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We demonstrate gate control of electronic heat flow in a thermally-biased single-quantum-dot
junction. Electron temperature maps taken in the immediate vicinity of the junction, as a function
of the gate and bias voltages applied to the device, reveal clearly defined Coulomb diamond patterns
revealing a maximum heat transfer right at the charge degeneracy point. The non-trivial bias and
gate dependence of this heat valve results from both the quantum nature of the dot at the heart of
device and its strong coupling to leads.

PACS numbers: 73.23.Hk

In the emerging field of quantum thermodynamics,
heat transport and dissipation in a quantum electronic
device is a fundamentally important topic [1–4]. Gate-
tunable single-quantum dot junctions [5] are paradig-
matic test benches for quantum transport. Whereas the
study of charge transport therein has already allowed the
exploration of a large palette of physical effects at play,
heat transport and thermoelectric properties have been
investigated in a limited number of cases, e.g. in quantum
dots formed in a two-dimensional electron gas (2DEG)
[6–8] and in semiconducting nanowires [9–11]. As op-
posed to charge transport processes, the understanding
of electronic heat transport and generation across a nano-
scale object is, experimentally, still in its infancy [12–
14]. Local thermometry has been achieved only in a very
limited number of quantum devices. The temperature
dependence of the critical current of a superconducting
weak link was used in scanning probe experiments to
reveal for instance the scattering sites in high-mobility
graphene [15, 16]. Yet, to date, these experiments are
limited to temperatures above 1 K. At milliKelvin tem-
peratures, local thermometry can be performed in quan-
tum devices formed in a 2DEG by a variety of meth-
ods [17, 18] that have recently been pushed to quantita-
tive accuracy [19–21]. Noise thermometry was applied to
thermoelectric measurements in InAs nanowires [22]. In
metallic devices, electronic thermometry is usually based
on the temperature dependence of charge transport in su-
perconducting hybrids, either in the tunnelling regime for
Normal metal-Insulator-Superconductor (NIS) junctions
[23, 24] or at higher transparencies allowing for supercon-
ducting correlations [25–27]. This has recently allowed
the realization of a photonic heat valve with a supercon-
ducting qubit coupled to heat reservoirs (probed by NIS
probes) through coplanar waveguide resonators [28].

The single electron transistor (SET) is an essential
brick for the emerging field of quantum caloritronics [29].
Building on the NIS thermometry technique, the ther-
mal conductance of a metallic SET was measured [30].

Despite the continuous density of states in the metallic
island, electron interactions readily lead to striking devia-
tions from the Wiedemann-Franz law [31]. Going beyond
this simple case, two questions arise: (i) how does such
a SET behave thermally beyond equilibrium, that is, at
finite voltage bias and/or at large temperature difference
where both Joule heat and heat transport are to be taken
into account, and (ii), if the central island is replaced by
a quantum dot (QD), how would the discrete nature of
its energy spectrum manifest in the thermal properties of
the device? In the weak coupling regime, the discreteness
of the QD energy spectrum makes electronic transport
processes strongly selective in energy. At zero net par-
ticle current, whatever the gate voltage, the heat flow is
zero since electrons tunnel back and forth exactly at the
energy level defined by the QD. The heat conductance is
thus zero at all gate voltages. Heat transfer is predicted
only at non-zero particle current, when the QD energy
level is positioned just above or below the Fermi level
of the hot lead, so that high-energy electrons can escape
through the dot, or low-energy electrons can be injected
there [18, 32].

In this Letter, we report on the operation of a single-
quantum-dot heat valve. The methodological novelty is
to introduce local thermometry in a metallic single quan-
tum dot device. When current flows through it, Joule dis-
sipation results in a temperature increase following the
usual Coulomb diamonds’ pattern. At zero net charge
current and charge degeneracy, the observed electronic
heat transfer is the result of energy quantization in the
dot combined with strong tunnel coupling to the leads.

Figures 1(a,b) display a colored scanning electron mi-
crograph of a typical device as the one reported here,
whereas Fig. 1(c) shows a thermal diagram of the same,
with the corresponding color code for each device ele-
ment. The device is different from that in Ref. [2] but it
has the same geometry and the fabrication procedure is
similar. The fabrication of the main part of the device is
based on e-beam lithography, three-angle, Au thin film
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FIG. 1. (a) False-colored SEM image of a typical device. The
source is colored in red, the drain in green and the super-
conducting leads in blue. The circuit diagram shows the heat
transport set-up. The longer (2.5 µm) SNS junction is used as
a heater driven by a constant d.c. battery and the shorter (700
nm) SNS junction is used as a thermometer. (b) Zoomed-in
view of the nano-gap between the source and drain created
by electromigration and the nano-particles made by Au evap-
oration. (c) Schematic of the device, with the different heat
flows to/from the source. (d) Differential conductance map of
the device measured at 70 mK against the drain-source bias
voltage Vb and the gate voltage Vg with no additional heating
applied.

evaporation and lift-off. After the lift-off, we deposit a
1-2 nm thin Au layer on top of the whole device. Due
to surface tension forces, this small amount of deposit
leads to the formation of 5–10 nm diameter Au nanopar-
ticles on the sample. A bow-tie shaped Pt electromi-
gration junction forms the central part of the device on
which the Au nanoparticles form a dense layer of QDs,
see Fig. 1(b). Here we have chosen Pt as the electromi-
grated material in order to ensure the source local density
of states at the QD contact to be free of superconducting
correlations induced by the nearest Al lead [34].

The electromigration junction is connected on one side
to a bulky drain electrode made of Au, in fairly good con-
tact to the thermal bath at a temperature Tb, and on the
other side to a narrow source electrode, again made of Au
[2]. Four Al leads provide contacts to the source through
a transparent interface. At temperatures well below
Al superconducting critical temperature, these leads are
thermally insulating. The source is therefore fairly ther-
mally decoupled from its environment. In the standard
hot electron assumption, electron-electron equilibration
is much faster than any other dynamical process. The
source electrons are thus in a quasi-equilibrium state de-
scribed by a Fermi-Dirac distribution at a temperature Te

that can significantly differ from Tb. The pair of closely
spaced Al leads connected to the source forms an SNS
junction with a temperature-dependent critical current
that will be used as an electronic thermometer. Con-
versely, the widely-spaced pair of Al leads forms instead

FIG. 2. (a) d.c. IV characteristics of the SNS thermometer
junction at different bath temperature Tb, the current bias
value at which the voltage exceeds a threshold V0 ' 0.5µV
defining the switching current. (b) The critical current IC
as a function of the bath temperature, the axes being nor-
malized. It is defined as the most probable switching current
extracted from the histograms. The calibration curve (red
solid line) is a fit with the theory [44]. (c) Histogram of the
stochastic switching current of the SNS junction at different
bath temperatures, with a fitted gaussian envelope for each.

a junction with a vanishing critical current, which allows
it to be used as an ohmic heater. In contrast to prior
work [30], we have chosen here transparent rather than
tunnel contacts to the source, for two reasons. First, SNS
junctions can provide less invasive thermometers than
NIS junctions that are biased at a voltage of about ∆/e,
which in turn can lead to significant heating and cooling
effects [24]. Second, electromigration requires low access
resistances, which is inherently incompatible with tunnel
contacts.

The nanometer-sized gap was created within the Pt
constriction by means of electromigration at a tempera-
ture of 4 K [2, 35]. The device was further cooled in situ
down to the cryostat base temperature of about 70 mK.
Figure 1(d) shows a differential conductance map of the
QD junction as a function of bias and gate voltages, Vb

and Vg respectively, with no additional heating. From the
observed Coulomb diamonds, one finds a charging energy
Ec = 4 meV [36]. Our detailed analysis [37] provides a
tunnel coupling h̄Γ value in the range 0.2 - 1.5 meV, de-
pending on the considered single energy level involved in
low-bias electron transport at a given charge degeneracy
point. In spite of the large tunnel coupling h̄Γ � kBT ,
it is still not strong enough to induce Kondo effect.

We now move to the description of the electron ther-
mometers. The critical current IC of an SNS junc-
tion is highly sensitive to the electronic temperature Te

in N. The relevant energy scale is the Thouless energy
εth = h̄D/L2, where D is the diffusion constant in N and
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L is the junction length [44]. For Te > εth/kB, IC de-
creases rapidly with increasing temperature, allowing it
to be used as a secondary electron thermometer [25, 26].
In a single IV characteristic, the switching current is de-
fined as the value of the current at which the voltage is
larger than a threshold voltage chosen above the mea-
surement noise level. Figure 2(a) shows a series of such
characteristics at different bath temperatures. Switch-
ing current histograms, together with a gaussian fit of
their envelope, are shown in Fig. 2(c) for a series of
bath temperature values. The histogram width increases
with the temperature, consistently with a Josephson en-
ergy fluctuating by 2kBT . In Fig. 2(b), the variation of
the critical current with the bath temperature fits nicely
the theoretical expectation [44], the latter being used as
the thermometer calibration. The low Thouless energy
εth ∼ 5 µeV was chosen in order to avoid a saturation of
IC. The thermometer thus remains sensitive at low tem-
perature, where thermal transport through the QD gains
importance compared to other heat relaxation processes.

In the experiment, we heat up the source by applying
a constant heating power Q̇H = 6 fW to the heater junc-
tion. The drain is biased at a potential Vb, the source side
being grounded via one of the SNS thermometer contacts.
Figure 3(a) shows a map of the source electronic temper-
ature as a function of Vb and Vg. Its resemblance to the
charge conductance map of Fig. 1(d) is striking. The
source temperature Te increases rapidly with increasing
charge current due to the related Joule power. Right at
the charge degeneracy point, the source temperature is
lower than in the rest of the map. The higher resolution
temperature map of Fig. 4(a) shows a clear cooling re-
gion of ellipsoidal shape, with slightly canted axes. This
cooling effect is the result of the enhanced heat transfer
between the hot source and cold drain.

Figure 3(c) shows energy diagrams for three different
cases indicated by circles in the temperature Te(Vg) pro-
files at two different bias of Fig. 3(b). At zero bias and
far away from charge degeneracy (case 1), there is neither
Joule power nor heat flow through the QD. The source
is overheated up to Te = 163.5 mK due to the balance
between the applied power Q̇H and the main thermal
leakage channel, namely the electron-phonon coupling
Q̇e−ph. Still at zero bias, but near a charge degener-

acy point (case 2), there is a heat flow Q̇D through the
QD, but still no charge flow. This shows up (blue curve
in Fig. 3(b)) as a temperature Te drop by several mK
at the charge degeneracy point. The gate-controlled QD
junction thus acts as a heat valve. At higher bias (case 3),
this cooling contribution is overcome by the Joule heat
Q̇J. A temperature maximum is thus observed at values
of the gate potential close to the charge degeneracy point
(red curve in Fig. 3(b)).

The mere observation of cooling at the charge degen-
eracy point is in clear contradiction with the theoreti-
cal prediction in the weak coupling, sequential tunnel-

FIG. 3. (a) Experimental map of the source electronic tem-
perature in the Vb − Vg plane. (b) Individual gate traces
of the source temperature at two different bias values. (c)
Schematic energy diagram of the heat flows in/out the source
in various conditions as indicated by labels in (b): (1) away
from charge degeneracy and at zero bias (left), (2) at a charge
degeneracy point Vg = V 0

g but still at zero bias (middle) or
(3) at non-zero bias in a conducting region (right). The gray
profile depicts the quantum level spectral density. The ratio
between the level broadening h̄Γ, the bias Vb and the thermal
energy kBT are in correspondence with panel (b) conditions.

The arrows indicate the applied heating power Q̇H, the Joule
power Q̇J, the electron-phonon coupling power Q̇e−ph and the

power flow through the QD Q̇D.

ing regime. Indeed the present experiment deals with a
strong tunnel coupling between the QD and the leads,
with a ratio h̄Γ/kBTe≈ 20, rendering the weak coupling
picture inapplicable.

We now go beyond the sequential tunneling approxi-
mation. Thanks to the extremely high charging energy,
in the vicinity of a charge degeneracy point, the device
can be described as a non-interacting single energy level.
We are interested in exploring the properties of the leads
at stationarity and in particular their electronic tempera-
ture; in the NEGFs framework this is possible via the so-
called inbedding technique [37, 45, 46]. It is worth men-
tioning that it is not based on a full heat balance model
accounting for the heat flow via phonons and the super-
conducting leads. We instead assume that the electron-
phonon coupling strength itself does not change appre-
ciably within the temperature range of the map, which
is equivalent to assume that the main particle and en-
ergy redistribution processes in the lead are dominated
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FIG. 4. (a) A highly-resolved map of the source electronic
temperature at the same experimental condition as in Fig. 3
and around a charge degeneracy point defined by Vg = V 0

g .
(b) Calculated temperature map obtained with the inbed-
ding technique with Γ = 0.25 meV, ΓL/ΓR = 3/17 and Td

= 85 mK. (c) Experimental and (d) theoretical variation of
the temperature in the region where crossing from cooling to
heating is observed; each curve refers to a given applied bias
Vb: (blue) 20 µV, (orange) 22 µV, (red) 24 µV. (e) Schemat-

ics describing the crossover between the heat flow Q̇D and the
Joule heat Q̇J as a function of the gate at a fixed bias, result-
ing in temperature decrease at Vg − V 0

g = - 0.12 mV (case 1,
left) or increase at 0.46 mV (3, right). At 0.16 mV (2, mid-
dle), the two flows are equilibrated. The electron-phonon heat

Q̇e−ph as well as the injected heat Q̇H are omitted for clarity.
The widths of the arrows indicate their relative strengths.

by electron-electron interactions. By including in the the-
ory the measured temperature (163.5 mK) of the source
when decoupled from the QD, we effectively take into
account its thermal coupling to the bath.

The theoretical temperature map around a charge de-
generacy point is shown in Fig. 4(b) and reveals a nice
agreement with the experimental data in Fig. 4(a). Here,
the temperature of the drain Td is set to 85 mK and
the coupling of the QD to the drain is asymmetric with
a coupling ratio ΓL/ΓR = 3/17 between left and right
leads and Γ = 0.25 meV. These best fit values allow us
to reproduce semi-quantitatively the temperature pro-
files of the crossing region, see Fig. 4(c,d). The width
in gate potential of the cooling region is independent of
the bath temperature and increases with the coupling Γ
[37]. Conversely its extension in bias depends weakly on
Γ and increases with the temperature difference across

the junction.

The present case actually has some similarities with
the regime of a metallic Single Electron Transistor where
cooling at the charge degeneracy point was also found
[2, 31]. Nevertheless, an asymmetry in gate voltage is
clearly observed in the experimental and theoretical tem-
perature map. For a bias voltage Vb around 22 µV , the
source temperature can be tuned either below or above
the reference temperature of 163.5 mK by acting on the
gate voltage, see Fig. 4(c). This behavior is not to be
expected in the case of a metallic island where electron-
hole symmetry in the density of states makes transport
properties symmetric across the charge degeneracy point.
Therefore it is an unambiguous signature of the QD dis-
crete energy spectrum. At a given bias, the value of the
gate potential determines the position of the broadened
energy level in the QD (see the grey profile in Fig. 4(e))
and thus the mean energy of the tunneling electrons.
This in turn affects the heat balance in the source and
modifies the boundary of the cooling region in the tem-
perature map. The extension in bias of this crossover
zone, where one can switch from cooling to heating by
adjusting with the gate, depends on both the coupling Γ
and the temperature difference across the QD [37].

This work shows that electronic heat transport through
a QD junction can be modulated by a gate potential,
making it act as a gate-tunable heat valve. This be-
havior can have important consequences in the practical
thermo-electric efficiency of such a single quantum-dot
junction [47]. The Coulomb diamond patterns in the
temperature maps reveal the intimate relation between
charge conductance on one hand and heat transport and
dissipation on the other. Further experiments may al-
low a quantitative comparison of thermal effects to the
charge transport properties, in a wide range of tunnel
couplings. The ability of precision electron thermome-
try at the heart of a QD-based device demonstrated here
opens wide perspectives in the field of heat transport and
dissipation in quantum electronic devices, paving the way
for quantitative tests of the Landauer principle in the
quantum information regime [48].
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Supplemental Material: A Single-Quantum-Dot Heat Valve

In this supplemental material part, we discuss about the sample fabrication, charge transport properties, perfor-
mance of our SNS thermometer junction as a bolometric detector, and the details of the theoretical approach used
to explain our data.

SAMPLE FABRICATION AND CHARGE TRANSPORT CHARACTERISTICS

We have used a Si substrate covered with a 300 nm SiO2 oxide, from which gold films thinner than about 10 nm are
known to dewet. Yet, and most interestingly, the gold nanoparticles even happen to form on top of the noble metal
surfaces (Au, Pt) from which the electromigration constriction is formed. This means that a thin gold film does not
wet on gold. This was also observed by the Cornell group [S1]. In line with these authors, we believe that even after
thorough pumping down to a few 10−7 mbar (as is usual in evaporation chambers), the noble metal surfaces are still
not clear of a contaminant layer (e.g. water), which leads to dewetting of the nm-thin gold top layer.

The samples in Ref. [S2] and in the present manuscript share the same geometry and fabrication technique but
they are different samples that were fabricated in two different runs. The formation of a nano-gap by electromigration
depends sensitively of the structural details (precise width and thickness) of the constriction, therefore the size of
the gap (between leads and dot) and its structural details vary from one electromigration to other. As a result, the
strength of tunnel coupling also varies. Here, the tunnel coupling in Ref. [S2] device was about 10 times larger than in
the present device. In both cases Pt was used as the electro-migration material, as it suppresses the superconducting
proximity effect extremely efficiently, much more than Au.

The charging energy of the dot depends on the actual size of the Au nano-island and the total effective capacitance
with its environment, that is determined by both the precise nature of the evaporated Au droplets and the detailed
structure of the nano-gap created by electromigration. Therefore, it is expected to have a different charging energy
for two otherwise similar samples. Metallic quantum dots have been investigated in the 90s. In Ref. [S3], an energy
level separation of 0.7 meV and a charging energy of 6 meV were deduced from the measured energy spectra in 10
nm Al nanoparticles. The nanoparticles used in our work can be seen from SEM images to be about 5 nm in size
and we expect an energy level separation of the order of a few meV. In a previous work [S4] from our group, the
weak coupling to leads enabled us to observe sharp resonances in the differential conductance map corresponding to
an energy level separation of about 5 meV.

Figure 1 of the main text displays the differential conductance map as a function of both the bias and gate voltages
Vb and Vg respectively. A Coulomb diamond pattern is clearly, but partly, visible. The charging energy of 4 meV is
estimated from extrapolating the bias at the top of a diamond, which is actually twice the charging energy [S5]. We
did not measure this device above bias voltages of about ± 4 mV, as, due to the rather large tunnel couplings, this
voltage leads to currents of about 6 nA, beyond which we observe instabilities related to inelastic processes. At higher
bias, there is a risk of burning the device. Therefore, a full spectroscopic characterization revealing several successive
levels was not possible.

The detailed shape of the Coulomb diamond pattern can be used to determine the different capacitive couplings of
the QD to its environment. In particular the sum of the inverse of the diamond (positive and negative) slopes is equal
to the ratio of the total capacitance to its leads over the capacitance to the gate α−1 [S6]. The so-called coupling
parameter α translates the effect of the gate voltage in terms of shift in chemical potential of the QD. Here we obtain
α ≈ 0.157.

We now discuss the nature of charge transport through the QD. This can be done by means of the differential
conductance data shown in Fig. 1 (d) of the main text. In Fig. S1 we show the measured differential conductance
dI/dVb(Vg, Vb) (left) and the corresponding current (right) obtained by integrating it, both at the charge degeneracy
point Vg = −1.581 mV.

We first compare the measured differential conductance to the theoretical expression for the charge transport
through a single quantum level:

dI

dVb
(Vg, Vb) =

∫
dω

2π

ΓsΓd

[ω − e(Vg − V 0
g )]2 + (ΓT/2)2

dn(ω)

dVb
(S1)

where n(ω) is the Fermi-Dirac distribution. The total broadening is given by ΓT = Γ + Γext where Γ = Γs + Γd is
induced by the coupling to the leads whereas Γext is added to account for a possible extra broadening mechanism
such as fluctuations of the applied gate voltage. For now we assume Γext = 0. Around the resonance Vg = V 0

g ,
the differential conductance has a Lorentzian shape with a width given by 2ΓT and a maximum determined by the
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FIG. S1. (Color online) Measured (blue lines) differential conductance dI/dVb(Vb) at the charge degeneracy point Vg =
−1.581 mV (panel a) and current I(Vb) computed from it (panel b) compared with that theoretically predicted by Eq. S1 at
fixed gate voltage and as a function of the applied bias voltage (red dotted lines). Alternative fits with a Gaussian (blue dotted
line) or a cosh−2 (green dotted line) profile for the differential conductance are also shown.

ratio Γs/Γd. Figure S1(a) shows, in parallel with the experimental data, the best fit with the two free fit parameters
ΓT = Γ ≈ 1.5 meV and Γs/Γd = 0.16. The agreement is excellent. Here the temperature of both leads set to
Tb = 100 mK does not contribute significantly to the obtained lineshape. In addition, Fig. S1 includes alternative
fits with a Gaussian or a cosh−2 profile for the differential conductance. These fits are much less in accordance with
the data, which strengthens the above conclusion.

The above analysis demonstrates that electron transport occurs through a single-level quantum dot. The
observed Lorentzian line-shape is a strong indication that the main mechanism for the broadening of the spectral
function of the dot is due to the coupling with the leads. Any other mechanism, if present, contributes only marginally.

PERFORMANCE OF A SNS JUNCTION AS A BOLOMETER

In order to measure the heat flow through a QD junction, which is described in the main text, one needs to be able
to access a very small change in electronic temperature. Moreover, one needs an operating temperature of down to
100 mK or below, where the QD heat flow dominates over the other paths of heat relaxation such as electron-phonon
coupling. These two requirements lead us to consider SNS proximity junction as a thermometer that can fulfill both
of these requirements. We have optimized the sensitivity of the SNS thermometer with several repetitions of the
junctions parameters such as the length and thickness of the normal metal. In this way, we reduced the Thouless
energy (εth) of the SNS junction, which basically determines the lowest saturation temperature of the thermometer
[S7].

Here we describe a test experiment, where we determine the sensitivity of our optimized SNS thermometer and
test its operation as a bolometric detector. The SEM image of the device under test is shown in Fig. S2(a), where
the normal metal Au is shown in red color and the superconducting Al leads in light-blue. The basic structure of the
device is similar to that of the QD device described in the main text, with the only difference that there is no QD
is placed in between source and drain after the electromigration. Therefore, the device can be essentially considered
as a ∼ 5 µm long and ∼ 100 nm wide rectangular normal metallic island. Like the samples discussed in the main
text it has a very long SNS junction to inject Joule heat into it and a short SNS junction to measure the electronic
temperature.

We heat-up the island by applying a constant adjustable d.c. current through the heater junction, using a 1.3 V
isolated d.c. battery. The SNS thermometer is calibrated against the well known bath temperature, by measuring
the histograms of its stochastic switching current, as described in the main text. Here we present an experiment,
where the bath temperature is at Tb = 90 mK and the heater junction is current-biased through a 200 MΩ biasing
resistor, which leads to a heating power Q̇H = 100 aW. We continuously monitor the electronic temperature of the
island by measuring a histogram of 500 switching currents in about 1 sec. The real time temperature trace of the
island is shown in Fig. S3. One can easily identify the change of the electronic temperature by a few mK w.r.t. the
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FIG. S2. (a) Colored scanning electron micrograph of one of our sample. The source side is separated from the drain by
electromigration and there is no quantum dot placed on the junction. Therefore it can be considered as a small metallic island
with a heater junction (two Al leads on the left) and a thermometer junction (two Al leads on the right). (b) Equivalent
thermal model of this device, showing how the injected heat from the heater is equilibrated via electron-phonon coupling.

FIG. S3. A real-time measurement of the electronic temperature of the source island. Each point is a Gaussian maximum
of the histogram of 500 measurements of stochastic switching current, taken in 1 sec. One can easily notice a change of the
electron temperature by a few mK compared to the background temperature of 93 mK, whenever we turn on (off) the heater,
set to an input heating power of 100 aW.

background temperature of about 92 mK, whenever the heater is turned on (off). Therefore the thermometer clearly
detects an input heat as low as 100 aW, thus performing as a bolometric detector of very small heating power. The
noise equivalent power is about 100 aW/

√
Hz.

This observation of the island’s electronic temperature can be determined by a heat-balance equation, as shown by
a heat-balance model in the Fig. S2(b):

Q̇H − ΣV(T 5
e − T 5

b ) = 0, (S2)

where Σ is the material dependent constant, V is the volume of the island, Te and Tb are the electron and the bath
(phonon) temperatures respectively. Any parasitic heat source (sink) such as heat losses through the superconducting
leads due to imperfect thermal insulation [S8] or parasitic heating by the electromagnetic environment are taken into
account within the injected heating power Q̇H.

The electronic temperature of the island can be extracted by solving the above heat-balance equation (S2). If we
use an injected heating power Q̇H = 100 aW, the material constant for Au Σ = 2.4× 109 Wm−3K−5 [S9], the volume
of the island V = 2×10−20 m3 and the bath temperature Tb = 80 mK, we get an increase of the electronic temperature
∆Te ∼ 3 mK, which is consistent with the measured value. This justifies the analysis of the heat relaxation mechanism
in the island as discussed above.

In the experiment described in the main text, we use a saw-tooth shaped a.c. current bias of the junction to measure
3000 switching events in about 10 sec. The critical current of the junction is determined as the gaussian maximum.
The thermometer sensitivity is found to be 1.5 µA/K at 80 mK, with a noise level of about 200 µK/

√
Hz.
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INBEDDING TECHNIQUE

Here, we give a brief overview of the inbedding technique used to compute the non-equilibrium steady-state of
the leads and their electronic temperatures under the hot-electron assumption. The Hamiltonian of the total system
(quantum dot plus source and drain reservoirs) is given by:

Ĥ = ĤQD +
∑

α=s,d

Ĥα +
∑

α=S,D

V̂
(α)
QD (S3)

ĤQD = vgd̂
†d̂ , Ĥα =

∑
kα

εkα
ĉ†kα

ĉkα
(S4)

V̂
(α)
QD = gα

∑
kα

(
ĉ†kα

d̂+ d̂†ĉkα

)
. (S5)

where vg = α(Vg − V 0
g ) is the gate voltage measured from the considered resonance and accounting for the coupling

parameter. V
(α)
QD the coupling Hamiltonian between the quantum dot, QD, and the α = s, d leads. Using the non-

equilibrium Green’s function approach [S10], and assuming that the whole system reaches a (possibly non-equilibrium)
stationary state, the state of the QD is completely characterized by the retarded and lesser single-particle Green’s
functions:

GRQD(ω) =
(
1− gRQD(ω)ΣRemb(ω)

)−1
gRQD(ω) (S6)

G<QD(ω) = GRQD(ω)Σ<emb(ω)GAQD(ω), (S7)

here GAQD(ω) = [GRQD(ω)]† is the advanced component of the Green’s functions. gR is the Fourier transform of the

retarded Green’s function of the isolated (non-coupled to the leads) quantum dot gQD(t, t′) = iθ(t− t′)〈[d̂(t), d̂†(t′)]〉,
with d̂(t) = eiĤQDtd̂e−iĤQDt. The embedding self-energy is defined as ΣKemb(ω) =

∑
α
|gα|2gKα (ω), with K = R,< and

gKα (ω) the Fourier transform of isolated leads’ Green’s functions. We work in the wide band limit approximation
(WBLA) and therefore we have: ΣRemb(ω) = −i

∑
α
|gα|2/2 = −iΓ/2. The first equation in Eqs. S6 is the Dyson

equation for the retarded component of the single-particle Green’s function, from which the spectral function of the
QD can be computed as AQD(ω) = −π−1ImGR(ω).

The embedding self-energy approach accounts for the effect that the leads have on the physical properties of the
system, but once the solution to Eqs. S6 are obtained, it is possible to find the Green’s functions of the leads and
explore the influence of the QD on the physical features of the reservoirs. By introducing the inbedding self-energy
ΣKinb,α(ω) = |gα|2GKQD(ω) one has the following relations:

GRα (ω) = gRα (ω) + gRα (ω)ΣRinb,α(ω)gRα (ω) (S8)

G<α (ω) = g<α (ω) + grα(ω)Σ<inb,α(ω)gAα (ω) (S9)

+ g<α (ω)ΣAinb,α(ω)gAα (ω) + grα(ω)ΣRinb,α(ω)g<α (ω).

The lesser Green’s functions of the leads G<α (ω) are different from the isolated ones g<α (ω) = ifα(ω), with fα(ω)
the Fermi-Dirac distributions characterized by the initial chemical-potential and temperature µα and Tα. From the
knowledge of G<α (ω) we can compute both the average particle number and energy of the leads: Nα = i

∫
dω
2πG

<
α (ω)

and Eα = −i
∫
dω
2πω G

<
α (ω).

We now resort to the hot electron assumption that accounts for a neat separation of the energy relaxation time
scales between system and leads. Basically, it assumes that the electron-electron interactions into the leads makes
their equilibration time much faster than any other dynamical processes in the whole system. Therefore, we can
assume that the leads at the steady state are described by a new Fermi-Dirac distribution f ′α(ω) with a different
set of chemical potential and temperature µ′α and T ′α. The two parameters are the solution of the set of non-linear
equations:

∫
dω
2π f

′
α(ω) = Nα (S10)∫

dω
2πω f

′
α(ω) = Eα. (S11)



5

a)

c) d)

b)

FIG. S4. (Color online) Maps of the a) particle and b) heat current for the source lead. c) Thermovoltage Vth and corresponding
thermopower S = Vth/(∆T ) as a function of the gate voltage Vg. The parameters of the system are the same as the one
considered in the main text: coupling is Γ = 0.25 meV, and temperature of the drain at closed bias is Td = 85 mK. (d) Lorentz
ratio L/L0 as a function of Γ/kBT for a single level quantum dot. The dashed lines shows the ratio for the dot studied in the
main text Γ/kBT ≈ 20 and the dot is at the charge degeneracy point Vg = V 0

g .

PARTICLE AND ENERGY CURRENTS

Within the non-equilibrium Green’s function formalism, particle, energy and heat currents of the source lead are
given by the following expressions:

Is =
∫
dω
2π Tsd(ω)(fs(ω)− fd(ω)) (S12)

Js =
∫
dω
2π ω Tsd(ω)(fs(ω)− fd(ω)) (S13)

Q̇s = Js − µsIs, (S14)

where we used the definition of the transmission coefficient in the WBLA Tsd(ω) = ΓsΓdTr[GR(ω)GA(ω)] which is
valid beyond the single level approximation for the dot. For the set of parameters considered in the main text, the
heat and particle currents for the source are shown in Fig. S4. It is interesting to notice the resemblance between the
heat current map and the temperature map shown in the main text. It confirms that in the regime we explored the
temperature changes in the source lead correspond indeed to a heat current to/from the source (panel (a) in Fig. S4).
At large bias the source heats up; the system behaves as a heater, namely the energy of the bias is transformed into
internal energy. At low bias we observe instead heat flow from the hot to the cold lead; the system behaves as a valve,
meaning that it enables the natural flow of heat from the hot to the cold lead. It is also interesting to observe that
there is a whole region in which heat and particle currents have opposite signs.

It is worth to mention that this effect is not due to the onset of a thermovoltage which would make particles flow
against the applied bias voltage without necessarily causing an inversion of heat current. The thermovoltage, although
present, is very small compared to the extension in bias voltage where the mismatch in sign is observed. This is shown
in Fig. S4 panel (c) where we plot the thermovoltage Vth(Vg), together with the corresponding thermopower, defined
as the bias voltage at which the particle current vanishes.

The observed significant thermal conductance is a signature of the strong coupling of the QD to the leads. We com-
puted the Lorentz ratio L = κ/(Tσ) where κ = ∂Q̇s/∂∆T |Is=0 and σ = ∂Is/∂Vb|∆T=0 are the thermal and electrical
conductivities respectively. In panel (d) of Fig. S4 we plot the Lorentz number L/L0 with L0 = (π2/3)(kB/e)

2 at
the charge degeneracy point Vg = 0. The dashed line corresponds to the ratio Γ/kBT ≈ 20 considered in the system
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a) b)

c) d)

FIG. S5. Zoomed temperature map: Calculated temperature map of the source lead obtained with the inbedding technique
with (a) Γ = 0.05 meV and (b) Γ = 0.5 meV. (c) and (d) variation of the temperature in the region where crossing from
cooling to heating is observed; each curve refers to a given applied bias Vb: (blue) 20 µV, (cyan) 22 µV, (red) 24 µV.

presented in the main text. It is clear that the deviation from the WF law is small because of the strong coupling to
the leads.

THE COOLING AND TRANSITION REGIONS

Figure S5 shows the map of the calculated electronic temperature for couplings (panels (a) and (c)) Γ = 0.05 meV
and (panels (b) and (d)) Γ = 0.5 meV and for the same drain temperature at closed gate voltage Td = 85 mK
similarly to Fig. 3 of the main text. A change in the coupling changes the extension of the cooling region in the gate
voltage but it does not affect dramatically the extension of the cooling region in the bias voltage nor the position of
the transition from cooling to heating. Compared to the discussion in the main text and in Figure S5, we consider a
symmetric coupling of the dot to the leads, which increases the amplitude of the cooling.

To give a more quantitative analysis we computed the extension of the cooling region in the bias voltage Ab at
Vb = 0 and its width Ag in gate voltage for different couplings and temperatures of the drain at closed gate. The
results are plotted in Fig. S6 in panels (a) and (b) where it can be appreciated that the coupling constant does
not change significantly the extension in bias which instead strongly depends upon the difference in the equilibrium
temperatures between the drain and source. Indeed as the temperature of the drain increases towards the temperature
of the source the extension in Vb shrinks. Nevertheless the extension in the gate voltage is only determined by the
coupling and does not present any significant dependence upon the closed gate temperature of the drain.

The transition region, namely the region where at fixed bias it is possible to obtain both heating and cooling
by changing the gate potential, has a strong dependence on both the coupling and the temperature difference at
closed gate. This is shown in Fig. S6 panels (c) and (d) where we plot the width ∆g and extension ∆b of the
transition region; they have been determined by finding the curve Vb(Vg) such that Te =163.5 mK and then taking
∆b = Max(Vb(Vg))−min(Vb(Vg)) whereas ∆g is the difference between the voltage gates at which Vb is larger than
its values at closed gate plus 0.1∆b on both sides. It can be observed that this region becomes smaller as the coupling
is increased whereas its width increases with the coupling. The width also decreases steadily as the temperature of
the drain increases whereas the behavior of its width with temperature is less trivial. It decreases at large couplings
whereas it increases as the temperature increases at small couplings.
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FIG. S6. Cooling region characterization: (a) and (b) show the width in gate potential and the extension in bias voltage of
the cooling region as a function of the coupling Γ for different values of the temperature of the source lead at closed gate. (c)
and (d) show the width in gate potential and the extension in bias voltage of the region in which cooling and heating can be
observed at fixed bias by tuning the gate voltage as a function of the coupling Γ for different values of the temperature of the
source at closed gate.

COUPLINGS TO THE LEADS AND SINGLE-LEVEL NATURE OF THE DOT

Here we want to show how we proceeded to determine the magnitude of the tunnel coupling of the QD to the
source and the drain, namely Γs and Γd. Moreover we will also show how we assessed the single-level nature ruling
out the possibility of the presence of more levels. From the microscopic point of view, the coupling depends on the
wave-functions of the level considered as well as the density of state of the leads at that energy. For this reason it
can vary appreciably for different resonances. Here we focus on the resonance chosen in the main text to describe the
heat valve effect as this is the focus of our work. By comparing the heat flowing into the source lead shown in Fig.
S5 panel b) with the temperature maps in Figure 4 of the main text, we see that the cooling region corresponds to
the region where heat flows away from the source. Therefore there is a strict connection between the cooling region
in the temperature map and the region where the heat flow is negative.

From Equation S14, and assuming for now a single-level at energy vg, the heat current is given by:

Q̇D(Vg, Vb) =

∫
dω

2π
(ω − µs)

r(1 + r)−2Γ2

(ω − vg)2 + (ΓT/2)2
∆f(ω) (S15)

where ∆f(ω)(fs(ω) − fd(ω)) is the Fermi-Dirac distribution, Γ = Γs + Γd is the total coupling to the leads and
r = Γs/Γd is the asymmetry in the coupling. The total broadening given by ΓT = Γ + Γext includes some extra
contribution Γext which accounts for extra broadening mechanisms such as fluctuations of the applied gate voltage.
The above expression tells us that the total broadening ΓT is responsible for the width of the curve Q̇D(Vg, 0) whereas
the height of the same curve is determined by both the total coupling Γ and the asymmetry r = Γs/Γd. It is easy to
check that, at fixed Γ and Γext the maximum heat current is achieved at r = 1. We have seen in the previous section
that the width of the cooling region at Vb = 0 depends crucially only on the total width ΓT, namely the width of the
spectral function of the quantum dot.

Let us now assume that the broadening observed in the temperature map in Fig. 4 of the main text is mostly due
to some external source therefore having Γ � Γext. In this case the total heat current would be greatly reduced.
In Fig. S7 panel a) we compare the temperature profile as a function of the gate voltage at zero bias Vb = 0 for
(dashed) the theoretical calculation used in Fig. 4 of the main text and (thin solid lines with markers) the case
of ΓT = 250 µeV, r = 1 and different Γ such that Γ � Γext. We have also added the experimentally measured
temperature profile (thick solid line). In panel b) of Fig. S7 we plot the corresponding heat currents. We can see
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a) b)

c)

e
e

FIG. S7. (Color online). a) Temperature profiles at Vb = 0 as a function of the gate voltage. The thick solid line is the curve
obtained from the experimental measurement whereas the dashed line is the theoretical prediction obtained with the same
parameters as in Fig. 4 of the main text. The other three curves are for different values of the extra broadening Γext and
for Γs = Γd where the maximum cooling power is obtained. b) Theoretical results for the heat current corresponding to the
temperature variations in the left panel. c) Temperature curves for the case of a two-level system compared to the experimental
curve at Vb = 0. Each curve corresponds to a different level separation ∆ε.

that if the broadening would be due mostly to some other mechanism other than the coupling to the leads, even in
the best case scenario of symmetric coupling (r = 1) where the cooling power is maximum, we would not reach the
current needed for the observed cooling. We therefore conclude that the main mechanism for the broadening of the
spectral function is due to the coupling to the leads.

The asymmetry parameter r = 3/17 used in Fig. 4 of the main text has been chosen in order to get the best
match between the observed temperature profiles and the computed ones with the inbedding technique. We therefore
conclude that the resonance used in heat valve effect discussed in the main text is strongly coupled to the leads.
Furthermore we have shown that any other broadening mechanism, if present at all, does not contribute substantially
to the width of the spectral function of the level.

We now move to the discussion of the single-level nature of the QD. Figure S7 panel c) shows the theoretical
prediction for the temperature variation as a function of the gate voltage for the case of two levels and compares it
with the single-level prediction and the experimental data. We have used Γ = 0.25 µeV as established above and we
have set the ratio r = 3/17 for the two-level case too. The separation ∆ε between the two levels has been chosen
to be <∼ Γ/2 in order to make them distinguishable from a single degenerate level but such that the two levels are
not completely separated. In this latter case their effect would be the same as that of two single-level resonances. It
is clear from this comparison that if more than one level is involved the temperature profile at zero bias would be
markedly different. We therefore conclude that the measured temperature profile is indeed consistent with a strongly
coupled single level, which is consistent with the charge transport data.
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