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A3.2
Flux pinning

C J van der Beek and P H Kes

A3.2.1 Introduction

Type II superconductors with high upper critical fields Hc2 have considerable potential for practical ap-
plications, including high magnetic field solenoids, permanent magnets and energy storage devices, as
well as magnetic field detectors (SQUID’s) and superconducting components for electronics and com-
munications. However, the interplay between electrical currents and lines of quantised magnetic flux
(the “flux lines”, “vortex lines”, or simply “vortices” of Section A.2.3.3), in superconducting materials
results in a driving force that puts the latter in motion. Vortex motion leads to dissipation of energy,
manifested as an electric potential within the material, which therefore can no longer be considered to be
superconducting, i.e. its electrical resistance becomes non-zero [Bardeen and Stephen 1965]. Preventing
vortex motion up to a high critical current density jc is therefore essential. This is achieved through
pinning of the vortex lines by imperfections of the material. Fortunately, such flux pinning is a general
phenomenon in commonly produced materials. In the following sections an overview is given of this
interesting phenomenon and some related issues.

A3.2.2 Origin of flux pinning : material defects and flux pinning interactions

Material imperfections providing flux pinning occur in many different varieties, and include inhomo-
geneities, defects, and engineered structures of sizes ranging from the atomic scale to the macroscopic.
They are either naturally present as a result of the composition of the material, artificially introduced as
the byproduct of the growth or preparation method, or tailored by micro- or nano-engineering. It is safe
to assume that any imperfection of the material will lead to some extent of flux pinning and therefore
affect the macroscopic physical properties of the superconductor, even if the effects may be very small.
However, for the vast majority of superconducting materials, including technological superconductors,
flux pinning will completely determine the electrical transport and magnetic properties in the supercon-
ducting state. One may classify flux pinning defects through the origin of the interaction with the vortex
lines, through their “strength”, and through their shape: a cylindrical defect extending along the length
of a vortex line will generally be more effective in arresting it than a point-like imperfection.

Imperfections locally alter material properties and, consequently, superconductivity in their envi-
ronment. Such changes couple to the periodic variations of both the order parameter and the local
electromagnetic field, which are characteristic of the mixed state (see chapter A4.2). In principle the
interaction can be derived by solving the Ginzburg–Landau equations with the appropriate boundary
conditions imposed by the defects. Most commonly, the vortex-defect interaction force f(r) is attrac-
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tive, so that the presence of imperfections results in a random “landscape” Upin(r) of attractive pinning
potential wells for the vortices. However, repulsive pins also exist. An example of such are engineered
magnetic centres (see e.g. [Marchiori et al. 2017]) of polarity equal to that of the vortices.

A3.2.2.1 The core interaction

The local modification of the order parameter (related to the density of Cooper pairs) by the presence of
defects has an incidence on the electronic structure and the diameter of the vortex core. One therefore
speaks of “core pinning”. Defects deviate from the surrounding material by differences in density, elastic-
ity, or electron-phonon coupling. These give rise to a local change in Tc – and hence of the condensation
energy 1

2µ0H
2
c – which may range from a minor, secondary effect (due to local strain, for example) to

the complete suppression of superconductivity in or around the defect. The defects may also manifest
themselves through their scattering effect on quasiparticles in the vortex core, and the subsequent changes
in quasiparticle mean free path `, quasi-particle conductivity and vortex core level structure. One thus
distinguishes between δTc– and δ`–pinning.

The coupling to the variation of the order parameter is the main origin of flux pinning by very
many types of defects, including dislocations, point defects of various kinds, voids, grain boundaries,
precipitates, and ion-irradiation induced damage such as amorphous columnar defects. The typical length
scale rf of the core interaction depends on the spatial variations of the order parameter. Therefore, rf ≈ ξ
for low (B < 0.2Bc2) and rf ≈ a0/2 for high flux densities respectively, where a0 is the vortex lattice
parameter ( 1

2a
2
0

√
3 = Φ0/B ≡ nv is the vortex line areal density). The elementary pinning force f(u)

generally assumes its maximum value fp for a vortex displacement u ≈ rf .

A3.2.2.2 The electromagnetic interaction

Imperfections of size comparable to or larger than the London penetration depth λL (see Eq. (A2.2.4)) will
necessarily alter the supercurrent flow in the material, including that of vortex currents. The associated
spatially-dependent reduction in the kinetic energy provides the attractive pinning interaction. Examples
of the magnetic interaction are the attraction of vortex lines to surfaces parallel to the applied magnetic
field Ha (this might be the external surface, see section A3.2.3.6 , as well as some large precipitate
interface within the sample bulk) and thickness variations of thin films for fields normal to the film. In
the latter case, the vortices are trapped at the sites of least thickness where the line energy of the vortex
is minimum.

Evidently, the typical length scale related to the magnetic interaction is λ. In materials with a large
κ this kind of interaction is therefore relatively small; also it rapidly vanishes as the magnetic field
increases beyond several Hc1. The electromagnetic interaction with large defects and the surface can be
readily modelled using the image vortex method [Clem 1974]. A secondary effect of small defects is the
depletion of the Cooper pair (superfluid) density, which may entail a spatially modulated increase of λ.
Inhomogeneities of the defect distribution will therefore contribute to flux pinning, with vortices being
attracted to regions of larger average λ [Demirdis et al. 2013].

A3.2.3 Effect on electromagnetic and transport properties in the mixed state

A3.2.3.1 Electric conductivity and the E(j) relation

Experimentally, flux pinning manifests itself in many ways which provide one with different opportunities
to measure the critical current density jc. Given that the local current density j is proportional to the
force FL = j × B on the vortices, and the electric field E = v × B (averaged over a distance larger
than several times a0) is given by the cross product of average vortex velocity v and the flux density B,
the local relation between electric field and current density E(j) reflects the average force-velocity curve
characterising the motion of the vortices through the pinning “landscape”. Ideally, |E| = |v| = 0 up
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Figure A3.2.1: Typical E(j) characteristics in the mixed state in the absence of pinning (FF), with bulk pinning
at zero temperature (T = 0) and at finite temperature for finite energy barriers (TAFF, dashed, appropriate
for the vortex liquid phase) and infinite barriers (glass, dotted) for j → 0, rendered as a linear (a) and double
logarithmic plot (b). Note that the differential resistivity above the critical current density jc is larger than or
equal to the flux flow (FF) resistivity in the absence of pinning. This effect is due to velocity fluctuations and is
more than often ignored.

to |j| = jc and then rises almost linearly, with a slope slightly greater than the flux flow resistivity ρf
for j > jc (see below and figure A3.2.1). Thus jc ≡ Fp/B is defined as the critical current density that
will overcome the net “volume” pinning force Fp (unit [N/m3]) exerted by the material imperfections
on the vortex ensemble, thereby setting the latter in motion. A reasonable approximation for ρf is
ρf ≈ ρn(B/Bc2) [Bardeen and Stephen 1965], where ρn is the electrical resistivity in the normal state,
suggesting that the dissipation takes place mainly in the core of the moving flux lines. In strong pinning
materials jc can be as large as a few tenths of the depairing current density, j0 ≈ Hc/λ (see Section
A2.2), which is typically 108 A/cm2. To achieve such large current densities in electrical transport
measurements is difficult due to heating effects and contact problems, and therefore inductive probes
(magnetic measurements) are frequently used.

A3.2.3.2 Inductive measurements and magnetic hysteresis

In the absence of pinning centres, surface or geometrical effects, the flux distribution inside a supercon-
ductor in a magnetic field H > Hc1 is uniform with density B. The Meissner screening currents in a
surface layer of thickness λ produce a (diamagnetic) moment m and an associated volume magnetisation
M which is in equilibrium with H, as described by the reversible magnetisation curve of Abrikosov (see
chapter A4.2), i.e. M = Mrev(H) and Brev(H) = µ0(H +Mrev) [Indenbom et al. 1994].

Since their electromagnetic response is dictated by their nonlinear E(j) curve rather than by the
London equation, type-II superconductors with flux pinning in the material bulk behave as perfect con-
ductors rather than superconductors. Their response to low-frequency time-varying electromagnetic fields
is described by a set of macroscopic nonlinear diffusion equations for the (electro-)magnetic field and the
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Figure A3.2.2: Model magnetisation curves for a type-II superconductor in the absence of any pinning mechanism
(Mrev, dashed) and in presence of bulk pinning only (drawn line) for increasing field (M↑) and decreasing field
(M↓). H

∗ is the characteristic field above which vortices completely permeate the sample when the field is applied
after zero-field cooling. Also shown are minor magnetisation loops (dotted) traversed when a field modulation or
ac-field of moderate amplitude h0 and frequency is superimposed on the dc-field. When the ac-field amplitude
increases from h0 < H∗ to h0 � H∗ the minor hysteresis loops change shape from lenticular (minor loops (1) and
(2)) to parallelogramatic (minor loop (4)). Hirr is the irreversibility field above which the effects of pinning can
no longer be discerned. The little “humps” below Hirr illustrate the peak effect. The ratio between the upper
and lower critical fields Hc2 and Hc1 corresponds to κ ≈ 2.5.

induced bulk electrical shielding current j(r), obtained by combining Maxwell’s equations with E(j):

−∂B

∂t
= ∇×E(j) ≡ ∇× ρ̂(j)∇×B (A3.2.1)

−∂j

∂t
= ∇×∇×E(j) (A3.2.2)

In direct analogy with Ohmic conductors, magnetic flux entry and exit into the superconductor bulk is
delayed with respect to the variation of the applied electromagnetic field, leading to flux density gradients
and hysteresis of the local flux- and current destiny j(r) (here r is the position measured from the sample
centre). When the field is increased, vortex lines enter at the sample edge so that the vortex density is
highest there, and lowest in the sample center. When the magnetic field is decreased, vortices exit first
through the sample boundary, while those in the center remain trapped, leading to magnetic remanence.
Thus, the magnetic moment

m =

∫
V

|j(r)× r| d3r (unit [Am2]) (A3.2.3)

is irreversible: the value of m depends on the path taken to reach the measurement field, as illustrated
in figure A3.2.2 (V is the sample volume). The width of the main hysteresis loop is a direct measure of
jc, or, more generally, of the sustainable lossless current density, as will be discussed below.

A3.2.3.3 Self-organisation of the flux distribution and the flux front

The hysteresis is the result of vortex lines being (drastically) slowed down by repeated trapping by
successive pinning centres as the screening current induced by the time-varying field pushes them into

vanderbeek
Cross-Out

vanderbeek
Inserted Text
In this example, 

vanderbeek
Inserted Text
.

vanderbeek
Inserted Text
∆Msat
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Figure A3.2.3: Imaging of initial vortex penetration into a Ba(Fe0,93Co0.07)2As2 single crystal with strong
pinning, at 10 K, after zero-field cooling. (a) a low-resolution magneto-optical image of the magnetic flux density
shows the latter penetrates from the four edges of the rectangular sample, up to a well-defined flux front (bright
areas correspond to high flux density B, black areas to B = 0). The inner region is in the Meissner state and
therefore appears as black (spots are artefacts, and wedges are magnetic domains of the ferrimagnetic film used
for imaging). (b) a Bitter decoration image reveals the individual vortices. After [Grisolia2013].

or out of the material. On first flux penetration (zero-field cooled condition), the nonlinear nature of
the vortex-pin interaction leads to the presence of a well-defined flux front to which the first vortices
have advanced. Behind the flux front, the vortices self-organise so as to maintain a flux density gradient
∇ × B equal to the critical (or sustainable) current density. The local advances of the vortices into
the superconductor are affected by the spatial variations of the “pinning landscape” and proceed in an
avalanche–like manner. The flux front therefore has a rough profile, described by a nonlinear diffusion
equation [Edwards and Wilkinson 1982]. At the characteristic field H∗, flux fronts entering from opposite
sides of the sample merge, and the description in terms of self-organisation is no longer appropriate. The
dynamics of vortices entering a type-II superconductor with pinning has been compared to that of a
sandpile [de Gennes 1989].

A3.2.3.4 Modelling using a power-law E(j)–curve

The macroscopic hysteretic behaviour of (the local values of) B and j can be conveniently modelled
by considering a model power law E ∝ (j/jc)

n [Brandt 1996]. This corresponds to an empirical law
sometimes used to characterise the quality of a wire, where a large value of n signifies a high material
uniformity, and is also well-suited to quantitatively understand the effect of flux creep on magnetic
hysteresis (see below). Note that E ∝ (j/jc)

n smoothly interpolates between Ohm’s law and the case
of ideal flux pinning. In the first case, n = 1 and the material shows a linear electromagnetic response
described by the skin effect; the effective depth to which the electromagnetic field penetrates the material
is the skin depth δ =

√
ρ/µ0ω where ρ = ρn, ρf for a normal metal and a superconductor without pinning

respectively, and ω is the angular frequency of the time-varying field. In the second case, n → ∞; the
response is very strongly nonlinear and adequately described by the Bean model.

A3.2.3.5 Bulk pinning and the Bean model

The Bean model [Bean 1962] consists of approximating the electromagnetic response of the superconduc-
tor by taking the working point on the materials’ E(j) (or IV ) curve as fixed. In the case of near-perfect
pinning without any measurable dissipation, i.e. |v| = |E| = 0 for |j| < jc, the working point is fixed at
|j| = jc. As a consequence, the modulus |j| = ±jc throughout all regions of the material in which vortices
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Figure A3.2.4: Distribution of the flux density B (or vortex density B/Φ0) in a slab-shaped type-II supercon-
ducting sample occupying |x| < w/2, with the external magnetic field Ha applied along z, according to the Bean
model, at various stages of the hysteresis loop (the y coordinate points into the plane). (i) Ha < H∗, the flux
fronts penetrating from opposite edges have not yet met in the sample center ; (ii) Once Ha > H∗, j = ±jc
throughout the sample and the flux distribution does not change its shape; (iii) upon reduction of Ha from the
maximum applied field Hmax, the screening current density at the sample boundaries reverses sign and flux starts
leaving the sample ; (iv) Ha < Hmax − 2H∗: the direction of the flow of the screening (critical) current and
therefore the shape of the flux density profile is now reversed throughout the sample; the flux profile does not
change shape as Ha is reduced further; (v) when Ha is reduced to 0, trapped or “remnant” flux (vortices) remain
in the sample; (vi) when Ha is reduced below 0, positive trapped flux co-exists with magnetic flux (vortices) of
the opposite sign penetrating from the boundaries. If the Bean model does not imply any discontinuity of the
screening current density at the interface between positive and negative flux, in real superconductors a vortex-free
region appears because no vortices can exist when Ha < Hc1. In superconductors of thickness 2λ� d� w, vortex
lines wrap around this flux-free zone to form a so-called “current string” or “Meissner hole” [Indenbom 1995].
(vii) and (viii) the further decrease of Ha to a minimum (negative) value Hmin and its subsequent increase entail
flux distributions that mirror those in stages (ii) and (iii).

are present. That is, the magnetic flux density gradients obey(
∂B

∂Ha

)−1
rev

|∇ ×B| =
(
∂B

∂Ha

)−1
rev

∣∣∣∣(∂Bx∂z

)
−
(
∂Bz
∂x

)∣∣∣∣ = jc(B), (A3.2.4)

the “critical state equation”. In all other regions of the material B = 0 and j takes on the value required
by the Biot-Savart law and the material geometry. In Eq. (A3.2.4), ∇×B has been written out to describe
the flux gradients in an (xz)–planar section of a sample subjected to a magnetic field applied along the
z-direction. One sees that for samples that are long in the direction of the applied magnetic field, the
current density corresponds to a constant transverse flux gradient −∂Bz/∂x (the flux density decreases
as a straight line from the sample edge), while for a thin film in perpendicular field, it corresponds to the
gradient ∂Bx/∂z of the parallel flux across the sample thickness.

For fields well above Hc1 and for a Ginzburg – Landau parameter κ = λ/ξ � 1, the prefactor
(∂B/∂Ha)rev (which follows from the slope of the reversible magnetisation curve) can be replaced by
µ0. One can then extract the modulus jc of the current density from the integral in Eq. (A3.2.3), so
that the difference between the (saturated) magnetic moments measured in increasing and decreasing
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A3.2.3. EFFECT ON ELECTROMAGNETIC AND TRANSPORT PROPERTIES IN THEMIXED STATE7

Geometry ∆Msat ≡ ∆msat/V H∗ Ic hysteretic Rs
[A/m] [A/m] [A] losses

long thin sheet of thickness d and jcd/2 jcd jcdh
4µ0ω
3π

h30
jcd

√
4πµ0
jc

P
1/2
0

height h� d, H ‖ to the surface

thin strip of thickness d and width jcd/2 jcd/π 2jcdw
π2µ0ω

12

h4
0

j2cd
2

4π
j2cd

P0

w, in perpendicular applied field

long thin cylinder or wire of 2jcR/3 jcR πjcR
2 2µ0ω

3π

h30
jcR

√
4πµ0
jc

P
1/2
0

radius R, H ‖ to the surface

thin disk of thickness d and radius 2jcR/3 jcd/2
16µ0ω
3π3

R
d

h4
0

j2cd
2

R� d in perpendicular applied field

Table A3.2.1: Bean model applied to various geometries : width ∆Msat ≡ ∆msat/V of the magnetisation loop
at saturation (H > H∗, V is the sample volume); field of full flux penetration H∗; Critical current (for current
applied along the longest direction of the sample) ; hysteretic losses per cycle (in the limit h0 � H∗) when the
sample is subjected to an ac field of angular frequency ω and amplitude h0 [Clem and Sanchez 1994] ; Surface
resistance Rs as function of incident microwave power density P0 (electric field and current along the longest
direction of the sample).

magnetic field ∆msat = |m↑ − m↓| = Cjc, with C a constant that depends only on sample geometry.
Hence, the Bean model can be applied to irreversible magnetisation curves to determine jc from ∆msat.
It also follows that the reversible magnetisation lies midway between the increasing and decreasing field
branches of the hysteresis loop (indicated in figure A3.2.2). Several important geometries relevant for
experiments are summarised in Table A3.2.1.

A3.2.3.6 Bean–Livingstone barrier

The vortex ensemble in a type-II superconductor is stabilised by the inward force provided by diamagnetic
screening currents circulating in the surface layer of thickness λ, which effectively forms a magnetic
container. This force, which, by virtue of Eq. (A2.2.3), decays as e−x/λ, with x the distance between a
vortex line and an outer surface of the sample, counteracts the (outward) attractive force ∝ e−2x/λ to
the very same surface (see section A3.2.2.2 ). The superposition of the two forces results in an energy
barrier acting against vortex entry into the sample as the applied magnetic field is increased.

As a result of this “Bean-Livingstone barrier”, vortices are only admitted into the superconductor
when the field reaches the first penetration field Hp ' Hc > Hc1. In the absence of bulk pinning, the
surface screening current then pushes the vortices to the sample center. Contrary to the case of bulk
pinning and the Bean model, the flux density on increasing the applied field is thus higher in the sample
center that near its boundary. As more and more vortices accumulate in the sample, the screening current
is increasingly compensated by the vortex currents, yielding a magnetisation that takes the general form
M↑ ' −H2

p/2Ha [Clem 1974]. Upon decreasing the magnetic field, vortex exit is counteracted by the
surface screening current until the magnetic flux densities inside and outside the sample are equal, and
the barrier disappears. Vortices can then exit freely, and the magnetisation M↓ ' Hc1/(π lnκ) ≈ 0
[Clem 1974]. The resulting magnetic hysteresis loop, with near-zero magnetic moment for decreasing
field as a hallmark, is shown in figure A3.2.5. The Bean-Livingstone barrier is significantly diminished
in the presence of sharp corners on the sample, and can be quelled by appropriate surface treatment
yielding so-called “gates” for flux entry, such as abrasion or irradiation, or by treatment that smoothly
diminishes Tc to zero at the surface, such as an oxygen diffusion layer at the surface of superconducting
Nb or V.
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Figure A3.2.5: The effect of a Bean–Livingstone surface barrier on magnetisation in the absence of bulk pinning.
Note the characteristics: the first penetration of flux occurs at Hp ≈ Hc, the magnetisation is zero at Ha = 0,
and the magnetisation for decreasing field M↓ is close to zero. The left-hand diagram (1) shows the situation for
a platelet-like sample with a square cross-section at Ha < Hp, in which vortex line segments partially penetrate
through the sharp corners (vertices) of the sample. Diagram (2) shows the situation for Ha > Hp: vortex lines
accumulate in the center of the sample.

A3.2.3.7 Geometrical barrier

A second barrier effect appears in type-II superconducting samples of non-ellipsoidal cross-section; it
concerns the vast majority of low-field transport and magnetisation experiments carried out on low-
pinning materials, for these are typically carried out on rectangular strip- or platelet-shaped samples.
Whereas the external field Hi at the surface (and therefore at the equator) of an ellipsoidal sample is
enhanced according to the expression Hi = Ha − nxMrev(Hi) ≡ Ha (with the field Ha applied parallel
to one of the principal axes (x) and nx the corresponding demagnetisation coefficient), the magnetic
field at the equator of non-ellipsoidal samples is effectively shielded by the screening currents circulating
at the vertices (see Figure A3.2.5). Vortex line segments first (partially) penetrate through the sharp
corners (vertices) of the sample. Full penetration only occurs when segments penetrating from the top
and the bottom meet at the sample equator, whence they can enter freely. For strip- or bar shaped
samples of thickness d smaller than the width w, the field of first penetration Hp ' Hc1(2d/w)1/2 is
larger than the penetration field Hell

p = Hc1(1 − nx) ≈ Hc1(2d/w) expected for an ellipsoidal sample of
the same aspect ratio. The sample geometry, or shape, thus creates a geometrical barrier for increasing
field [Zeldov et al. 1994]. For decreasing field, this barrier does not exist, leading to strong magnetic
hysteresis at low fields Ha

<∼ Hc1. The shape of the hysteresis loop can be distinguished from that
controlled by the Bean-Livingstone barrier through the behaviour of the magnetic moment in decreasing
field. This approaches the reversible moment (section A3.2.3.2 ) and is therefore not zero.

Thus, the geometrical barrier dominates the low-field magnetic irreversibility and electrical transport
properties of high-aspect ratio low-jc strip-and platelet-shaped superconducting materials in perpendic-
ular field. The geometrical barrier is suppressed by careful abrading of the sample to an ellipsoidal or
pyramidal cross-section, or by the presence of burrs or sharp wedges on the sample surface (which act
as vortex entry gates). Such treatment will reveal the bulk pinning properties. When the sample height
in the field direction is larger than the width, flux penetration happens at Hc1, or is determined by the
Bean-Livingstone barrier.
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A3.2.3. EFFECT ON ELECTROMAGNETIC AND TRANSPORT PROPERTIES IN THEMIXED STATE9

A3.2.3.8 Simultaneous presence of bulk pinning and a barrier

In type-II superconductors with intermediate jc (so that the characteristic field H∗ ' Hc1) both bulk
pinning and the barrier will be manifest. Upon first flux penetration, the competition between surface
screening currents and bulk pinning will lead to “flux puddles” : there is neither a well-defined front of
penetrating vortices from the edges nor an accumulation of vortices in the sample center. Another effect
of this intermediate situation is “edge contamination”, whereby the vortex ensemble arrangement and
the local critical current density are determined by disorder introduced at vortex entry because of local
variations of the geometrical barrier or edge roughness [Paltiel et al. 2000].

A3.2.3.9 ac and High Frequency electromagnetic fields

The analysis of the ac response is a useful means to determine the critical current in conditions where dc
magnetic measurements are insufficiently sensitive, but the critical current density is still too high to allow
direct electrical transport measurements. The exposure of a type II superconductor to a time-varying (ac)
magnetic field of amplitude h0 superposed on the background dc field Ha results in a minor magnetisation
loop being traversed, as indicated in figure A3.2.2 by Mac. The sample response can be measured by
various methods : the global complex ac susceptibility, χ ≡ (2πh0)−1

∫
M(Ha + h0(t))e−iωtdωt, the

local complex “transmittivity”, T ≡ (2πµ0h0)−1
∫
B(Ha + h0(t))e−iωtdωt, the response of a mechanical

oscillator to which the sample is attached, or, at higher frequencies, through the frequency shift and phase
shift of a resonant electromagnetic circuit or cavity containing the sample. In all cases the time-varying
field results in a time-varying force on the vortex ensemble, which is made to oscillate in the pinning
potential “landscape” in which it is embedded. The nature of the response depends on the magnitude of
both h0 and ω, and can be described by combining the (overdamped) vortex equation of motion

γu̇+ f(u) = j×B + η(t, T ) (A3.2.5)

with E = v × B and Maxwell’s equations. Here, γ = B2/ρf is the friction coefficient due to flux-flow
losses, η(t, T ) is a stochastic noise term, and u̇ ≡ v.

The linear response regime of small h0 is defined by the regime of vortex excursion u for which
f(u) ≈ ku, where the pinning restoring force constant k (unit [N/m4]) is known as the Labusch constant.
At frequencies ω > ω0 ≡ k/γ, response is dominated by the friction force γu̇. Vortices perform periodic
oscillations of amplitude much smaller than rf . Therefore the details of pinning are irrelevant to the
macroscopic ac response, which is entirely described by the flux-flow skin effect (with a skin-depth δ =√
ρf/µ0ω). For ω < ω0, the details of pinning come into play. For small h0, the response is purely

elastic; vortices perform reversible oscillations near their equilibrium pinned positions. The (lossless)
macroscopic ac response in this so-called “Campbell regime” is in phase with the driving field and
therefore “Meissner–like”, but with a penetration depth λC =

√
B2/µ0k determined by flux pinning

[Campbell and Evetts 1972]. At very low frequencies ω <∼ ω0e−U(j)/kBT the ac response is determined by
thermally activated flux jumps (see below).

For larger h0 > Fp/
√
µ0k, the vortices can be depinned by the ac field. Depending on the strength of

pinning, the low temperature electromagnetic response is determined by the Bean model, by the Bean-
Livingstone barrier, or by the geometrical barrier. The response is hysteretic and strongly nonlinear;
therefore, strong higher harmonic response appears. The nonlinearity can be detected most easily by
measuring the third harmonic of the ac susceptibility. The conditions of temperature and magnetic field
at which flux pinning becomes unobservable due to thermal activation define the so-called irreversibility
line Tirr(B,ω) in the (T,B) (temperature-field) phase diagram. This can be readily determined from
the (ω-dependent) demise of the third harmonic ac response. Note that the harmonic content of the ac
susceptibility is very similar, irrespective of whether bulk pinning or a barrier is dominant. Only imaging
measurements of the local flux density [Paltiel et al. 2000], or an in-depth analysis of the harmonic
susceptibilities [van der Beek et al. 1996] can distinguish which situation is relevant.

vanderbeek
Cross-Out

vanderbeek
Replacement Text
probing e.g.



10

Hysteretic losses and associated heating effects are very important because they determine the dissi-
pation in superconducting transformers and motors, as well as the quality factor of radio-frequency (RF)
and high-frequency (HF) superconducting devices such as detectors, resonators, and reception chains.
The power loss-mechanism can be characterised through the measurement (at low frequency) of the ac
losses or (at high frequency) of the surface resistance Rs as function of RF or HF power (see section
A2.7.2). Some useful relations are summarised in Table A3.2.1.

A3.2.3.10 Measurement of the IV curve

In thin films, strips, or wires, or in low-jc materials, the E(j) curve can be directly assessed by the
measurement of the current–voltage (IV ) characteristic of the superconductor. It should be always borne
in mind that the application of a (non-equilibrium) electrical transport current I to the superconductor
in the mixed state gives rise to the same kind of irreversible properties as the application of a magnetic
field. In the presence of bulk pinning, the Bean model applies [Zeldov et al. 1994]. As the magnitude
of the electrical current is increased, this first flows along the sample edges, provoking vortex entry. As
vortices move inwards, the current density is limited to |j| = jc in the flux-penetrated regions; thus the
total current grows through the increase of the width of the flux-penetrated regions rather than that
of the local current density. The critical current Ic of the sample is reached when the flux fronts from
opposite edges meet in the sample center. For I > Ic and H � H∗, vortices transit freely through the
sample. If H � H∗ and I > Ic, vortices carrying positive and negative flux enter from opposite edges
and annihilate in the sample interior.

In the case of slab-shape samples (of thickness greater than 2λ) with weak bulk pinning, the Bean-
Livingstone- and/or the geometrical barrier can sustain the flow of lossless current at the sample bound-
aries as long as the magnetic “self–field” produced by the current flow does not exceed the penetration
field Hp. For currents larger than Ic ∼ Hp/d, vortices of positive and negative flux enter from opposite
sample boundaries and annihilate in the interior, leading to resistive losses.

It is important to note that while jc is a property of the superconducting material, Ic is a property of
the sample. Since non-uniformities give rise to rounding of the IV curve, it has been common practice
to define jc (rather arbitrarily) by a voltage criterion of 1 µV dropped over 1 cm.

A3.2.3.11 Thermal fluctuations and flux creep

Thermal fluctuations cause the vortex lattice to explore different metastable configurations in the pinning
potential. In the absence of driving currents, this results in effectively larger pinning wells and an
exponential reduction with increasing temperature of the pinning force, of the energy gain Up due to
pinning, and of the critical current density [Feigel’man and Vinokur 1990], well beyond the “trivial”
temperature dependence entering via Hc(T ), ξ(T ) and λ(T ) (see Eqs. (A2.3.4) and (A2.3.5)).

In the presence of a driving force, vortices will be driven between metastable configurations of almost
equal energy, a process that leads to a unidirectional creep of the vortex ensemble, accompanied by the
reappearance of resistance for |j| < jc. The average velocity of the vortices is determined by the effective
jump rate of the system between such states, which is a thermally activated process. The calculation
of the average vortex velocity in the random pinning potential is a complicated problem of statistical
physics; usually, the velocity is modelled using an activated law, such that

v = v0e−U(j)/kBT , (A3.2.6)

where U(j) is the magnitude of the thermal activation barriers relevant for a driving current of density
j, and v0 is a prefactor related to the so-called “attempt rate”. Formulated as such, the critical current
density jc corresponds to the driving force jc × B at which all creep barriers vanish, i.e. U(jc) = 0.
For current densities smaller than but comparable to jc, the average activation barrier is small and the
vortex system can easily find new most favorable metastable states near to its actual one. The smaller
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A3.2.4. STATISTICS OF PINNING : FROMTHE ELEMENTARY FORCE TO THE CRITICAL CURRENTDENSITY11

the current density, the lower the probability of a jump to an equivalent pinned configuration becomes,
and the higher the average activation barrier U(j). At low temperatures, the elastic properties of the
vortex ensemble lead to nucleation-type creep and U(j) ∝ j−µ [Feigel’man et al. 1989], which diverges
at low current densities (see subsection A3.2.6.1 below). The current density-dependence of the average
activation barrier gives rise to the highly nonlinear E(j)–curve of subsection A3.2.3.1 ,

E = ρ0e−U(j)/kBT , (A3.2.7)

which should be combined with Eq. A3.2.2 in order to describe the low-frequency electrodynamics of the
superconductor. As far as the magnetic moment is concerned, the Bean model is usually still a good
approximation, but jc should be replaced by a time- or field sweep rate-dependent “sustainable current
density” js as the new work point on the E(j)–curve. As a result, the width ∆msat of the magnetic
hysteresis loop is no longer indicative of the “true” critical current density but, rather, of the flux creep
rate at different magnetic fields. An elementary rearrangement of terms shows that js satisfies

U(js) = kBT ln

(
ti + t

τ

)
, (A3.2.8)

where t is the time scale of the experiment, τ is a normalisation time, and ti is the time on which
transient effects are important. Information about the energy barrier U(j) can be obtained by measuring
the temporal relaxation, as a result of flux creep, of the saturated magnetic moment msat(t) or the
local induction B(t) over the sample. From such measurements, the U(j)–curve can be directly obtained
by plotting kBT ln (c− |∂msat/∂t|) versus ∆msat ∝ js. Repeating the experiment at slightly different
temperatures yields a series of curves over finite j intervals which can be overlapped so as to determine the
constant c [van der Beek et al. 1992]. In this way the U(j) dependence can be determined over several
decades in j. In principle, this can also be achieved by waiting long enough (∼ 1040 years) for the current
to decay! The true jc is obtained by extrapolating to U = 0. It is interesting to note that the U(j)/kBT
ratio always falls within the range 10 − 30. This remarkable observation can be understood in terms of
the self-organising mechanism of creep and the experimental time window of the experiments.

The U(j)–curve can also be obtained from frequency-dependent measurements of the low-frequency
ac response of the superconductor; then, the relevant barriers satisfy U(j) = kBT ln(1/ωτ). Note that
activation-type creep over the Bean-Livingstone barrier is also possible and leads to a time- or field sweep
rate-dependent first penetration field Hp(t). By contrast, the geometrical barrier is proportional the
product of the vortex line energy ε0 = 4πξ2

(
1
2µ0H

2
c

)
(with unit [Jm−1]) and the sample thickness. It is

therefore of macroscopic nature, and cannot be overcome by thermally activated vortex motion.

A3.2.3.12 Pinning energies and activation barrier

In very many reports in literature, the flux creep activation barrier U(j), which is related to non-
equilibrium dynamics and transport properties, is confused with the pinning energy Up, which corre-
sponds to the free energy gain of the pinned vortex system with respect to the hypothetical unpinned
vortex lattice in the same material. It is important to stress that these quantities are not trivially related.
Notably, Up cannot be extracted from electrical or inductive transport measurements, while U(j) can.

A3.2.4 Statistics of Pinning : From the elementary force to the critical current density

Vortex lines are made of only magnetic flux and electrical current. They are therefore flexible objects –
in fact, the softest “matter” in nature – that can be characterised by a set of elastic constants. These
are the (single) vortex line tension εl ≈ ε2ε0, and the vortex lattice compression, tilt, and shear moduli
c11(k), c44(k), and c66. The compression- and tilt moduli are dispersive and depend on the wave vector
k = (kxy, k‖) of the elastic distortion. For many estimates in the intermediate field regime Bc1 �
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Figure A3.2.6: Cartoon of weakly (a) versus strongly pinned vortex lines (b). Black dots depict pinning centres
and grey lines represent the vortex cores.

B <∼ 0.2Bc2, the approximations c44(k) ∼ ε2ε0a−20 (1− b) and c66 ≈ (ε0/4a
2
0)(1− b)2(1−0.29b) are useful.

Here ε ≡ ξc/ξab is the anisotropy parameter for uniaxially anisotropic superconductors, and b ≡ B/Bc2.
In anisotropic and layered superconductors, ε, and, by consequence, the vortex tilt modulus is small.
Vortices can therefore easily bend to better adapt to the pinning landscape.

In the absence of bulk flux pinning, vortex lines form the regular Abrikosov lattice. In the presence
of pinning, the vortex ensemble distorts as a result of the forces fp exerted by each inhomogeneity or
defect. The vortex displacement field u(r) mirrors the local equilibrium between the pinning forces and
the elastic restoring force of the vortex ensemble, and corresponds to a given metastable configuration,
and therefore to a local energy minimum in “vortex configuration space”. The free energy gain (per unit
volume) with respect to the unpinned Abrikosov lattice is the pinning energy Up. The volume pinning
force Fp is the force needed to drive the vortex ensemble to another energy minimum.

An essential ingredient of any calculation of Fp is the determination of the volume of vortex ensemble
involved in a particular change of configuration, i.e., the volume of the vortex ensemble that can be
considered as “pinned independently”. When the pinning forces fp are very weak, the vortex lattice is
only very slightly perturbed. Any change of configuration will entail slight readjustments of vortex lines
over a large “correlation volume” Vc = R2

cLc. Here Rc and Lc are correlation lengths transverse and
parallel to the field direction. The larger the pinning forces are, the smaller Vc, since a local adjustment
will be insufficient to entail rearrangements of well-pinned far-away vortices.

A3.2.4.1 Point defects : Weak collective pinning

“Weak” or “collective” pinning corresponds to the situation of a large density nd � r−2f L−1c of ran-
domly distributed weak and small pinning centres (i.e. of dimensions � rf ) [Blatter et al. 1994,
Blatter, Geshkenbein, and Koopman 2004]. Such defects typically correspond to vacancies, interstitials,
dopant atoms, small voids, small dislocation loops, or other atomic-sized impurities. The seminal collec-
tive pinning theory of Larkin and Ovchinnikov [Larkin and Ovchinnikov 1979] introduces the correlated
volume as that over which the average relative vortex displacement 〈|u(r)−u(0)|2〉1/2 induced by pinning
remains smaller than rf . The forces exerted by all pinning centres in the volume Vc compete, so that
the average (i.e. the first moment of the) total force Fc vanishes. Hence, the vortex ensemble is only
pinned by the fluctuations of Fc. The largest non-zero moment δFc = (ndVc〈f2〉)1/2, where 〈f2〉 ≈ 1

2f
2
p

is the mean square of f(r) averaged over a primitive cell of the vortex lattice with area Φ0/B. A pinning
strength, or mean-squared pinning force density, can be defined by W ≡ nd〈f2〉 ≈ 1

2npf
2
p in order to

express the volume pinning force as

Fp = δFc/Vc = (W/Vc)
1/2

. (A3.2.9)

Note that W is related to the strength of the short range correlations 〈Upin(r)Upin(r′)〉 = γUδ(r − r′)
of the local energy gain Upin(r) introduced in Ref. [Blatter et al. 1994] as W = γU/a

2
0. The notation of
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Ref. [Blatter et al. 1994] is meaningful for fields B < 0.2Bc2 and expresses the fact that only the vortex
core area is involved in pinning.
To proceed further, one has to compute Vc from the balance between the energy loss due to tilt- and
shear deformations (see section A4.2.4), on the one hand, and the work done by the pinning centres on
the other hand :

1

2
c44

(
kxy ≈

π

Rc

)(
rf
L2
c

)
=

1

2
c66

(
rf
R2
c

)
=

(
W

R2
cLc

) 1
2

rf . (A3.2.10)

It should be noted that the dispersion of the tilt modulus c44 plays an important role. This leads to

Lc = [c44(0)/c66]
1
2 Rc; λh � Rc � Lc (A3.2.11)

Lc = [c44(0)/c66]
1
2 R2

c/πλh; Rc � Lc � λh (A3.2.12)

for local and non-local elasticity respectively. Here λh = λ/(1−b)1/2. The limit of so-called “single vortex
pinning” is reached when the pin energy gain (the right-hand member of equation (A3.2.10)) becomes
too large to be accommodated by shear distortions. This can be expressed by putting Rc = a0. The
independently pinned objects are now single flux line segments of length

Lc '

(
c44(0)a30rf

λ2hW
1
2

) 2
3

≈ εrf
(
j0
jc

)1/2

. (A3.2.13)

The second equality allows one to rapidly estimate the pinning regime that one is dealing with from the
measured value of jc. In practice, single vortex pinning occurs quite frequently, notably in cuprate– and
iron-based high temperature superconductors, in the intermediate field regime above 1-2 T, but below
0.2Bc2 [van der Beek et al. 2010]; in this field regime, it give rise to a field–independent

jc ≈ j0

(
27nd〈f2p 〉r3f

16εε0

)2/3

. (A3.2.14)

At higher fields, relevant for disordered superconducting films and alloys, single-vortex pinning results in
dome-shaped Fp versus B curves, well-described by a scaling relation Fp ∝ Bnc2(T )bp(1− b) with n ≈ 2.5
and p = 7

6 for δTc pinning and p = 15
6 for δ` pinning [Kes 1992].

In cuprate- and iron-based high temperature superconductors, the magnitude of the single vortex
critical current density is typically some 104–105 Acm−2 at 4 K. In the Bi2Sr2CayCu1+yO6+2y family
of layered cuprate superconductors, some organic superconductors, or in artificial superconductor mul-
tilayers, ε � 1 and the longitudinal correlation length Lc can be smaller than the spacing s between
superconducting layers. So-called “pancake vortices” corresponding to the intersection of the vortex lines
with individual superconducting layers are then pinned (and depinned) independently. The critical cur-
rent density in this “single pancake” regime may exceed 106 Acm−2. For example, pancake vortices are
individually pinned by oxygen vacancies in Bi2Sr2CaCu2O8+δ [Li et al. 1996], a mechanism that accounts
for jc values at low temperatures as large as 0.1j0 ≈ 4 × 1010 Am−2). However, these current densities
are not accessible because the correspondingly small small pinning creep barriers result in very strong
flux creep effects as well as a low-lying irreversibility line.

In weakly pinning superconductors such as MgB2, dichalcogenides, or amorphous metallic thin films,
Lc can, on the contrary, be very large and the three-dimensional collective pinning (3DCP) scenario
described by equation (A3.2.10) is realised. Critical current densities are then, typically, of the order
jc

<∼ 102 – 103 Acm−2.
In thin films the situation where Lc � d can arise when the magnetic field is perpendicular to the film.

Vortex line cores then remain undistorted across the film thickness d, and disorder of the vortex ensemble
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only develops because of shear deformations. As regards flux pinning, the materials then behaves two-
dimensionally. In this limit of two-dimensional collective pinning (2DCP), Rc follows by substituting
Lc = d in equation (A3.2.10) giving

Rc ≈ 2rfc66 [2πd/W ln(w/Rc)]
1/2

. (A3.2.15)

Here w is, again, the width of the film. Good agreement is obtained [Kes 1992, Wördenweber and Kes 1986]
between this expression and experiment. The “single pancake” regime in layered superconductors can be
considered a peculiar realisation of 2DCP.

A3.2.4.2 Point defects: Strong pinning

The limit of so-called strong pinning [Ovchinnikov and Ivlev 1991] corresponds to sparse (nd � r−2f L−1c )
randomly distributed large, strong pinning centres. It concerns the vast majority of type-II supercon-
ductors, and nearly all technological superconductors, in which strong pinning centres are responsible
to critical current density values above 106 or even 107 Acm−2. Strong pinning centres are typically
nm-sized second phase inclusions, voids, or nm-scale modulations of the superconducting properties;
their (maximum) pinning force fp usually results from the combined effect of core– and electromag-
netic pinning. In such situations, the net pinning force Fc over a correlated volume does not average
out. Therefore, the volume pinning force Fp = (a20d)−1ΣNi f

i
p = fp/a

2
0L is the direct sum of the pin-

ning force exerted by each defect the vortex line encounters over the sample thickness d. Any vor-
tex line will be pinned on average by N = d/L defects, where L is the average distance between
“effective” pinning centres that the line can reach. N is again limited by the elastic properties of
the vortex ensemble. For low fields, vortex line excursions are limited by the line tension εl, and
[Demirdis et al. 2013, Blatter, Geshkenbein, and Koopman 2004, van der Beek et al. 2002]

jc(0) =
fp

Φ0L
= π1/2 fp

Φ0ε

(
fpndrf
ε0

)1/2

(B � B̃). (A3.2.16)

Above the crossover field B̃ = Φ0 (εε0rf/fp)
2
, the repulsion between vortices is limiting, and the critical

current density follows the behaviour expected for three-dimensional strong pinning [Demirdis et al. 2013,
Blatter, Geshkenbein, and Koopman 2004, van der Beek et al. 2002],

jc(B) =
fp

Φ0L
2

εa0
π

=
fp

Φ0ε

(
fpndrf
ε0

)(
Φ0

B

)1/2

(B � B̃), (A3.2.17)

i.e. jc ∝ B−α with α = 1
2 . Such behaviour is ubiquitous in high-temperature superconduct-

ing thin films and composite conductors [van der Beek et al. 2002, Mele et al. 2019]. The set of
equations (A3.2.16) and (A3.2.17) can be combined to obtain an experimental estimate of fp =
(Φ0ε/π)

{
j2c (0)/

[
∂jc(B)/∂B−1/2

]}
from the low-temperature, low-field current density jc(0) and the

slope ∂jc(B)/∂B−1/2 at intermediate fields.

A crossover from weak collective to strong pinning can occur through various scenarios. In the presence
of both strong and weak pins, the former will determine the critical current density at low fields. When
all strong pins are occupied by vortices, the weak background pinning will take over and determine jc.
If pinning is determined by a single type of point defect, long-range fluctuations (on length scales � rf )
of the average defect density can give rise to strong pinning, while short-range randomness is responsible
for weak collective pinning [Demirdis et al. 2013]. Finally, the presence of weak pins can slow down
thermally activated vortex motion between strong pins (see, e.g., [Sadovskyy et al. 2015]).
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Figure A3.2.7: Schematic evolution of (a) the free energy G and (b) the reversible magnetisation Mrev =
−∂G/∂µ0Ha for a type I superconductor (drawn line), a type II superconductor without pinning (dashed lines)
and a type-II superconductor with strong pinning centres (dotted lines). In the latter case, the free energy paid
per vortex is less than in the absence of pinning. The s-shape of Mrev(Ha) is due to all pinning centres becoming
occupied at intermediate field strengths.

A3.2.4.3 Pinning by correlated disorder

A particular form of strong pinning concerns extended correlated defects. These comprise “one di-
mensional” pins in the form of edge- and screw dislocation cores such as are commonly found in
high-temperature superconducting films showing Vollmer-Weber (island) or Stransky-Krastanov (is-
land plus layer) type growth, and purposely included linear defects such as columnar second phase
inclusions (“nanorods”) [Mele et al. 2019] and heavy-ion irradiation induced amorphous latent tracks
[Bourgault et al. 1989, Civale et al. 1991, Nelson and Vinokur 1992]. Two-dimensional pinning defects
include platelet-like inclusions, grain boundaries, anti-phase boundaries, twin boundaries in superconduc-
tors with an orthorhombic crystal structure, as well as the intrinsic structure of layered superconductors
in a magnetic field applied parallel to the layers [Kwok et al. 1991]. Because of their ability to trap
vortex lines along their entire length, such defects give rise to a profound anisotropy of pinning-related
quantities, distinct from any anisotropy related to the crystal structure or electronic properties of the
host material (see e.g. [Bartolomé et al. 2019]). The defect-induced anisotropy manifests itself through
a cusp-like behaviour of the critical current density and the flux creep activation barriers for field aligned
with the defect direction.

A3.2.5 Thermodynamics of the mixed state

In addition to the work associated with Meissner expulsion 1
2µ0H

2
a and the energy loss nvεv associated

with admitting vortex lines [Brandt 2003], the Gibbs free energy (per unit volume) of the mixed state
(with respect to the normal state)

G = fs(T )− fn(T ) +
1

2
µ0H

2
a −BHa + nvεv − Up − kBTS (A3.2.18)

also includes the contribution Up from flux pinning and the entropy contribution. The latter is the sum
of the configurational entropy due to positional disorder of the vortices and the contribution from vortex
thermal fluctuations. Both pinning and entropy lower the energy per vortex and, therefore, the free
energy of the mixed state. As a consequence, flux pinning lowers Hc1, and increases Hc2. It also modifies
the specific heat cp = −T (∂S/∂T )p [van der Beek et al. 2005] and the reversible magnetisation

Mrev ≡ −
1

µ0

∂G

∂Ha

)
T

= − 1

Φ0

∂G

∂nv

(
∂B

∂Ha

)
≡ −µv

Φ0

(
∂B

∂Ha

)
(A3.2.19)



16

which plays the role of the vortex chemical potential µv. In the presence of pinning, the equilibrium density
of vortices in the superconductor is higher, and |Mrev| lower than when pinning is absent. Therefore, a
careful measurement of the reversible magnetisation yields direct information on the pinning energy Up.

While this task is usually difficult due the hysteresis described in subsection A3.2.3.2 , it can be
used in the magnetically reversible vortex liquid state (see below), as well as through vortex imaging
in materials with large local modulations of the pinning energy [Demirdis et al. 2010]. The effect of
pinning on thermodynamic properties is large in superconductors with very strong pinning, e.g. that
induced by amorphous columnar defects introduced by heavy–ion irradiation. An example is the reversible
magnetisation curve of heavy–ion irradiated single crystalline Bi2Sr2CaCu2O8+δ, which has an s-shape
due to the fact that at small fields B � Bφ ≡ Φ0nd vortices can profit from the pinning energy, whereas
this is prohibited for B � Bφ because all columnar defects are occupied [van der Beek et al. 1996]
(see Figure A3.2.7). From such measurements, the pinning energy and the configurational entropy of the
vortex ensemble can be obtained. Similar results where obtained on heavy–ion irradiated single crystalline
YBa2Cu3O7−δ and (Ba,K)BiO3 [van der Beek et al. 2005].

A3.2.6 Vortex states and phase transitions

In a “clean” type–II superconductor without any flux pinning, inter–vortex repulsion leads to an arrange-
ment into the triangular Abrikosov lattice. While details of the superconductors’ electronic structure
may modify the structure and even the symmetry of the Abrikosov lattice, the change of the free energy
of the mixed state due to pinning as well as to the entropy related to thermal fluctuations induce a more
profound change into disordered states of “vortex matter”.

As all elastic objects in spatial dimension d < 4, the vortex ensemble in type-II superconductors
is inherently unstable to the presence of a random disorder potential [Larkin and Ovchinnikov 1979,
Imry and Ma 1975]. Therefore, any amount of pinning, however small, will disrupt the long-range po-
sitional and orientational order of the Abrikosov lattice. For very weak pinning, the length scale on
which longe range order is undone can be excessively large and entail thousands of lattice parameters
a0 [Kim et al. 1998]. In the opposite limit of very strong pinning, the vortex ensemble is entirely amor-
phous; it is even possible to observe local density fluctuations of the vortex ensemble due to pinning
[Demirdis et al. 2010]. However, it is not the breaking of long-range positional and orientational order,
but the breaking of gauge symmetry that properly classifies vortex states.

A3.2.6.1 The vortex glass

In the (low-temperature) vortex glass state [Fisher, Fisher, and Huse 1991], all vortices are lo-
calised in a pinning-induced metastable state. Even if local thermal fluctuations are present
[Feigel’man and Vinokur 1990], no thermally activated jumps are possible in the absence of a driving
force. Thus, the global configuration of the phase of the superconducting order parameter is fixed;
there is long-range phase order, and gauge symmetry is broken with respect to the normal metallic
state. The localisation of vortices implies the divergence of creep barriers for vanishing driving force,
i.e. U(j) → ∞ for j → 0 and a truly zero resistivity ρ ∼ ρfe−U(j)/kBT . In practice, this is achieved
because of the elastic nature of the vortex ensemble. As the driving force decreases, only vanishingly
rare and large activation nucleii – large vortex “bundles” in the language of the collective creep theory
[Feigel’man et al. 1989, Blatter et al. 1994] or very large scale vortex re-arrangements in the language of
the vortex glass theory [Fisher, Fisher, and Huse 1991] – can be made to expand and bring the vortex
ensemble to another metastable state. For vanishing driving force, no activation nuclei can expand suf-
ficiently, whatever their size, and the vortex ensemble always falls back into its original configuration.
As a result, the energy barriers for creep grow according to U(j) ∼ Uc (jc/j)

µ
. The exponent µ depends

on the dimensionality of the elastic medium and of the environment, and ranges from 1
7 for single vor-

tex lines to 16
9 for large “bundles”. When the vortex glass is subjected to an ac driving force, periodic
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jumps between pairs of metastable states are allowed since these do not break long–range phase order
[Koshelev and Vinokur 1990].

A3.2.6.2 The Bragg glass

In the case of weak collective pinning, the average relative vortex displacements characterised by
the correlation function B(r) ≡ 〈|u(r) − u(0)|2〉 are small, and grow with of vortex separation r as
[Giamarchi and Le Doussal 1994, Giamarchi and Le Doussal 1995]

B(r) ∝ r (r < Rc) - the so-called collective pinning or “Larkin” regime
B(r) ∝ r2ζ (r < Ra) - the random manifold regime, with the wandering exponent ζ ∼ 0, 44
B(r) ∝ ln r (r > Ra) - the charge density wave regime.

Ra is the distance at which relative displacements are larger than the vortex spacing and disloca-
tions appear. For very weak pinning Ra may be larger than the sample size [Kim et al. 1998]. One
then speaks of a “Bragg glass”, since the vortex glass will show the usual Bragg diffraction pattern
of the Abrikosov lattice, albeit with power-law rather than exponential tails of the diffraction peaks
[Giamarchi and Le Doussal 1994].

A3.2.6.3 The Bose glass

In the case of correlated disorder, both the pinning energy and the dynamics of the vortex ensemble are
strongly anisotropic. In particular, the anisotropy of the pinning energy leads to an anisotropic phase
boundary of the vortex glass, with a higher transition temperature to the vortex liquid (see below) when
the field is aligned with the defect direction. Flux creep is also highly anisotropic. For fields aligned with
the defects, creep is of nucleation type [Nelson and Vinokur 1992]. For misaligned fields vortex motion
proceeds by sliding of vortex “kinks” between defects [Schuster et al. 1994], which is only hindered by
background pinning by point-like defects. Thus, the values of the creep exponent µ are strongly dependent
on the field orientation angle. This type of anisotropic vortex glass has been termed “Bose-glass”, due to
the analogy between the system of vortex lines interacting with parallel correlated defects and the world
lines of interacting bosons in two dimensions in a random potential.

A3.2.6.4 The vortex liquid

The vortex liquid state [Brézin, Nelson, and Thiaville 1985] occupies the high-temperature high–field
region of the mixed state, and therefore separates the vortex glass from the normal state. The vortex
liquid state is characterised by diffusive vortex motion : the vortex ensemble can access (many different)
metastable configurations even in the absence of a driving force. As a result, the phase and amplitude
of the superconducting order parameter at every position fluctuate in time. The linear resistivity is non-
zero even in the limit of small currents, j → 0. Therefore, the vortex liquid state does not break gauge
symmetry and has electrodynamic properties that are formally equivalent to the normal state, even if the
Cooper pair density is clearly non-zero on average, supercurrents and vortices can still be defined, and
vortices can still be pinned [van der Beek et al. 1996] – although only on a finite time scale.

If defects are absent or the effect of thermal fluctuations [Feigel’man and Vinokur 1990] is very pro-
nounced, pinning is very weak and vortex motion in the liquid state gives rise to the usual flux resistivity
ρf . However, the presence of pinning in the liquid state may considerably slow down vortex motion. The
resistivity

ρTAFF ≈ ρfe−Uc/kBT (A3.2.20)

is then determined by thermally assisted flux flow, or TAFF [Kes et al. 1989]. The energy barrier Uc
is related to the plastic deformations of the vortex ensemble; it provides a current-independent upper
bound (cut-off) for the diverging glassy barriers at low driving force, thus enabling flux flow. Whereas
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Figure A3.2.8: (a) Typical curves of the local magnetisation (defined as the difference between the local flux
density B and the applied field Bout = µ0Ha) and the resistivity of Bi2Sr2CaCu2O8+δ single crystal. The curves
show the first order from the Bragg glass to the vortex liquid phase at the (“melting”) field Bm as a simultaneous
discontinuity in both physical quantities. Flux pinning in the sample bulk can no longer be discerned above the
irreversibility field Birr. After [Fuchs et al. 1998]. (b) Schematic vortex matter (B, T ) phase diagram in a generic
clean type-II superconductor. The “melting” field Bm constitutes a first order phase transition from the vortex
solid to the vortex liquid state. It is prolonged into the low-temperature regime in which flux pinning manifests
itself as the so-called “second peak transition” at Bsp, which also overlies a first order phase transition. The
depinning temperature Tdep marks the onset of an exponential decrease of jc with temperature, and the demise
of pinning. Also marked are various irreversibility lines Birr(T, ω) above which pinning in the bulk becomes
indiscernible, depending on the measuring frequency ω or the voltage threshold criterion / working point V .

in very thin (d � Lc) films Uc is the activation barrier for the motion of unbound dislocations or
disclinations in the vortex lattice [Nelson and Halperin 1979], it is generally admitted that in disordered
three-dimensional superconductors vortex diffusion is made possible through the mechanism of vortex
cutting and reconnection. This process is very much facilitated in layered superconductors, comprising
certain organic materials and the high-temperature cuprates and iron-based superconductors. Namely,
the layeredness of these materials leads to a strong reduction of the vortex line tension and the vortex
lattice tilt modulus, which promotes vortex line wandering and bending, processes that in turn lower
the activation barrier for flux cutting. In extremely anisotropic materials such as Bi2Sr2CaCu2O8+δ, the
cutting and reconnection process can take place on the scale of a single layer, involving the exchange of
single “pancake vortices” between vortex lines.

A3.2.6.5 Depinning transitions

When the thermal vortex displacements [Feigel’man and Vinokur 1990] exceed the range of the elemen-
tary pinning force rf the pinning energy and the critical current density will decrease exponentially by
thermal smearing. This rapid “softening” of pinning, marked by a sudden decrease of the irreversibility
[van der Beek et al. 1996, Thompson et al. 1997, Fuchs et al. 1998], can be described by a “depinning
line” or “depinning temperature” Tdep in the (T,B) phase diagram [Feigel’man and Vinokur 1990]. By
comparing length scales it is clear that at low fields (i.e. B < 0.2Bc2) the depinning line, which as
such does not constitute a phase transition, should lie below the melting line (see below), whereas the
opposite is true at high fields. The “depinning line” is to be distinguished from the “irreversibility line”
of section A3.2.3.9 – the first is associated with the intrinsic temperature dependence of pinning prop-
erties, while the second denotes the temperature at which pinning becomes unobservable using a given
experimental technique.
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A3.2.6.6 The Bragg glass to vortex liquid transition

In superconductors with very weak bulk pinning, the vortex Bragg glass phase transforms
to the vortex liquid through a first-order transition, often denoted “vortex lattice melting”
[Brézin, Nelson, and Thiaville 1985, Brandt 1989, Zeldov et al. 1995]. The transition to the liquid state
is driven by the excess entropy of the latter; as a result, the liquid has a higher vortex density than
the Bragg glass. On the contrary, upon cooling the Bragg glass is stabilised through the gain in elastic
deformation energy associated with the arrangement of vortices into a regular array. The first order
melting transition is hysteretic, with the vortex liquid showing supercooling. The transition is enabled
by thermal fluctuations of vortex segments (or kinks) around their equilibrium positions, until at the
transition, plastic barriers of height Uc can be overcome [Fendrich et al. 1995, López et al. 1997]. At
that point, thermal cutting and reconnection leads to the demise of the “identity” of vortices, and to
entanglement in the vortex liquid state [López 1996]. The first-order transition has often been described
by a Lindemann criterion: the vortex lattice “melts” when the thermal displacements become larger than
a fraction cLa0 of the inter-vortex spacing [Brandt 1989]. Here cL is the Lindemann constant, cL ≈ 0.2.
This criterion, which is tantamount to a modified Ginzburg criterion for superconducting fluctuations,
gives rise to a transition line in the (T,B) phase diagram which, for conventional superconductors, is
located near the upper critical field Hc2(T ). For layered superconductors such as Bi2Sr2CaCu2O8+δ, the
transition lies at fields below 1 T.

The “vortex lattice melting” transition is characterised by latent heat [Schilling et al. 1996], by a
discontinuous jump in the local induction (vortex density) [Zeldov et al. 1995], and by a sharp jump in
the resistivity [Safar et al. 1992, Kwok et al. 1992]. Since the transition occurs at a temperature higher
than the depinning transition of the Bragg glass [Fuchs et al. 1998], the jump of the resistivity at the
transition is to be associated with the demise of the Bean–Livingstone and / or the geometrical barrier
due to the collapse of the vortex line tension. The term “vortex lattice melting” is very often misused,
through the association with other experimental observations. It should be reserved for the case described
here, i.e. a thermodynamic temperature-driven first-order transition from the vortex lattice- or Bragg
glass to the vortex liquid state.

A3.2.6.7 The vortex-glass to vortex liquid transition

In superconductors with strong pinning, as well as at high magnetic fields where the depinning tem-
perature lies above the first order melting line, the disordered vortex glass phase transits continuously
to the vortex liquid. Since the vortex glass cannot be distinguished from the vortex liquid through the
breaking of any translational or orientational symmetries, but only through broken gauge symmetry,
scaling procedures have been proposed to identify whether one is actually dealing with a phase transition
[Fisher, Fisher, and Huse 1991]. Scaling of thermodynamic and transport properties around the vortex
glass phase transition line Tg(B) would expose the existence of a diverging length scale ξg ∝ |T − Tg|−ν
(“the glass correlation length”) describing the establishment of long-range order of the superconducting
phase. The vortex glass theory predicts a specific behaviour for the resistivity in the critical regime
around Tg(B) where all data for different temperatures and fields collapse on two curves, F+ for T > Tg
and F− for T < Tg [Koch et al. 1989] when plotted as (E/j) · |T − Tg|−ν(z−1) versus (j/T ) · |T − Tg|−2ν .
Here, z is a universal dynamic exponent describing critical slowing down. A typical experimental scaling
plot is shown in figure A3.2.9. The exact functional dependence of F± is unknown. F+ → 1 for small j
denoting linear resistivity, and F− → exp(−1/xµ) for small x, describing true superconductivity. At Tg,
E should depend on j according to the power law E ∝ j(z+1)/2. Although there are many reports of the
observation of vortex-glass scaling, in particular in thin films of the high-Tc cuprate YBa2Cu3O7−δ, no
clear consensus as to the universality of scaling has emerged. This may partially be due to the presence
of extended defects such as screw dislocations cores, for which the Bose-glass approach is more suited
[Nakielski et al. 1996].
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Figure A3.2.9: Collapse of over 100 I – V curves in a vortex-glass scaling plot for YBa2Cu3O7 in a field
of 4 T for the parameter values Tg = 74.5 K, z = 4.8 and ν = 1.7 [Koch et al. 1989].

Another issue is the homogeneity of disorder. Heterogeneity of the material disorder (on various
length scales) may lead to local variations of parameters such as the superconducting transition tem-
perature and / or the superfluid density and thereby to a spatially inhomogeneous vortex glass to liq-
uid transition [Demirdis et al. 2010, Demirdis et al. 2013]. This will appear as concomitantly broad-
ened, when averaged physical quantities such as the resistivity or magnetic moment of the full sam-
ple are measured, compromising the verification of any hypothetical scaling laws. At the same time,
the spatial inhomogeneity of disorder on the nm scale was itself shown to be a source of pinning
[Demirdis et al. 2010, Demirdis et al. 2013].

A3.2.6.8 The Bose-glass to vortex liquid transition

The Bose-glass to liquid transition has a phenomenology similar to the vortex glass transition, but is
distinguished by its dependence on the orientation of the sample defect structure with respect to the
field direction, and by the anisotropy of the vortex dynamics. To account for this, the Bose-glass theory
introduces the correlations lengths ξ⊥ and ξ‖ = ξς⊥ perpendicular and parallel to the linear defects,
respectively [Nelson and Vinokur 1992, Lidmar and Wallin 1999]. Here ς is the anisotropy exponent. At
the Bose-glass transition, the linear resistivity for field perpendicular and parallel to defects scales as

ρ⊥ =
E⊥
j⊥
∼ ξD+ς−z−3
⊥ ∼

∣∣∣∣T − TBGTBG

∣∣∣∣ν(2−z) (A3.2.21)

ρ‖ =
E‖

j‖
∼ ξD−ς−z−1‖ ∼

∣∣∣∣T − TBGTBG

∣∣∣∣−νz (A3.2.22)
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where the last step was taken by invoking ς = 2 and a spatial dimension D = 3. At the Bose-glass
transition temperature, the E(j)–curve again shows a power-law,

E⊥ = j(1+z)/(2−D−ς) (A3.2.23)

E‖ = j(ς+z)/(1−D). (A3.2.24)

Some experimental evidence for such scaling behaviour has been found in YBa2Cu2O7−δ, both as a result
of twin-boundary pinning in single crystalline material [Grigera et al. 1999], and as a result of pinning by
heavy-ion irradiation-induced latent tracks in both single crystals [Jiang et al. 1994, Espinosa et al. 2006]
and films [Nakielski et al. 1996].

A3.2.6.9 Two-dimensional vortex melting

The only available complete theory [Berezinskii 1972, Kosterlitz and Thouless 1978,
Nelson and Halperin 1979] for the transition from the low-temperature vortex state to the vortex
liquid state describes the situation in thin superconducting films of thickness d < Lc, where vortex
cores are straight across the thickness [Berghuis, van der Slot, and Kes 1990]. The vortex ensem-
ble melts in two stages, accurately described by the theory of Kosterlitz-Thouless for 2D melting
[Berezinskii 1972, Kosterlitz and Thouless 1978, Nelson and Halperin 1979]. In the first stage, the
unbinding of vortex-lattice edge dislocation pairs in the lattice at

T 2D
m =

Aε0(T 2D
m )d

16kB
(b� 1) (A3.2.25)

=
Aε0(T 2D

m )d

16kB
(1− b) (b

<∼ 1) (A3.2.26)

drives the transition to a hexatic state. In the second stage, the hexatic transits to the liquid through
the unbinding of disclinations (pairs of 5-fold and 7-fold coordinated vortices). At the melting line, the
shear modulus should fall to zero, although in practice disorder smears out the transition.

A3.2.6.10 Plasticity of the vortex lattice and the peak effect

A sudden increase of the sustainable current density is often apparent in measurements of the irreversible
magnetic moment of type-II superconductors, or in plots of jc versus H or T . This phenomenon causes a
dip in R(T ) or R(H), while in ac-susceptibility experiments a peak in χ′′ occurs each time the condition
h0 ∼ H∗ is fulfilled. Depending on the material, this “peak effect” can occur at rather low magnetic
fields, or, more often, just before the vortex glass to liquid transition. At the basis of the “peak effect”
is the transition between different regimes of flux pinning, driven by the appearance of plastic deforma-
tions of the vortex ensemble [Mikitik and Brandt 2001]. This translates to an abrupt transition between
(often crossing) E(j)–curves characterised by different curvatures and different current density scales jc.
This results, in experiment, to an abrupt change of the working point. It also means that in inductive
measurements the peak can appear or disappear as function of field sweep rate, temperature, or waiting
time after a field change, as the working points on the E(j)–curves shift. The peak effect is only observed
in situations where pinning is initially weak, or of intermediate strength.

In many bulk superconductors (d � Lc) a nearly temperature–independent first–order phase tran-
sition underlies the peak effect, which therefore appears primarily on sweeping the applied mag-
netic field [Kokkaliaris et al. 1999, van der Beek et al. 2000, Avraham et al. 2001, Klein et al. 2010].
Neutron scattering measurements [Aragón et al. 2019] as well as vortex decoration experiments
[Aragón et al. 2019] show that at the transition, the vortex ensemble changes from a rather ordered
state, which may be the Bragg glass, to a vortex polycrystal. This suggests that the peak effect is trig-
gered by the appearance of edge- and screw dislocations that allows the vortex ensemble to better adapt
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to the pinning potential. The transition to the (denser) high–field disordered vortex state is driven by the
gain in pinning energy, while the low–field ordered state is stabilised by the gain in elastic deformation
energy and the elimination of vortex lattice dislocations. Above the depinning temperature Tdep, the en-
ergy gain that can be obtained from pinning decreases sharply, and the transition to the disordered state
moves to higher magnetic fields, eventually joining the vortex melting transition in a tricritical point
[Safar et al. 1993]. This fact poses the as-yet unanswered question whether the high–field disordered
state is thermodynamically distinct from the vortex liquid or not.

In materials showing weak collective pinning such as α-Nb3Ge [Wördenweber and Kes 1986],
NbSe2 [Koorevaar et al. 1990, Bhattacharya and Higgins 1993, Banerjee et al. 1998], CeRu2

[Banerjee et al. 1998], MgB2 [Klein et al. 2010], or BaFe2(As1−xPx)2 [Putzke et al. 2014], the peak
effect may show only in the vicinity of the upper critical field. In such cases, it is the softening of
the elastic moduli (notably c44) of the vortex lattice on approaching Bc2 that is responsible for the
appearance of plastic deformations of the vortex lattice and stronger pinning. A controlled increase of
the pinning strength, for example, though electron irradiation, moves the peak effect transition field
down [Klein et al. 2010].

In two-dimensional superconducting films, the peak effect is closely associated with the two-
dimensional vortex melting [Berghuis, van der Slot, and Kes 1990]. Here, it is the unbinding of vortex
lattice edge dislocations pairs that allows the vortex ensemble to better adjust to the pinning potential
[Wördenweber and Kes 1986].

A3.2.7 Vortex dynamics at high driving force

Even for current densities above jc, the driven vortex ensemble is still influenced by the presence of
the “quenched” pinning potential. Notably, the pinning potential induces fluctuations δv of the ve-
locity of the moving vortex ensemble, and, more rarely, of the vortex density δnv = δB/Φ0. These
fluctuations result in a voltage noise contribution δV = nvδv + vδnv characteristic of vortex motion
[van Oijen and van Gurp 1965, Clem 1981]. Most often, the voltage noise is related to the (irregularity
of the) entrance and exit of vortex lines [Paltiel et al. 2000]; its frequency spectrum is therefore related to
the (spectrum of) vortex transit time(s) through the sample. However, it has been shown that both the
magnitude of the noise and the spectrum are also clearly affected by flux pinning in the superconductor,
and depend on the strength of pinning in the superconductor and the ensuing positional order of the
vortex ensemble. Most prominently, edge-induced vortex lattice disorder (see subsection A3.2.3.8 ) and
subsequent annealing at high driving forces have been shown to be directly linked to the noise spectrum
[Paltiel et al. 2004].

Strong pinning is prone to lead to more pronounced flux density gradients associated with
the drive current, and, thereby, to the associated avalanche-like motion of the vortex ensem-
ble. These occur on time scales smaller than the transit time and have been suggested to re-
sult in 1/f–noise [Bak, Tang, and Wiesenfeld 1987, Altshuler and Johansen 2004]. It has been shown
that the 1/f noise ubiquitous in strongly pinning high temperature superconducting films and de-
vices can be effectively suppressed by the appropriate incorporation of artificial pinning structures
[Wördenweber, Castellanos, and Selders 2000].

When pinning is weak, vortex motion is more regular. In this case, the quasi-periodic nature of the
moving Bragg glass entails the motion of vortices in well-ordered rows [Giamarchi and Le Doussal 1996].
In this scenario, each vortex line encounters the same disorder configuration and undergoes the
same depinning events as its predecessors, which leads to the appearance of a so-called “washboard
frequency” fw = v/a0 and narrow-band noise [Pardo et al. 1998, Troyanovsky, Aarts, and Kes 1999,
Togawa et al. 2000]. The presence of these spectral features may appear as a distinguishing feature
between the different vortex phases outlined above [Togawa et al. 2000].
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