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Abstract

Computational models of emergent communication in agent
populations are currently gaining interest in the machine
learning community due to recent advances in Multi-Agent
Reinforcement Learning (MARL). Current contributions are
however still relatively disconnected from the earlier theoreti-
cal and computational literature aiming at understanding how
language might have emerged from a prelinguistic substance.
The goal of this paper is to position recent MARL contribu-
tions within the historical context of language evolution re-
search, as well as to extract from this theoretical and compu-
tational background a few challenges for future research.

Origins, formation and forms
There is a wide variety of approaches to studying the condi-
tions in which human language might have emerged (Chris-
tiansen and Kirby 2003). As we will see, computer sim-
ulations have historically played an important role in the
field. We can divide the problem in three sub-parts (Oudeyer
2006). Firstly, the study of the forms of language, i.e. of
the structure of the phonemic, semantic, syntactic or prag-
matic systems constituting it. Secondly, the study of its for-
mation, i.e. of the genesis of these forms through sensory-
motor, cognitive, environmental, social, cultural or evolu-
tionary processes. Thirdly, the study of the origins, i.e. of
the biological and environmental conditions that could have
bootstrapped the formation process.

Under the infinite variety of its forms, human language is
characterized by obvious regularities, the universals of lan-
guage, which we find for example at the phonemic level
(with vowels present in almost all languages of the world,
(Maddieson and Precoda 1989)) and syntactic level (all
languages have a recursive hierarchical structure, see e.g.
(Pinker and Bloom 1990)). A fundamental research ques-
tion concerns the origins of these regularities. Three main
arguments are proposed in the literature. In the Chomskyan
view of a genetically specified language acquisition device
(Chomsky 1965), a common innate language competence
shared by all humans would explain the regularities ob-
served in the different languages. Another view about the
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universal properties of human languages may be found in the
hypothesis of a common origin, by which human languages
would derive from an African mother tongue (Ruhlen 1996),
imposing some common traces in spite of further cultural
evolution producing their diversity. A third view considers
that the forms of human language are the emergent product
of an optimization process, inducing some commonality in
the achieved solutions because of commonality in the cog-
nitive mechanisms at hand, and because of common exte-
rior constraints. This is the view first popularized by (Lind-
blom 1984), through a proposal to ”derive language from
non-language”. This last proposal opened a whole research
program aiming at understanding the formation of human
language, i.e. how a non-linguistic substance consisting in
all the biological, cognitive and environmental mechanisms
present before language, could both bootstrap its emergence
and shape its universal properties, its form.

Theories on the formation of language
A large proportion of these theories postulate of a joint evo-
lution of cooperative and communicative behaviors (Smith
2010; Gärdenfors 2002; Ghazanfar and Takahashi 2014;
Tomasello et al. 2012). It is in particular the central thesis
of the theory developed by Michael Tomasello, who pro-
poses that ”humans’ species-unique forms of cooperation
–as well as their species-unique forms of cognition, commu-
nication, and social life—all derive from mutualistic collab-
oration (with social selection against cheaters)” (Tomasello
et al. 2012) . In this view, it is the constraints imposed by the
ecological niche occupied by human beings that has forced
them to jointly develop complex collaborative and commu-
nicative behaviors, in a context of interdependence requiring
the sharing of intentions. We also find compatible arguments
in the mirror system hypothesis developed by Michael Arbib
(Arbib 2005) proposing that language evolution is grounded
in the sensory-motor integration required for the execution
and the observation of transitive actions towards objects, en-
abling other’s intention recognition and providing the bases
of a syntactic structure (Roy and Arbib 2005) (see also (Iriki
and Taoka 2012) for theoretical propositions on the coevolu-
tion of tool use and language in humans). Finally, the social
complexity hypothesis suggests that groups with complex
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social structures require more complex communication sys-
tems to regulate interactions between group members (Free-
berg, Dunbar, and Ord 2012).

Other theories highlight the role of sensory-motor learn-
ing and exploration as a key element to understand how
speech communication could emerge from pre-existing mor-
phological, perceptual and behavioral constraints (Lindblom
1984; MacNeilage 1998; Schwartz et al. 2012). A few
theoretical contributions have proposed a potential role of
curiosity-driven exploration in both language acquisition
(Oller 2000) and evolution (Oudeyer and Smith 2015).

From verbal to computational descriptions
A major limitation of most of the theories mentioned above
is that they are described in a verbal form. They are of course
supported by experimental data but the description of the
underlying hypotheses regarding the formation of linguistic
structures mostly relies on a verbal explanation. This can be
problematic because the aim of those theories is precisely
to describe a complex dynamical process where linguistic
structures emerge from multiple constraints in a prelinguis-
tic environment (e.g. morphological, sensory-motor, cog-
nitive, developmental, evolutionary or cultural constraints).
Computer simulation is required to study the emergent prop-
erties of such a complex dynamical system.

For this reason, computational modeling has played a ma-
jor role in language evolution research. Already in the 70s,
Lindblom’s ”Dispersion Theory” (Liljencrants and Lind-
blom 1972) proposed that human phonological systems
are optimized for maximizing auditory distances between
phoneme pairs in order to enhance distinguishability. In
these early contributions, language forms (e.g. the form
of vowel systems) are considered as the equilibrium of a
macroscopic system, analog to how thermodynamics de-
scribes changes in macroscopic physical quantities. In the
90s, these ”global” approaches were completed by ”local”
approaches, were the equilibrium emerges from the inter-
action of ”microscopic” elements, analog to statistical me-
chanics showing how the concepts from macroscopic obser-
vations are related to the description of microscopic states.
These local approaches usually involve interacting prelin-
guistic agents and study how properties of human language
can emerge from these interactions. A well-known exam-
ple is the naming game paradigm showing how a shared
communication system, associating signals emitted by the
agents with semantic references to the external world, can
self-organize out of a decentralized learning process from
the local interactions between the agents (Steels 1997) (see
(de Boer 2000; Moulin-Frier et al. 2015) for extensions to
vocal communication and (Oudeyer 2005a; de Boer and
Zuidema 2010) for extensions to combinatorial communica-
tion). However, these naming game models rarely address
the issue of the functionality of communication (i.e. why
to communicate?). Models from the field of evolutionary
robotics (Quinn 2001; Grouchy et al. 2016) have the advan-
tage of considering more realistic interaction scenarios than
naming games but they specifically focus on genetic evolu-
tion algorithms, which do not consider the role of sensory-
motor learning processes.

Computational models of emergent communication in
agent populations are currently gaining interest in the ma-
chine learning community, due in particular to recent ad-
vances in Multi-Agent Reinforcement Learning (MARL)
(see (Hernandez-Leal, Kartal, and Taylor 2019) for a sur-
vey). These new possibilities have allowed to overcome cer-
tain limitations of earlier contributions in two main direc-
tions. On the one hand, the paradigm of naming games
presented above has been extended to more realistic ref-
erences to the external world, learning directly from ob-
servations of raw images (Lazaridou et al. 2018). On the
other hand, recent contributions based on the paradigm
of partially-observable cooperative Markov games (Littman
1994; Leibo et al. 2017) have shown how a communication
system can emerge to solve cooperative tasks in sequen-
tial environments (Sukhbaatar, Szlam, and Fergus 2016;
Mordatch and Abbeel 2017; Foerster et al. 2016). These con-
tributions adopt an utilitarian view of communication, where
communication emerges as a way to solve complex cooper-
ative tasks (Gauthier and Mordatch 2016).

Extracting future challenges for MARL
The utilitarian approach relying on partially observable co-
operative Markov games provides a powerful conceptual and
computational framework for modeling emergent commu-
nication as a way to solve complex problems in sequential
environments. However, existing contributions are still rel-
atively disconnected from the earlier literature presented in
the previous section. In this section, we will extract from this
theoretical and computational background a few challenges
for future MARL research.

Decentralized learning
As mentioned in the previous section, the first models at-
tempting to predict language forms from a prelinguistic sub-
stance adopted a global, macroscopic approach. This global
approach has then be complemented by a local, microscopic
approach where language forms emerge from the repeated
interactions between individual agents.

A large proportion of current MARL contributions rely
on centralized learning decentralized execution algorithms
(Sukhbaatar, Szlam, and Fergus 2016; Mordatch and Abbeel
2017; Foerster et al. 2016), analog to a global macroscopic
approach. While centralized learning is able to efficiently
solve complex problems, the lack of biological plausibility
strongly limits its use in language evolution research. Con-
tributions relying on decentralized learning (Jaques et al.
2019) are less efficient from a performance point of view
but have the advantage of highlighting important issues re-
garding the unstable nature of cooperative and communica-
tive behavior in multi-agent settings, due e.g. to the non-
stationarity it induces. Solving such issues is an important
challenge in both MARL and language evolution research.

Role of morphological and sensory-motor
constraints
Current MARL contributions mostly rely on an idealized
communication channel where the signal produced by an



agent is directly broadcasted to other agents (Sukhbaatar,
Szlam, and Fergus 2016; Mordatch and Abbeel 2017; Fo-
erster et al. 2016), similar to earlier contributions based on
the naming game paradigm. In contrast, speech communi-
cation is strongly shaped by sensory-motor constraints, in-
volving the control of vocal articulators (e.g. the jaw, the
tongue, the lips) for modulating a sound wave resulting in
the perception of acoustic features. Vocal control is actu-
ally a classical robotic problem, where the agent has to
decide how to move vocal articulators to reach acoustic
targets. This control problem is a difficult one due to the
complex morphology of the vocal tract, the highly non-
linear nature of the articulatory-to-acoustic transformation,
as well as the presence of acoustic noise in the environ-
ment. Earlier contributions have studied how vocal commu-
nication can emerge from the interaction of sensory-motor
agents equipped with articulatory synthesizers, i.e. computer
models of the human vocal tract able to generate sound
waves from articulator trajectories (Moulin-Frier et al. 2015;
Moulin-Frier, Nguyen, and Oudeyer 2014). This resulted in
multi-agent simulations able to predict the statistical tenden-
cies of the phonological systems used in world languages
(Oudeyer 2005b), as well as to test hypotheses regarding the
influence of prelinguistic orofacial behaviors on the syllabic
structure of speech communication ((Moulin-Frier et al.
2015), following an hypothesis from (MacNeilage 1998)).
Introducing biologically plausible sensory-motor abilities of
signal production and perception in MARL models would
allow to extend the aforementioned results to more complex
environments and learning abilities.

Role of intrinsic motivation
A few theoretical contributions have proposed a potential
role of curiosity-driven exploration in both language acquisi-
tion (Oller 2000) and evolution (Oudeyer and Smith 2015).
Active exploration can spontaneously generate diverse be-
haviors from modality-independent and task-independent
internal drives. Such spontaneous behavior can result in vo-
cal activity that may have bootstrapped the emergence of
communication. This hypothesis is supported by compu-
tational simulations showing a role of curiosity-driven ex-
ploration in vocal development (Moulin-Frier, Nguyen, and
Oudeyer 2014), social affordance discovery (Oudeyer and
Kaplan 2006) and the active control of complexity growth
in naming games (Schueller and Oudeyer 2015).

Despite recent progress in curiosity-driven RL (Pathak et
al. 2017; Colas et al. 2019), very few MARL contributions
have used such algorithms for studying emergent commu-
nication (see (Jaques et al. 2019) but which is specific to
social interactions on a single task). It is a promising direc-
tion of research to explore how general-purpose curiosity-
driven multi-task reinforcement learning algorithms (Colas
et al. 2019) can be integrated in multi-agent environments
to encourage the discovery of complex communication sys-
tems supporting the acquisition of an open-ended repertoire
of cooperative skills. A key step in this direction has re-
cently been proposed in the IMAGINE architecture (Colas
et al. 2020), where an agent uses language compositionality
to generate new goals by composing known ones.

Emergent complexity
Earlier contributions in language evolution modeling has of-
ten been limited by the use of simplistic environments and
learning abilities. Recent advances in MARL can allow to
overcome these limitations to show how language complex-
ity can emerge as a way to optimize behavior in complex co-
operative environments. In particular, recent contributions in
MARL have shown how an autocurriculum of increasingly
complex behaviors can emerge from agent’s coadaptation
in mixed cooperative-competitive environments (Bansal et
al. 2018; Baker et al. 2019). Can such an auto-curriculum
through coadaptation favor the emergence of increasingly
complex communicative systems? In turn, can complex
communication favor the emergence of increasingly com-
plex cooperative strategies? Addressing these open ques-
tions can potentially help to understand the processes that
have shaped the impressive complexity of human language.

Conclusion
Recent advances in MARL provides a powerful conceptual
and computational framework for modeling emergent com-
munication as a way to solve complex problems in sequen-
tial environments. There are however important differences
in the methodology and the objectives between 1) imple-
menting efficient and robust multi-agent systems learning
how to communicate for solving complex problems (as it is
the case in the majority of recent MARL contributions), vs.
2) using multi-agent learning as a computational tool for bet-
ter understanding human language evolution (an approach
which has historically played an important role in language
evolution research, see (Oudeyer 2006) for an epistemolog-
ical analysis). In this paper we have reviewed earlier com-
putational contributions and have extracted from them a few
future challenges for MARL research.
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