 5.0
hPa

Figure 2. (a) Climatology (hPa ; shading) and standard deviation (ci=2hPa ; green

contours) of SLP in November. Regression map of detrended Northern Hemisphere

sea level pressure anomalies (hPa) in November onto (b) the leading PC from the EOF

analysis of November SLP over Eurasia (40◦N -90◦N , 0◦-150◦E ; 41.5 % fraction of

explained variance), (c) the MCA/SICN expansion coefficient, (d) the MCA/SCEN

expansion coefficient and (e) the winter NAO index - multiplied by -1. Statistically

significant areas at 95 % confidence level based on a two-tailed Student’s test are

contoured.

over western Europe. The identification of this surface anticyclone has been ambiguous220

in the literature. It appears to be related to Ural blocking at daily time-scales (e.g.,221

?, ?), but it also constitutes a prominent mode of variability at monthly and seasonal222

time-scales (e.g., ?, ?). ? tentatively named it as the Russian (RU) pattern, but here it223

will be referred to as the Ural-Siberian (U-S) pattern. Interestingly, the centers of action224

of EOF1 (Figure 2b) tightly project on the areas of maximum interannual variability225

(i.e. standard deviation; green contours in Figure 2a), as it is also the case for the226

mid- (500hPa; ?) and upper-tropospheric (200hPa; ?) geopotential height. The leading227



Acc
ep

ted
 m

an
us

cri
ptOn the observed connection between Arctic sea ice and Eurasian snow in relation to the winter NAO12

mode of Eurasian geopotential height variability in the mid-upper troposphere, which228

has a better-defined wave-like signature (Figure S4a at 300hPa; e.g., ?), can be more229

easily identified as the Scandinavian (SCAND) pattern, a mode of internal variability230

associated with Rossby wave propagation dynamics and maintained by transient-eddy231

feedback (e.g., ?, ?). Note that the U-S pattern of SLP corresponds to the surface232

projection of the SCAND pattern at upper levels, and the other way around, since they233

show a marked barotropic structure (e.g., ?, ?).234

The statistically significant SLP anomalies preceding the winter NAO also show a235

dipole-like structure (Figure 2e), projecting on the centers of the U-S pattern over the236

Siberian coast and the British Isles (Figure 2b). At 300hPa, the winter NAO is preceded237

by a wave-like structure over Eurasia, which also projects on the SCAND pattern at238

upper levels (Figure S4c). These results are consistent with ?, ?, ? and ? who showed239

that the winter NAO tends to be preceded by a wave-like anomaly over Eurasia, which240

triggers a stratospheric pathway. These findings suggest that the U-S/SCAND pattern241

in November may eventually evolve into the winter NAO with a 1-month lead time and242

might be considered a precursor of the winter NAO. This line of reasoning has been243

recently confirmed by ?.244

Figure 2c and 2d show the regression map of contemporaneous SLP anomalies onto245

expansion coefficients of SIC and SCE from MCA/SICN and MCA/SCEN, respectively.246

The anomalous dipole-like pattern associated with MCA/SCEN(Figure 2d) has a strong247

resemblance to EOF1 (Figure 2b), which is consistent with previous studies using other248

autumnal Eurasian SCE indices (e.g., ?, ?). It is worth noting that there is no signal over249

the Siberian High region (reddest areas at mid-latitudes of Figure 2a), which would be250

expected from the radiative feedback linked to Eurasian snow cover anomalies (Figure251

1c and S2b). However, the anomalous Ural-Siberian anticyclone in Figure 2b has been252
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usually interpreted as a north-westward expansion of the Siberian High in response to253

increased SCE over central Eurasia (?, ?, ?, ?, ?), although the U-S pattern develops254

over the subpolar low-pressure belt along the Siberian coast (blue shading in Figure255

2a), linked to local transient-eddy activity (e.g., ?) and cyclone tracks (e.g., ?). In256

fact, no AGCM study prescribing positive Eurasian SCE anomalies has reported such a257

circulation response. Instead, they have found a regional baroclinic structure associated258

with a reinforced Siberian High at surface and cyclonic circulation anomalies in the259

upper troposphere (?, ?, ?, ?, ?, ?, ?, ?); the most significant being the reinforcement260

of the Siberian High (?, ?). Thus, there is no modelling evidence supporting the impact261

or triggering role of SCE/EUR anomalies on the U-S/SCAND pattern. This line of262

reasoning suggests that the SCE/EUR anomalies in November related to the winter263

NAO (Figure 1c and S2b) might be potentially driven by the Ural-Siberian anticyclone264

(Figure 2b) rather than the other way around, which is in agreement with ? and ? and265

further discussed in Section 3.4.266

On the other hand, the dipole-like pattern of SLP anomalies associated with267

MCA/SICN (Figure 2c) is slightly different from the other patterns, as the centers268

of action are located downstream, with the anticyclonic anomalies shifted toward269

the continent and the cyclonic anomalies displaced toward the Nordic Seas. The270

vertical structure of the anticyclonic anomalies over the Siberian coast reveals some271

baroclinicity(cf. Figure S4a), in agreement with AGCM simulations (e.g., ?), which272

suggests a possible contribution of SIC/BK variability on the U-S pattern (?) that is273

further discussed in section 3.4.274

3.3. Linkage between SIC/BK and SCE/EUR275

To explore the relationship between November SIC/BK and SCE/EUR in relation to the276

winter NAO, regional near-surface conditions of temperature (T925), specific humidity277



Acc
ep

ted
 m

an
us

cri
ptOn the observed connection between Arctic sea ice and Eurasian snow in relation to the winter NAO14

(q925) and horizontal wind are analyzed at 925hPa (Figure 3). As our framework278

does not allow disentangling cause and effect, the analysis below is focused on lagged279

regressions in November onto the winter NAO index, thereby assessing the observed280

NAO precursors in an objective way. Regressions onto the expansion coefficients of281

MCA/SCEN or MCA/SICN yield very similar results.282

Climatology in this region shows a cold and dry environment east of Scandinavia283

(eastern Arctic/eastern Siberia), whereas in western Europe warm and wet conditions284

prevail (Figure 3a,b). Figure 3c and 3d show regression maps of November T925 and285

q925 onto the winter NAO index, respectively. Warm and wet anomalies are found286

over the Barents-Kara Seas in relation to sea-ice reduction (c.f. Figures 1b,S2a) while287

cold and dry anomalies extend across Eurasia in association with the increase in snow288

cover (c.f. Figures 1c,S2b), although only the latter is statistically significant. SIC/BK289

reduction and SCE/EUR increase are source and sink of humidity, respectively, as290

discussed in previous observational and modelling studies (e.g., ?, ?, ?). Noteworthy, it291

is usually assumed that the connection between SIC/BK and SCE/EUR is as follows:292

sea-ice reduction providing extra evaporation, increased moisture flux inland, and293

enhanced snowfall over Eurasia (e.g., ?, ?). However, model results show that the direct294

impact of sea-ice reduction on snowfall would mainly apply to the Siberian coast (e.g.,295

?, ?, ?). Hence, there is room for further exploring the winter NAO-related SIC/BK296

and SCE/EUR anomalies.297

The target diagnostics are the linear advection terms of T925 and q925: namely,298

the advection of climatological T925/q925 by the anomalous flow [−v′. ∇(T̄ , q̄)] and299

the advection of anomalous T925/q925 by the climatological flow [− v̄.∇(T ′, q′)]; the300

non-linear advection terms are negligible in terms of amplitude (not shown) (e.g., ?).301

The advection of anomalous T925/q925 driven by the southwesterly climatological302
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Figure 3. (a,b) Climatology of November air temperature (T925 ; oC ) and specific

humidity (q925 ; g/kg). Climatological wind at 925hPa (ū, v̄; m/s) is overplotted with

vectors. (c,d) Regression map of detrended T925 (oC) and q925 (g/kg) anomalies in

November onto the winter NAO index-multiplied by -1. Anomalous wind at 925hPa

(u’,v’; m/s) is overplotted with vectors. (e,f) Regression map of the advection of

anomalous T925 (oC/s) and q925 ((g/kg)/s) by the climatological flow in November

onto the winter NAO index - multiplied by -1. (g,h) Regression map of the advection

of climatological T925 (oC/s) and q925 ((g/kg)/s) by the anomalous flow in November

onto the winter NAO index - multiplied by -1.
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flow (Figure 3e,f), bringing warm and wet air masses from the Mediterranean, yield303

statistically significant anomalies upstream and over the Ural Mountains, i.e. windward.304

These warm and wet conditions do not contribute to the snow dipole preceding the NAO305

shown on Figure 1c. On the other hand, the advection of climatological T925/q925 by306

the anomalous flow yield statistically significant anomalies downstream (downwind) the307

Urals, namely over Siberia (Figure 3g,h). It implies that the wind anomalies preceding308

the NAO transport cold and dry air from the Arctic into Eurasia, indicative of land309

cooling and humidity sink associated with snowfall, particularly west of Baikal Lake (cf.310

Figures 1c,S3). This south-eastward transport, together with the induced warm and wet311

advection over the Mediterranean region (Figure 3g,h), suggests that the anomalous U-S312

anticyclone is the responsible of pushing the snow edge northward over western Eurasia313

and southward over eastern Eurasia, thereby generating the anomalous continental-scale314

dipole of snow cover (Figure 1c) and surface conditions(Figure 3c,d). These results315

contrast with previous works suggesting that increased SCE/EUR is a consequence of316

the moisture increase due to SIC/BK reduction (e.g., ?, ?), while our results suggest317

that the relationship is determined by the advection of climatological cold air from the318

Arctic, mediated by the anomalous atmospheric circulation.319

3.4. Causality between SIC/BK, SCE/EUR and the U-S pattern320

To gain insight on the causality between SIC/BK, SCE/EUR and the regional321

atmospheric circulation, turbulent (THF; sensible (SHF) plus latent (LHF)) and322

radiative (RHF; shortwave (SWR) plus longwave (LWR)) surface heat fluxes in323

November are analyzed (Figure 4).324

Over the ocean, THF anomalies associated with the U-S pattern are dominated325

by downward heat flux, that is by ocean heat uptake, over the Norwegian Sea and the326

southern, ice-free Barents Sea (Figure 4a). These negative THF anomalies are likely327
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Figure 4. Regression map of detrended turbulent heat flux anomalies (W ·m−2;

a,c,e,g) and radiative heat flux anomalies (W ·m−2; b,d,f,h) in November onto (a,b)

the leading PC from the EOF analysis of November SLP over Eurasia (see Figure 2b),

(c,d) the MCA/SICN expansion coefficient, (e,f) the MCA/SCEN expansion coefficient

and (g,h) the winter NAO index - multiplied by -1. Statistically significant areas at 95

% confidence level based on a two-tailed Student’s test are contoured.
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related to the southerly advection of warm and moist air induced by the anticyclonic328

circulation in the Siberian coast and the cyclonic circulation over the British Isles (Figure329

2b); note that both SHF and LHF anomalies contribute almost equally (Figure S5).330

This anomalous THF pattern strongly resembles the atmosphere-driven THF EOF1331

of ?. And, consistently with this interpretation, the U-S/SCAND mode also shows332

negative RHF anomalies (Figure 4b), which are determined by increased downwelling333

LWR (Figure S6; e.g., ?, and references therein). On the other hand, THF anomalies334

associated with MCA/SICN display enhanced upward heat flux over the Kara Sea and335

northern Barents Sea (Figure 4c). These positive THF anomalies, with contribution336

from both SHF and LHF (Figure S5), are related to sea-ice reduction and its retreat337

of the edge (Figure 1b). In this case, the anomalous THF pattern projects on the ice-338

driven THF EOF2 of ?, associated with heat release over the newly-opened oceanic339

area (e.g., ?). Note that this positive THF anomaly over BK is accompanied by a340

negative THF anomaly sharply south of the sea-ice edge (cf. Figures 1b,4c), which is341

the expected response to sea-ice reduction due to the modification of the air mass as342

it encounters open water (?, ?, ?, ?), although in this framework we cannot discard a343

role from atmospheric advection as in Figure 4a. Consistent with the ice forcing of the344

atmosphere, note likewise that there is a positive RHF anomaly over BK (Figure 4d),345

controlled by emission of LWR (Figure S6). THF anomalies associated with MCA/SCEN346

(Figure 4e) and the winter NAO (Figure 4g) show contributions from both signals, i.e.347

ocean heat uptake related to the U-S pattern (Figure 4a) and ocean heat release linked to348

SIC/BK (Figure 4c), with a larger and statistically significant influence of atmospheric349

advection/forcing over the Norwegian Sea for the former. It is worth stressing that350

both MCA/SCEN and the winter NAO display positive THF anomalies over BK, which351

suggests that SIC/BK anomalies may contribute to tropospheric anomalies projecting352
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on U-S/SCAND-like variability (Figure 2). Several AGCM studies have reported U-353

S/SCAND circulation anomalies over Eurasia in response to SIC/BK reduction (e.g.,354

?, ?, ?, ?, ?, ?, ?, ?, ?, ?).355

Over the continent, the snow-related THF anomalies depict statistically significant356

upward heat flux over central Eurasia, west of Baikal Lake, consistently among the357

regression maps onto the four time-series (Figure 4-left column). These positive THF358

anomalies are the result of the balance between snow melting and sublimation, with359

negative LHF anomalies (atmospheric cooling; Figure S5), and the heat transfer related360

to the advection of climatological cold air from the Arctic (Figure 3g) encountering a361

warmer surface, with positive SHF anomalies (atmospheric warming; Figure S5) that362

overcome the former. On the other hand, RHF anomalies systematically show downward363

heat flux over the same central Eurasian region, maybe weaker for the winter NAO364

(Figure 4-right column). In this case, the downwelling of LWR (atmospheric cooling)365

is stronger than the reflection of SWR (albedo effect leading to atmospheric warming;366

Figure S6). Note that over the snow-covered area south of Baikal Lake (Figures 1c,367

2c-d) LWR and SWR anomalies are fully compensated (Figure S6). Finally, it is worth368

highlighting that over central Eurasia the net radiative cooling has to counteract the369

net turbulent warming (Figure 4), which may imply a low signal-to-noise atmospheric370

response to realistic snow anomalies.371

4. Conclusions372

According to previous observational studies (e.g., ?, ?, ?), November SIC/BK represents373

the most robust “potential” predictor of the winter NAO based on eastern Arctic SIC374

variability. This work revealed that it corresponds to the leading EOF of SIC at regional375

and hemispheric scale, i.e. over the whole Arctic.376
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Concerning SCE/EUR, the leading covariability with winter SLP in the North377

Atlantic-European region is not statistically significant for October SCE, in contrast378

to previous observational studies using different approaches (e.g., ?, ?); while it is379

marginally significant for November SCE, in agreement with ?. However, SCE/EUR380

does not display a dominant mode of variability in November which implies that it381

should not be considered as an “actual” predictor. It seems that the high correlation382

between November SCE/EUR and the winter NAO relies on the atmospheric precursor383

of the NAO itself, namely the Ural-Siberian anticyclone, in agreement with ? and ?.384

Another aspect stressed in this study is that the Ural-Siberian anticyclone appears385

not to be associated with the Siberian High but with the regional, subpolar low-pressure386

system. The Ural-Siberian pattern stands for the third most prominent atmospheric387

pattern in the Northern Hemisphere after the PNA in the North Pacific and the388

NAO in the North Atlantic (e.g., ?). Particularly in November, the Ural-Siberian389

anticyclone represents the leading EOF of SLP and is associated with the leading EOF390

of geopotential height at the upper troposphere (e.g., ?, ?); which corresponds to the391

SCAND pattern (e.g., ?, ?).392

Finally, the variability of the Ural-Siberian pattern, which may include some393

SIC/BK forcing, appears to be responsible for the connection between the winter NAO394

and November SCE/EUR anomalies via advection of climatological temperature and395

humidity by the anomalous winds, transporting cold and dry air from the Arctic into396

Eurasia. The (potential) contribution of SCE/EUR to the Ural-Siberian pattern is397

questioned due to the competing effect of the associated radiative and turbulent heat398

flux anomalies over the snow-covered areas.399
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