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Phase retrieval with Bregman divergences and application to
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Pierre-Hugo Vialt, Paul Magronf, Thomas Oberlin*, Cédric Févotte!

Abstract

Phase retrieval (PR) aims to recover a signal from the magnitudes of a set of inner products.
This problem arises in many audio signal processing applications which operate on a short-time
Fourier transform magnitude or power spectrogram, and discard the phase information. Recovering
the missing phase from the resulting modified spectrogram is indeed necessary in order to synthesize
time-domain signals. PR is commonly addressed by considering a minimization problem involving
a quadratic loss function. In this paper, we adopt a different standpoint. Indeed, the quadratic
loss does not properly account for some perceptual properties of audio, and alternative discrepancy
measures such as beta-divergences have been preferred in many settings. Therefore, we formulate PR
as a new minimization problem involving Bregman divergences. We consider a general formulation
that actually addresses two problems, since it accounts for the non-symmetry of these divergences in
general. To optimize the resulting objective, we derive two algorithms based on accelerated gradient
descent and alternating direction method of multiplier. Experiments conducted on audio signal
recovery from either exact or modified spectrograms highlight the potential of our proposed methods
for audio restoration. In particular, leveraging some of these Bregman divergences induce better
performance than the quadratic loss when performing PR from highly degraded spectrograms.

1 Introduction

Data reconstruction from phaseless measurements is a problem that arises in various fields including
X-ray crystallography [1], optics [2] and astronomy [3]. This task, hereafter termed phase retrieval (PR),
is also ubiquitous in audio signal processing, where much research has focused on the processing of
nonnegative time-frequency representations such as short-time Fourier transform (STFT) magnitude or
power spectrograms. Processing STFT spectrograms results in discarding or not accounting for the phase
information, therefore it is necessary to retrieve the missing phase in order to synthesize time-domain
signals. Therefore, PR is of paramount importance for tasks that involve audio signal reconstruction
from incomplete time-frequency observations. Consequently, it has attracted some attention for many
applications such as speech enhancement [4, 5, 6], source separation [7, 8, 9, 10] or audio restoration (e.g.,
click removal [11] or time-frequency inpainting [12]).

PR consists in recovering a signal x* € C’ from nonnegative measurements r ~ |Ax*|¢ € Rff , where
A € CK*L ig the measurement matrix and d is usually equal to 1 or 2, depending whether one considers
magnitude or power measurements. This problem is inherently ill-posed as different signals can generate
identical measurements. Thus, x* can only be recovered up to several ambiguities which depend on A.
In particular, the STFT magnitude of a considered signal cannot uniquely represent this signal without
specific constraints or a priori knowledge about part of the samples [13]. For example, estimation is
subject to a global phase ambiguity, as the magnitude spectrograms of x* and ¢x* are identical when
¢ € Cand |¢] = 1. PR is commonly formulated as a nonconvex minimization problem involving a
quadratic loss function, as follows:

min  B(x) i= v — [Ax|?)3 1)
xeCL
Problem (1) may be tackled with conventional optimization algorithms such as gradient descent [14],
[15], alternating projections [16, 17], majorization-minimization [18] and alternating direction method
of multipliers (ADMM) [19, 20]. An extensive review of those algorithms from a numerical perspective
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can be found in [21]. Convex optimization approaches are also considered in [22, 23, 24, 25] by lifting
the problem to a higher dimensional space (i.e., solving a constrained quadratic problem involving xx")
and relaxing the rank-one constraint. However, they are impracticable for processing audio signals, as
they square the dimensionality of the problem [26]. The Griffin-Lim algorithm (GLA) [27], a variant of
the Gerchberg-Saxton algorithm (GSA) [16] adapted to STFT measurements, is one of the most popular
techniques in the audio literature and is generally considered as a baseline for signal recovery. PR has
also been tackled using signal modeling [11, 28, 29] or deep neural networks [30]. However, optimization-
based approaches remain efficient, provide theoretical guarantees and may still be used with model-based
approaches [31].

Even though a considerable amount of research has been conducted to tackle the PR problem as
described in (1), such an approach suffers from one drawback when it comes to audio. Indeed, it is well
established that the quadratic loss is not the best-suited metric for evaluating discrepancies in the time-
frequency domain. For instance, it does not properly characterize the perceptually-related properties of
audio such as its large dynamic range [32].

As such, in this work we propose to replace the quadratic loss function in (1) by alternative divergences
which are more appropriate for audio signal processing. We consider general Bregman divergences, a
family of loss functions which encompasses the S-divergence [33, 34] and some of its well-known special
cases, the general Kullback-Leibler (KL) and Itakura-Saito (IS) divergences. The latter divergences are
acknowledged for their superior performance in nonnegative audio spectral decomposition [35, 36, 37].
Besides, these divergences naturally arise from a statistical perspective. For instance, minimizing the
KL divergence between an observed spectrogram and a parametric one assumes that the observations
follow a Poisson model. Similarly, minimizing the IS divergence implies a multiplicative Gamma noise
model [37]. In order to be as general as possible, we consider any power d (we do not restrict to either 1
nor 2) and we account for the fact that these divergences are not symmetric in general, which actually
leads to tackling two different problems. To optimize the resulting objective, we derive two algorithms,
based on accelerated gradient descent [38] and ADMM [39]. We experimentally assess the potential of
our approach for PR on music and speech restoration tasks. Our experimental results show that our
proposed methods either compare favorably or outperform traditional methods based on the quadratic
loss (in particular with highly degraded spectrograms).

The rest of the paper is organized as follows. Section 2 reviews several baseline algorithms for PR.
Section 3 describes the PR problem extended to Bregman divergences and the two proposed algorithms.
Section 4 presents the experimental results for audio signal recovery applications. Finally, Section 5 draws
some concluding remarks. For the sake of generality, we assume x to be complex-valued everywhere in
Sections 2 and 3. Transposition to the real-valued case is discussed in Section 4 and in the Appendix.

Mathematical notations:

A (capital, bold font): matrix.
e x (lower case, bold font): time-domain signal.
e X (lower case, bold font, with tilde): time-frequency domain vector, such that X = Ax.

e z (regular): scalar.

l.I, Z(.), (.)*: magnitude, complex angle, and complex conjugate, respectively.

e T H: transpose and Hermitian transpose, respectively.

R, J: real and imaginary part functions.

®, -+, (.)d: element-wise matrix or vector multiplication, division, and power, respectively.

e 1. matrix inverse.

Ix: identity matrix of size K.

e Ps : projection operator on the set S, defined by Ps(y) = argmin|y — z|2.
2€8



2 Related work

In this section, we present three state-of-the-art approaches related to our own contributions: alternating
projections (Section 2.1), gradient descent (Section 2.2), and ADMM (Section 2.3). Note that PR being
a non-convex optimization problem, the descent methods considered in this paper are influenced by the
initialization.

2.1 Alternating projections

In the seminal work [27], the authors address the PR problem (1) with d = 1 and with A being the
STFT operator. They propose to alternate projections on M, the set of time-frequency coefficients
whose magnitude is equal to the observed measurements, and C, the set of consistent coefficients, that is,
complex coefficients that correspond to the STFT of time-domain signals [40]. More formally, we have:

M={xeCK||x|=r}and C = {x e CK | x = AATx}, (2)

where X is a vector of time-frequency coefficients and AT = (AHA) 1AM is the Moore-Penrose pseudo-
inverse of A (which encodes the inverse STFT). When the window used in the STFT is self-dual (i.e.,
can be used both for analysis and synthesis), we have AHA = I and as such AT = AH (see Appendix
A for more details about the STFT and duality). We make such an assumption throughout the paper
(without loss of generality). The two projections then write:

Pu(X)=ro % and P¢(%) = AAMx. (3)
Although M is not a subspace and is not convex, we still call P a projection since it maps an element
of CK to its closest element in M (in the mean squared error sense), which is unique [41, 42] when
M is defined as in (2). Alternating these projections results in GLA, which is proved to converge to
a critical point of the quadratic loss in (1) [27]. Alternatively, this algorithm can also be obtained by
majorization-minimization [18].

In [42], an accelerated version of GLA, termed Fast GLA (FGLA), is proposed with a Nesterov-
like scheme with constant acceleration parameter. FGLA was shown experimentally to reach lower
local minima of the problem (1) with d = 1, yet without theoretical convergence guarantee. Other
improvements of GLA include real-time purposed versions [43, 44] and its extension to multiple signals
for source separation [45, 46].

GLA is similar to GSA [16] as they are both alternating projection algorithms. They yet differ in
that GSA uses the discrete Fourier transform (DFT) as the measurement operator and accounts for an
additional constraint on the support of the time-domain signal to make the solution unique. For GLA,
this constraint is not necessary as uniqueness can be obtained thanks to the redundancy of the STFT [47].

2.2 Gradient descent

In [14], Candes et al. address the PR problem (1) with power measurements (i.e., d = 2) and a general
measurement matrix A (such as Gaussian random or DFT vectors). They propose to minimize the error
E with a gradient method. As the objective function implies complex quantities but is not holomorphic
(i.e., not complex-differentiable), the authors express the gradient using the Wirtinger formalism [48]
detailed in Appendix B. This leads to:

VE(x) = A"[(Ax) ® (JAx|* —1)]. (4)
The gradient algorithm update then writes:
Xt41 = Xt — i1 VE(Xt), (5)

where ¢ is the iteration index and u; stands for the step size at iteration t. This approach is called the
Wirtinger flow algorithm [14].

2.3 ADMM

2.3.1 Minimization problem

In [20], Liang et al. express PR as a constrained problem and introduce auxiliary variables u and 6 for
magnitude and phase, leading to the following problem:

irel(lCnL [r—ulst. Ax=u0®e?, (6)



where u € R¥ and 0 € [0; 27[". From (6) one can derive the augmented Lagrangian:

L(x,u,0,A) =[[r —ul3 + R (A" (Ax —u @ ?))
+2lAx —u o3,

(7)

where A is the vector of Lagrange multipliers corresponding to the constraint Ax = u® e'® and p is the
penalty parameter. From this expression, the authors derive the following ADMM update rules:

{ut+1, 0t+1} = argmin L(Xt, u, 0, )\t),
u>0,0

Xpp1 = argmin £(X, ugy1, 041, Ar), (8)
>‘t+1 = )\t + AXt+1 — U¢p1 O] €i0t+1.
The first two updates are available in closed form as detailed in the original paper [20] and form a special
case of our proposed algorithm presented in Section 3.3.
2.3.2 Feasibility problem
In [19], Wen et al. address PR with DFT measurements as a feasibility problem. Instead of (1), they
consider the following formulation:

find xeCl st. xeSrnSy, (9)

where Sr is the set of signals whose DFT magnitude is r and Sy is the set of signals respecting an
additional constraint (in optics, a typical constraint is that the signal is real-valued and nonnegative).
They derive the following ADMM updates:

X1 = Ps, (Yt — Wi),
Yit1 = Psy (X1 + Wy), (10)
Wit1 = Wi+ 1(Xer1 — Yet1)-
The authors also note that when n = 1, this algorithm is equivalent to the hybrid input-output algorithm,
which is well-known in optics [17].

In a similar fashion, Masuyama et al. [49] use ADMM to tackle PR with STFT measurements (like
in GLA) as a feasibility problem:

find xe€CK st. xeMnC. (11)
They derive the following updates:

Xep1 = Pm(¥e — We),
Yir1 = Pe(Xep1 + Wy), (12)
Wigl = Wi + X411 — Yisl

This algorithm will be referred to as GLADMM. One can note than when w and w are equal to 0, the
algorithms defined by (10) and (12) are respectively equivalent to GSA and GLA.

3 Proposed methods

In this section, we first propose a generalization of problem (1) to the family of Bregman divergences
(Section 3.1). Then, relying on some of the related works presented in Section 2, we derive two algorithms
based on accelerated gradient descent (Section 3.2) and ADMM (Section 3.3).

3.1 Phase retrieval with general Bregman divergence

We propose to generalize the problem (1) by substituting the quadratic loss by a general Bregman
divergence. A Bregman divergence D, is defined from a generating function 1 as follows:

Dy(ylz) =Y [(yr) = ¥(ar) =o' (z) (e — 21)] (13)

k



Divergence \ Dy (yl2) )(2) Y'(2) V" (2)

Quadratic loss 2y —2)? 222 2 1
Kullback-Leibler y(logy —log z) — (y — 2) zlog 2 1+logz 27t
Itakura-Saito Y —log¥ -1 —log z —z7t 272
B B-1 B -1 _
. Y Byz 3 z z 1 =z 1 9
B-divergence (8 0,1 - — + z — +- — B
gnce W10 | 51~ 51 BG-1 G-1'5 51

Table 1: Typical Bregman divergences generating functions with their first and second derivatives. The
KL and IS divergences are limit cases of the g-divergence for 8 = 1 and 8 = 0, respectively. The quadratic
loss is obtained for g = 2.

where 1 is a strictly-convex scalar function, continuously-differentiable on a closed convex definition
domain with derivative v, see, e.g., [50]. We here further assume that ¢ is twice-differentiable with
second derivative ¢”. Dy, is always convex with respect to its first argument, but not necessarily with
respect to its second one [51].

The motivation for using Bregman divergences is two-fold. First, they encompass several divergences
that are well suited for audio spectrograms such as KL or IS, as illustrated in Table 1. Second, writing
those divergences under the form (13) will ease the derivations, as will be seen hereafter.

As Dy, is not necessarily symmetric, we will tackle the two following formulations of the problem:

=
min J(x) 1= Dy (r||Ax|?), (14)
xeCk

—
min J(x) := Dy (|Ax|?|1). (15)
xeCk

We will refer to problems (14) and (15) as “right PR” and “left PR” respectively.

3.2 Gradient descent and acceleration

Similarly to [14], we first propose a Wirtinger gradient descent algorithm to minimize the objective
functions defined in (14) and (15). The gradients of a general Bregman divergence with respect to its
first and second arguments are given by

V.Dy(y|z) =19"(2) © (z - y), (16)
VyDy(y|z) =9'(y) = ¢'(2). (17)
Using the chain rule [52], we obtain:
VI (x) = (V[ Ax|)" 0" (|Ax|) © (|Ax| 1)) (18)
V(%) = (V] Ax|)" [0/ (|Ax]") — /(r)) (19)

where the derivative 1’ and second-derivative " are applied entrywise and V|Ax|? denotes the Jacobian
of the multivariate function x — |Ax|? (the Jacobian being the extension of the gradient for multivari-
ate functions, we may use the same notation V).! Using differentiation rules for element-wise matrix
operations [52], we have:

V|Ax|? = gdiag(|Ax|d*2 ® (Ax))A. (20)

Expressions of 1, 9" and 9" for some typical Bregman divergences are given in Table 1.
We rewrite the gradients (18) and (19) in the following compact form:

VJ(x) = (V|Ax|)"g, (21)

INote that the gradient is not defined at x = 0 in some cases (d = 1 and/or 8 < 1). In practice, we compute the gradient
using |Ax + €| with € < 1 instead of |Ax|, which alleviates potential numerical issues. A more rigorous treatment that
should involve subgradients where the objective is not differentiable is left for future work.



— —
where J can be either J or J and

for “right” PR, z = " (|Ax|?) © (|Ax|? — 1), (22)
for “left” PR, z = ¢'(|Ax|?) — ¢/ (r). (23)

As such and together with (20), we obtain:

d
VI(x) =3 A" [|Ax|"72 0 (Ax) @ 2] . (24)
Using a constant step-size p, our generic gradient algorithm writes:
X1 = X — pVJ(x¢). (25)

Similarly as in FGLA [42], we furthermore use a Nesterov-like acceleration scheme [38] resulting in the
following updates:

Yir1 = X¢ — pVJ(xt),

Xi41 = Yir1 + Y (Vi1 — ¥i)s

where +y is the acceleration parameter.

Remark: When considering a quadratic loss (i.e., ¥(z) = 122), problems (1), (14) and (15) become

equivalent. In particular, when d = 1, both gradients (18)-(19) write:

(26)

VJ(x)=x— A" (r ® ﬁ;) : (27)

Generic gradient descent with step size equal to 1 thus yields:

AXt
= AH 2
Xi+1 (I‘® Axt|) ) (28)

which is nothing but the GLA update given by alternating the projections in (3). This shows that GLA
can be seen as a gradient descent applied to the PR problem (1).

3.3 ADMM algorithm

In a similar fashion as in [20], we propose to reformulate PR with Bregman divergences as a constrained
problem. We detail hereafter the left PR problem, and a similar derivation can be conducted for its right
counterpart. The problem rewrites:

m(icri D, (r | u) subject to (Ax)? =u® €, (29)
xE

from which we obtain the augmented Lagrangian:
L(x,u,0,\) =Dy(r|u)+R ()\H((Ax)d i {O) eie))

+ g H(Ax)d—u®6i9|z,

where p is the penalty parameter. The first step of our ADMM algorithm consists in updating the values
of u and 0 given x; and A;:
{ui41, 60141} = argmin L(x¢, u, 0, Ay). (30)
u>0,0

This problem can be equivalently formulated as:

{ue1, 601} = argmin Dy (e [0) + by~ u e 3 (31)
with: N
h, = (Ax,)? + ?t. (32)

With u fixed, the second term in (31) is minimized when the phase of h; is equal to 6. Thus, 0 is updated
as follows:
0t+1 == éht (33)



The problem in u can then be formulated as:

wr = argmin Dy (r|w) + b - ul. (34)
u>0

As shown in Appendix C, the minimization problem involved in (34) remains unchanged when the
positivity constraint on u is disregarded. The u update can therefore be written

Uit1 = prOXp_l'Dw(rl-)(‘htD’ (35)

where prox, denotes the proximal operator of a convex function f. The expressions of prox; for some of
the divergences considered in our experiments are given in Appendix C. The second step of our ADMM
algorithm consists in updating the value of x:

Xt4+1 = argmin L(X7 Ugy1, 0t+17 At) (36)

This problem can be rewritten as:

ﬁ 2

X; 41 = argmin |[(Ax)? — w4 © €9 4 ol (37)
x 2
and has the following solution:
H i0 Aty 1/d
Xt4+1 = A (ut+1 ® ettt — ?> . (38)
The final step of our ADMM algorithm consists in updating the Lagrange multipliers A, as follows:
At+1 = At + p(AXt+l — U1 O) eiet’+1). (39)

The whole ADMM procedure then consists in iteratively applying the updates given by (35), (38) and (39).
The derivation of the updates for the left PR problem is similar, and the resulting algorithm is
unchanged, except for the update of u in (35), which becomes:

Uiyl = PTOprlvw(.u)(\htD- (40)

3.4 Implementation

We have presented gradient descent and ADMM algorithms for phase retrieval in the general case. We
now address some specificities of audio signal recovery from a phaseless spectrogram, i.e., when A is the
STFT matrix and x is real-valued. The STFT matrix A and its inverse are large structured matrices
that allow for efficient implementations of matrix-vector products of the forms Ax and AMy. In that
setting, it is more customary to handle time-frequency matrices of size M x N, where M is the number of
frequency channels and N the number of time frames, rather than vectors of size K = M N. As such, we
provide in Algorithms 1 and 2 the pseudo-code for practical implementation of our accelerated gradient
and ADMM algorithms, respectively, in the time-frequency audio recovery setting.

For generality, we assumed x € C” in the previous sections. However, audio signals are real-valued
and this deserves some comments. As shown in Appendix D, the estimates x; remain real-valued under

the following conditions. In a nutshell, a signal is real-valued if and only if its STFT X € CM*V is
frequency-Hermitian, that is:

When R is the spectrogram of a real-valued signal and when Algorithms 1 and 2 are initialized with a
frequency-Hermitian matrix X, all the time-frequency matrices involved in the updates remain frequency-
Hermitian (because operations only involve sum and element-wise product with frequency-Hermitian
matrices). This in turn ensures that the variable x remains real-valued. As such, the STFT and inverse
STFT (iSTFT) operations in Algorithms 1 and 2 need only return/process the first L%J + 1 frequency
channels (usually termed “positive frequencies”), as customary with real-valued signals.

More rigorously, we may also re-derive our gradient and ADMM algorithms for x € R”, using real-
valued differentiation instead of Wirtinger gradients (and involving the real and imaginary parts of A in
the objective function). This is addressed in Appendix D which shows that we indeed obtain the same
algorithms.



Algorithm 1: Accelerated gradient descent for PR with the Bregman divergence.

1 Inputs: Measurements R € ]Ri/[ *N initial phase ¢g € [0, 277[14 *N step size w1 and acceleration

parameter 7.
2 Initialization:
3 X =R@elo
4 x =1STFT(X)
5 Yold =0
6 while stopping criteria not reached do
7 X = STFT(x)
8 if PR left then

o | | Z=v'(X|")-¢'(R)
10 else if PR right then
11 | Z=y"(XY) o (X|"-R)

12 | g=IiSTFT(¢X 0o X120 1Z)
13 y=X—pug

14 | x=y+5(y — Yold)

15 Yold =Y

16 end

17 Output: x

4 Experiments

In this section, we conduct experiments on PR tasks. We first assess the potential of the proposed
algorithms for recovering signals from exact (i.e., non-modified) spectrograms. Then, we consider a PR
task from modified spectrograms, as often encountered in audio applications. In the spirit or reproducible
research, we will release the code related to those experiments along with the final version of the paper.
Besides, audio examples of reconstructed signals are available online.?

4.1 Experimental setup
4.1.1 Data

As acoustic material, we use two corpora in our experiments. The first one, referred to as “speech”,
is composed of 10 utterances taken randomly from the TIMIT database [53]. The second one, referred
to as “music”, comprises 10 snippets from the Free Music Archive dataset [54]. All audio excerpts are
single-channel, sampled at 22,050 Hz and cropped to be 2 seconds-long. The STFT is computed with a
1024 samples-long (46 ms) self-dual sine bell window [55] (leading to an effective number of 513 frequency
bins) and 50% percent overlap. We used the librosa Python package [56].

4.1.2 Methods

PR is conducted using the algorithms presented in Section 3 under different settings as described next.

Proposed gradient descent algorithm We experimented the accelerated gradient algorithm de-
scribed in Alg. 1 in the following settings:

e KL (8 =1) for the “right” and “left” problems with d € {1,2},

e 5 =0.5 for the “right” and “left” problems and with d € {1, 2},

e IS (8 =0) for the “right” problem with d = 2,

e quadratic loss (5 = 2) with d € {1,2} (in that case the “right” and “left” problems are equivalent).

The “right” problems with KL, d = 1 on the one hand, and IS, d = 2 on the other hand, correspond
to standard designs in NMF [37, 57]. The trade-off value = 0.5 with either d = 1 or 2 has also been
advocated in various papers, e.g., [58].

2https://magronp.github.io/demos/jstsp21.html



Algorithm 2: ADMM for PR with the Bregman divergence.

1 Inputs: Measurements R € ]Ri/[ *N initial phase ¢g € [0, 277[14 *N and augmentation parameter
p-

2 Initialization:

3 X =R@elo

4 x =1STFT(X)

5 A=0

6 while stopping criteria not reached do

7 X = STFT(x)

s | H=X4+ %A

9 ®=/H

10 if PR left then

11 ‘ U= ProX,-1p, (. | 1,)(|H\)
12 else if PR right then

13 ‘ U = prox,-ip, | (H|)

14 Z=U@c*®

15 | x=iSTFT((Z - ;A)"/?)
16 A=A+ p(STFT(x) — Z)
17 end

18 Output: x

The algorithms are used with constant step-size p and acceleration parameter v = 0.99 (like in [42]).
The step-size is empirically set to the largest negative power of 10 enabling convergence for each loss
and value of d in the setting of the experiments reported in Section 4.2. A summary of the parameter
configurations and choice of loss functions is given in Table 2.

Proposed ADMM algorithm Applicability of ADMM is more limited than with gradient descent
because it requires the expression of the proximal operators (35) and (40). We here consider the quadratic
loss and “left” KL and IS problems. We set d = 1 and p = 1, which corresponds to the setting used by
Liang et al. [20] for the quadratic loss (which thus falls as a special case of our setting).

Other baselines and parameters The previous algorithms are compared with the following other
baselines: GLA, FGLA and GLADMM, presented in Section 2 and which use d = 1. All the algorithms
(baseline and contributed) are run for 2500 iterations and initialized with the same uniform random
phase.

4.1.3 Evaluation metrics

The reconstruction quality is evaluated in the time-frequency domain with the standard spectral conver-
gence (SC) metric, defined as:
1/d _ A
r X
SC(r,x) = w (42)
[[r|2

PR performance is also assessed in the temporal domain using the signal-to-noise ratio (SNR):

%112

SNR(x*,x) = 20log;, l (43)

X* — k||2 ’
where X is a scaled and time-shifted version of the estimate x returned by any algorithm. It is chosen to
maximally correlate with the original signal x*: as a result, the SNR is invariant to a global delay and
scale factor. To better assess the performance of the algorithms, we display the SNR improvement over
the initial estimate (that is, using a random phase).

Additionally, for the “speech” corpus, we also consider the short-term objective intelligibility (STOI)
measure [59]. This score is obtained by first decomposing the clean and processed speech signals through
a DFT-like filterbank, and then computing the correlation between the resulting representations. It has
been shown to correlate well with subjective intelligibility measurements of speech, whether in clean or
noisy conditions. It is computed with the pystoi library [60].
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Table 2: Summary of setups considered in the experiments with their parameters (loss function, exponent

d, type of algorithm and hyperparameter). Each setup is described by a code that follows this format:

algorithm-loss- direction-d.
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To summarize, SC is directly related to the PR quadratic loss problem (1), formulated in the time-
frequency domain. On the other hand, the time-domain SNR and perceptual STOI are more related to
the applicative needs. Note that for SC the lower the better, whereas for both SNR and STOI the higher
the better.

4.2 PR from exact spectrograms

First, we consider a PR task conducted on exact spectrograms. In this setting, measurements are directly
obtained from the ground truth signals x*, such that r = |[Ax*|?. These measurements r are then fed as
inputs to the algorithms described in 4.1.2.
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Figure 1: Performance of PR from exact spectrograms for the “speech” corpus. Turquoise, orange and
yellow respectively denote gradient descent algorithms, ADMM algorithms and GLA-like algorithms. For
SC, a lower value corresponds to a better spectrogram approximation. For SNR improvement and STOI,
a higher value corresponds to a better signal approximation. The boxes indicate the two middle quartiles
among the ten excerpts, the middle bar is for the median, the dot for the mean, and the whiskers denote
the extremal values.
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Figure 2: Performance of PR from exact spectrograms for the “music” corpus.

The results on the “speech” and “music” corpora are presented in Figures 1 and 2 respectively, from
which overall similar conclusions can be drawn.

The best performances in terms of SC are achieved by GLADMM and algorithms optimizing the
quadratic loss with d = 1. Note however that the advantage of quadratic loss-based algorithms against
competing methods is less significant in terms of SNR and STOI. As recalled above, SC is directly related
to the PR problem with quadratic loss (1) and consequently favors algorithms that directly tackle this
problem.

A performance similar to that of quadratic loss-based algorithms is reached by some of the proposed
alternative methods, such as the ADMM algorithms A-IS-L1 and A-KL-L1 and the gradient descent
algorithms GD-05-R1, GD-KL-R2 and GD-KL-L2, in terms of SC, SNR and STOI (note that for the
latter, the best performing methods exhibit a lower variance than the others). This outlines the potential
of using alternative divergences to the quadratic loss.

Besides, we observe that the performance of these methods depend on a variety of factors. For
instance, the difference between the performance reached by GD-KL:-L2 and GD-KL:L1, or between
GD-QD-1 and GD-QD-2 (for all metrics and both corpora) outlines the impact of d on the reconstruction
quality. Likewise, considering a “left” rather than a “right” PR problem may yield very different results
(see for instance the two corresponding gradient algorithms with = 0.5 and d = 1).

Finally, for a given problem, the impact of the optimization strategy (i.e., ADMM vs. gradient
descent) depends on the nature of the signals. For the “speech” corpus, ADMM algorithms (for KL
and the quadratic loss) perform overall similarly to their gradient algorithms respective counterparts.
However, for the “music” corpus, A-KL-L1 outperforms GD-KL-L1 in terms of both SC and SNR.

To summarize, when retrieving a signal from an exact spectrogram, GLADMM and quadratic-
minimizing algorithms (with d = 1) seem to perform best. Some alternative methods yield competitive
results, but require to carefully select the problem (power d, loss 3, “right” or “left” formulation) and
optimization strategy (ADMM vs. gradient descent), as well as considering the nature of the signals
(speech or music). Note than when the data r is an exact spectrogram (i.e., r = |[Ax*|?), the loss func-
tions (14) and (15) share the same minimum value 0 and global solution x* (up to ambiguities) for all 1.
This may explain why the somehow easier-to-optimize quadratic loss performs well. However this result
is to be contrasted when using degraded spectrograms, as shown next.
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4.3 PR from modified spectrograms

We now consider a PR task from modified spectrograms. In audio restoration applications such as source
separation [61], audio inpainting [62] or time-stretching [63], the spectrogram that results from diverse
operations does not necessarily correspond to the magnitude of the STFT of a signal. We propose to
simulate this situation by modifying the spectrograms as in [49]. We add Gaussian white noise at various
input SNRs to each excerpt in the “speech” corpus. We then apply an oracle Wiener filter [64] to the
mixture in the STFT domain. This yields the magnitude spectrogram estimate r to which we apply the
considered PR algorithms.

The results in terms of output SNR and STOI are presented in Figures 3 and 4, respectively. Note
that we do not report the SC, since it is mostly impacted by the spectrogram deformation procedure, not
by the subsequent PR task.

At high input SNR (0 to 10 dB), we observe a similar trend than in the previous experiment:
GLADMM and quadratic loss-based algorithms (with d = 1) enable better reconstruction in terms of out-
put SNR overall than other categories of algorithms. This confirms that such algorithms are appropriate
for addressing the PR problem when the spectrograms are either exact or slightly degraded.

However, at lower input SNRs, we observe a different trend. For instance, at —20 dB input SNR, the
best performing algorithms in terms of median SNR and STOI are GD-KL-L2 and GD-05-L2, respectively.
Conversely, GLADMM which overall perform best at high input SNRs is outperformed by other GL-based
or ADMM algorithms for an input SNR of —20 dB.

Besides, we observe that some algorithms based on alternative losses exhibit more robustness to the
input noise. For instance, at all input SNRs, GD-KL-R2 compares favorably with ADMM algorithms in
terms of output SNR. On the other hand, the performance of several algorithms, such as GD-KL-L1 and
GD-IS-R2, significantly drops when more noise is added. Note that we experimentally observed some
convergence problems at low input SNRs for those algorithms (which we recall were tuned using exact
spectrogram data): the fine tuning of the gradient step becomes challenging as the level of input noise
increases, and this needs to be more carefully investigated in future work.

Overall, the usefulness of PR with general Bregman divergences is revealed when the spectrograms
are highly corrupted, as quadratic loss-based algorithms are outperformed by alternative loss-based al-
gorithms in such a scenario. This might be explained by the ability of such divergences to better model
and account for the nature of this destructive noise.

5 Conclusion

We have addressed the problem of PR when the quadratic loss is replaced by general Bregman divergences,
a family of discrepancy measures with special cases that are well-suited for audio applications. We
derived a gradient algorithm and an ADMM scheme for solving this problem and implemented them in
the context of audio signal recovery. We evaluated the performance of these algorithms for PR from exact
and modified spectrograms. We experimentally observed that when performing PR from exact or slightly
degraded spectrograms, traditional algorithms based on the quadratic loss perform best. However, in the
presence of high level of degradation, these are outperformed by algorithms based on alternative losses.
This highlights the potential of PR with the Bregman divergence for audio signal recovery from highly
corrupted spectrograms. However it is difficult to recommend a specific alternative divergence at this
stage. The choice is dependent on the nature of the degradation and possibly on the nature of the data
itself (e.g., speech vs music). Gradient algorithms are very convenient because they can be applied to any
setting, however finding efficient step sizes in every setting was challenging and this issue deserves more
attention. In that respect, our ADMM algorithms appeared more stable with respect to the level of noise
and to the nature of the data but their applicability is more limited as they depend on the availability of
specific proximal operators for each setting.

In future work, we intend to further improve the proposed gradient descent algorithms and to explore
other optimisation strategies such as majorization-minimization. We also intend to tackle PR with non-
quadratic measures of fit in frameworks where some additional phase information is available, such as in
speech enhancement and source separation applications.
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Figure 3: Performance of PR from modified speech spectrograms (measured by the improvement of
output SNR) at various input SNRs.
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A  Short-time Fourier transform

Given a signal x € C* and an analysis window w € RT such that T < L, the discrete short-time Fourier
transform (STFT) is a linear application A,, defined by

[Apx](m,n) = S z(t + nH)w(t)e 27t (44)
t=0
where
e n=0,...,N —1 indexes time frames,
e m=0,...,M — 1 indexes frequency bins,
e H is a “hop” size.

The STFT essentially chops the signal x into windowed segments of size T" and applies a DFT of size
M to each segment. H controls the overlap between segments. H and M are user-defined. Generally,
H <T. When T is even, H = T'/2 corresponds to a 50% overlap between segments, which is a common
choice. Generally, M > T (more frequencies than samples). A common choice is M = T, which
corresponds to using a standard “square” DFT. The value of N is determined by the length of the
signal L, the length of the window T and the hop-size H. Common practice consists in zero-padding
the signal & with T'— H zeroes at the beginning and as many zeroes as needed at the end so that
L=(T-H)+ NH=T+ (N —1)H. This is in particular needed to have perfect reconstruction at the
borders when defining an inverse-operator. We here assume that the signal x (of length L) has undergone
such zero-padding at its borders.

Given a time-frequency matrix C € CM*N and a synthesis window v € RT, an inverse-STFT can be
defined through the linear application S, defined by

N—-1M-1

[S,C(0) == % Z Z c(m,n)v(l — nH)e?m 3 (E=nt) (45)

where ¢ = 0,...,L — 1. We use the convention that w(t) = v(t) = 0 whenever ¢ ¢ [0,7 — 1]. The
inverse-STFT essentially applies an inverse DFT to each time-frame of C and overlap-adds the resulting
temporal signals. The windows w(t) and v(t) are said to be dual whenever they satisfy the following
condition:

N-1
Ve, Zw((—nH)v(E—nH) =1. (46)
n=0

In this case (and when M > T'), perfect reconstruction is achieved, i.e.,
S, ALXx = x. (47)

The STFT can alternatively be written as a Gabor frame. Indeed, (44) can be written as the output of
inner products between x and Gabor atoms g,,, € C* defined as pure windowed complex exponential,
such that

Gmn () = w(l — nH)e?m i ((-nt), (48)
Ignoring the time-frequency ordering and collecting the Gabor atoms into the columns of an L x M N
matrix G, the STFT can equivalently be obtained by GHx (and as such GH is equal to the matrix A
used in the main body of the paper). Under general conditions [65], the matrix G,, defines a frame in
the sense that there exists positive constants C; and C5 such that

Cullx|l3 < IGEx|3 < Callx]3. (49)
Similarly, the synthesis operator S, can be expressed as
S,C =G,c (50)

where ¢ is a vectorized version of C. As such, the windows w(t) and v(¢) are dual if and only if
G,GHx = x. When the same window can be used for analysis and synthesis with perfect reconstruction
(an example being the “sinebell” window [65]), then it can be shown that C; = Cy = 1 and G!! defines
a so-called Parseval frame. This last assumption holds everywhere in the main body of the paper (i.e.,
AMA =1).
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B Wirtinger formalism

A function f, which can be either complex- or real-valued, of a complex variable x = z,. + ix; can be seen
as a function of (z,,x;). The Wirtinger derivatives [66, 67, 48] are then defined as:

9] 0 0
T =3 (L) -ighne),

0 0 0
85* (z) := % <81{ (Tp, ;) + i@a{i (xr,xi)> .

(51)

In practice, computing the derivative of f with respect to x (resp. z*) can be done using usual differen-
tiation by treating x (resp. z*) as a real variable with 2* (resp. x) treated as a constant [48, 68]:

of _0f(z,x")
A 2
5':c 830 z*:const‘, (5 )
of _ of(w,a”)
(9.’13* a 6.23* xr=const. (53)

Besides, if f is real-valued, the following property is verified:

of\" _ of
((%)  Ox* (54)

In a multivariate setting, the gradient of f is then defined as:

of  of]"
==, .., . 55
Vf {8:101 R aJZK:| ( )
When f is additionnally real-valued, the following property holds from (51) and (54):
of of 1"
= = 2R . 56
Vel = | | 2w (56)

As an illustrative example, we derive the expression of the gradient in the Wirtinger Flow algo-
rithm [14]. The loss is:

1
E(x) = 5 [[|Ax]* = r]3. (57)
Applying the chain rule yields:
VE(x) = (V(|Ax]? — 1)) (|Ax[ = 1). (58)
Treating x* as a constant like in (52), the first term is given by:
V(IAx” —r) = V(|Ax[?) (59)
~ V((A%)* © (Ax)) (60)
= diag(Ax)*V(Ax) + diag(Ax)V ((Ax)*) (61)
= diag(Ax)*V(Ax)+0 (62)
= diag(Ax)"A. (63)
We finally obtain:
VE(x) = AMdiag(Ax)(|Ax|? — 1) (64)
= A"[(Ax) © (|Ax[* —1)]. (65)

C Proximal operators

C.1 Definition

The proximal operator of a convex function f : RX — R U {+oo} is the operator mapping a vector
y € RE to the set of solutions of the following penalized optimization problem [69)]:

. P

prox, 1 ;(y) := argmin  f(x) + 5 |lx — y|3. (66)

K 2
x€eR
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Divergence \ Expression Proximal operator

Quadratic iH -3 ppy:-lr
KL right | p~'Dg(r|-) 5y —1£VA)
with A :=4pr 4 (1 — y)?
KL left | p™'Dgr(-|r) P W(pr ® eY)
-1 . 1/ -1 \/7/
IS left p 'Dis(-|r) 5, (—r T+ py £ VA
with A’ :=4p + (r~ ! — py)?

Table 3: Proximal operators of some standard (convex) Bregman divergences. W is the Lambert W
function (i.e., the inverse relation of z — ze*) applied entry-wise.

C.2 Proximal operator of usual Bregman divergences

A closed-form expression of the proximal operator can be obtained for some of the usual Bregman
divergences, such as the quadratic distance and the KL right and left divergences [69, 70].

These are summarized in Table 3.

To the best of our knowledge, the proximal operator of the IS divergence has not been derived in
closed-form in the literature. Therefore, for the sake of completeness, we derive it hereafter. Let us
consider ¢ such that ¢(z) = —log z. We consider the problem (66) with f(x) = Dy (x|r).

Note that such a function is defined only for vectors with nonnegative entries. However, we can extend
its definition domain to R® by considering that Dy (x|r) = +oo if x ¢ RE [70]. We then search for x
such that VQ(x) = 0, where Q(x) = Dy(x|r) + £||x — y||3. We have:

VQ(x) =¢'(x) = ¢'(r) + p(x — y) (67)
—r x4 p(x—y), (68)
Therefore,
VOQ(x)=0<=x0r ' —1+px0(x—y)=0 (69)
= pxl+ (Tl -py)ox—1=0. (70)
Finally: .
proxplew(- | r) (y) = ?p(*ril +py + \/E)v (71)

where A’ :=4p + (r~1 — py)2.

C.3 Nonnegativity constraint in problem (35)

Here we prove that the nonnegativity constraint on u in problem (35) can be ignored. Let us first rewrite
this problem into scalar form, as this problem is separable entrywise:

argmin dy (e | ) + g||\hk| — 2. (72)

ur >0

where dy, denotes the Bregman divergence applied to scalars (instead of vectors). We will remove the
index k in what follows for clarity. We aim to prove that:

Fu<0, dy(r|0)+EIh? < dy(r|u)+ ElIn] - uf?, (73)

If this inequality holds, then the minimizer of the function defined in (72) necessarily belongs to R..
Consequently, the nonnegativity constraint can be dismissed. Equation (73) rewrites:

(r) = 6(0) =¥ (O)r + £ IR < (r) = (u) — ' () (r — w) + E[Ib] —ul?, (74)
which is equivalent to:
$(0) = (u) + 1/ (0) — ¥/ (u) (0 — w) = 19/ (u) + £ [=2ulh| +?) > 0, (75)
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which finally rewrites:

dy (0] w) + (1 (0) — ¢/ (u) + £ [2ulh| +u?] > 0. (76)
term 1 term 2 2
term 3

The latter inequality holds for the following reasons:
e Term 1 is nonnegative by nonnegativity of Bregman divergences.

e Term 2 is nonnegative by convexity of 1 and nonnegativity of r: 1 is convex, therefore v’ is
monotonically non-decreasing. As u < 0, ¢'(u) < ¢'(0) and r(¢'(0) — ¢’ (u)) > 0.

e Term 3 is nonnegative because u is negative.

Therefore, (73) holds, which demonstrates that the nonnegativity constraint in (35) can be dismissed.
Finally, using a similar proof, we can show that the same holds for the “left” PR problem.

D Algorithms derivations for real-valued signals

We here discuss the adaptation of our proposed gradient and ADMM algorithms to the specific case when
the input signal is real-valued x € RL.

In this setting, the gradient algorithm can be easily deduced from its complex-valued counterpart.
Indeed, since x is real-valued, the gradient of J simply reduces to VrJ(x), as defined in Appendix B.
According to the property (56), this gradient is given by:

VirJ(x) = 2R%(VJ(x)). (77)

where VJ(x) is computed using the Wirtinger derivatives.

Consequently, the gradient update rule is similar to the complex-valued case, up to a constant factor
of 2 and with the difference that we only need to retain the real part after applying A (in practice, the
inverse STFT).

Regarding the ADMM algorithm, we need to address the following sub-problem, in lieu of (37):

in ||(Ax)? — y||3. 78
Jnin [[(Ax)" -yl (78)

where we note y = uy1 ©elf+1 — %. Since we only use ADMM algorithms with d = 1 in our experiments,
we focus hereafter on this setting. By using again (56), we compute the gradient of the loss in (78) and
set it at O:

27(AHAx — AMy) = 0. (79)

This yields the following solution:
x = (R(A"A)) "' Rv(AMy). (80)

When using the STFT with a self-dual window we have A"A =TI and the update becomes
x = R(AMy). (81)

It is the same update as in the complex-valued case (38) up to retaining the real part after applying the
inverse STFT AH.
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