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Null-controllability, exact controllability, and stabilization of hyperbolic systems for the optimal time

In this paper, we discuss our recent works on the null-controllability, the exact controllability, and the stabilization of linear hyperbolic systems in one dimensional space using boundary controls on one side for the optimal time. Under precise and generic assumptions on the boundary conditions on the other side, we first obtain the optimal time for the null and the exact controllability for these systems for a generic source term. We then prove the null-controllability and the exact controllability for any time greater than the optimal time and for any source term. Finally, for homogeneous systems, we design feedbacks which stabilize the systems and bring them to the zero state at the optimal time. Extensions for the non-linear homogeneous system are also discussed.

I. INTRODUCTION

Linear hyperbolic systems in one dimensional space are frequently used in modeling of many systems such as traffic flow, heat exchangers, and fluids in open channels. The stability and boundary stabilization of these hyperbolic systems have been studied intensively in the literature, see, e.g., [3] and the references therein. In this paper, we are interested in the null-controllability, the exact controllability, and the stabilization at finite time of linear hyperbolic systems in one dimensional space using boundary controls on one side. More precisely, we consider the system, for (t, x) ∈ R + × (0, 1), ∂ t w(t, x) = Σ(x)∂ x w(t, x) + C(x)w(t, x).

(1)

Here w = (w 1 , • • • , w n ) T : R + × (0, 1) → R n (n ≥ 2), Σ and C are (n × n) real matrix-valued functions defined in [0, 1]. We assume that for every x ∈ [0, 1], Σ(x) is diagonal with m ≥ 1 distinct positive eigenvalues, and k = n-m ≥ 1 distinct negative eigenvalues. Using Riemann coordinates, one might assume that Σ(x) is of the form

Σ(x) = diag -λ 1 (x), • • • , -λ k (x), λ k+1 (x), • • • , λ n (x) , (2) 
where

-λ 1 (x) < • • • < -λ k (x) < 0 < λ k+1 (x) < • • • < λ k+m (x). ( 3 
)
Throughout the paper, we assume that λ i is Lipschitz on [0, 1] for 1 ≤ i ≤ n (= k + m). (4) We also assume that

C ∈ L ∞ ([0, 1]) n×n . ( 5 
) (w 1 , • • • , w k ) T (t, 0) = B(w k+1 , • • • , w k+m ) T (t, 0) (6) 
for some (k × m) real constant matrix B, and the boundary controls at x = 1 are, for t ≥ 0, w k+1 (t, 1) = W k+1 (t), . . . , w k+m (t, 1) = W k+m (t), [START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] where W k+1 , . . . ,W k+m are controls.

Let us recall that the control system (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is nullcontrollable (resp. exactly controllable) at the time T > 0 if, for every initial data w 0 : (0, 1) → R n in [L 2 (0, 1)] n (resp. for every initial data w 0 : (0, 1) → R n in [L 2 (0, 1)] n and for every (final) state w T : (0,

1) → R n in [L 2 (0, 1)] n ), there is a control W = (W k+1 , . . . ,W k+m ) T : (0, T ) → R m in [L 2 (0, T )] m
such that the solution of ( 1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and (7) satisfying w(t = 0, x) = w 0 (x) vanishes (resp. reaches w T ) at the time T :

w(t = T, x) = 0 (resp. w(t = T, x) = w T (x)). Similar definitions hold for w 0 ∈ L ∞ (0, 1) n (resp. w 0 , w T ∈ L ∞ (0, 1) n ) with W ∈ L ∞ (0, T ) m . Set τ i := 1 0 1 λ i (ξ ) dξ for 1 ≤ i ≤ n. ( 8 
)
The exact controllability, the null-controllability, and the boundary stabilization problem of hyperbolic system in one dimension have been widely investigated in the literature for almost half a century. The pioneer works date back to Rauch and Taylor [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] and Russell [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]. In particular, it was shown, see [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]Theorem 3.2], that the system (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is null-controllable if for the time

T ≥ τ k + τ k+1 ,
and is exact controllable if k = m and B is invertible. The extension of this result for quasilinear system was initiated by Greenberg and Li [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] and Slemrod [START_REF] Slemrod | Boundary feedback stabilization for a quasilinear wave equation, Control theory for distributed parameter systems and applications (Vorau[END_REF].

Concerning the stabilisation of (1), many articles are based on the boundary conditions with the following specific form

w -(t, 0) w + (t, 1) = G w + (t, 1) w -(t, 0) , (9) 
where G : R n → R n is a suitable smooth vector field. Three approaches have been proposed to deal with [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF]. The first one is based on the characteristic method. This method was previously investigated in Greenberg and Li [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] for 2 × 2 systems and Qin [START_REF] Hu | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] (see also Li [START_REF] Tsien | Global classical solutions for quasilinear hyperbolic systems[END_REF]) for a generalization to n × n homogeneous nonlinear hyperbolic systems in the framework of C 1 -norm. The second approach is based on Lyapunov functions see [START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF], [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] (see also [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF], [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF]). The third approach [START_REF] Coron | Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems[END_REF] is based on the study of delay equations works for W 2,p -norm with p ≥ 1. These works typically impose restrictions on the magnitude of the coupling coefficients. This restriction was overcome via backstepping approach. This was first proposed by Coron et al. [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF] for 2 × 2 system (m = k = 1). Later this approach has been extended and now can be applied for general pairs (m, k), see [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF], [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF], [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF]. In [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], the null-controllability is achieved via a feedback law for the time τ 1 + τ 2 with m = k = 1 via backstepping approach. In [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], the authors considered the case where Σ is constant and obtained feedback laws for the null-controllability at the time

T 1 := τ k + m ∑ l=1 τ k+l . ( 10 
)
It was later showed in [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF], [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] that one can reach the nullcontrollability at the time

T 2 := τ k + τ k+1 . (11) 
Set

T opt :=              max τ 1 + τ m+1 , . . . , τ k + τ m+k , τ k+1 if m ≥ k, max τ k+1-m + τ k+1 , τ k+2-m + τ k+2 , . . . , τ k + τ k+m if m < k. ( 12 
)
In this paper, we report our recent works [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF], [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF], [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF], [START_REF]Lyapunov functions and finite time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems[END_REF] on the null-controllability, the exact controllability, and the stabilization of (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and [START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]. We show that the nullcontrollability holds at T opt for generic B and C and the null-controllability holds for any T > T opt under a precise condition on B (B ∈ B given in (13)), which holds for almost every matrix k × m matrix B. Similar conclusions holds for the exact controllability (with B ∈ B e given in ( 14)) under natural, additional condition m ≥ k. When the system is homogeneous, we show that the null-controllability is achieved via a time-independent feedback and there are Lyapunov's functions associated with these feedbacks. This result also holds for quasilinear setting. The starting point of our approach in the inhomogeneous case is the backstepping approach.

Remark 1.1: The backstepping approach for the control of partial differential equations was pioneered by Miroslav Krstic and his coauthors (see [START_REF] Krstic | Boundary control of PDEs[END_REF] for a concise introduction). The backstepping method is now frequently used for various control problems modeling by partial differential equations in one dimension. For example, it has been also used to stabilize the wave equation [START_REF] Krstic | Output-feedback stabilization of an unstable wave equation[END_REF], [START_REF]Boundary control of an anti-stable wave equation with antidamping on the uncontrolled boundary[END_REF], [START_REF] Smyshlyaev | Boundary stabilization of a 1-D wave equation with in-domain antidamping[END_REF], the parabolic equations in [START_REF] Smyshlyaev | Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations[END_REF], [START_REF]On control design for PDEs with space-dependent diffusivity or time-dependent reactivity[END_REF], nonlinear parabolic equations [START_REF] Vazquez | Control of 1-D parabolic PDEs with Volterra nonlinearities. I. Design[END_REF], and to obtain the null-controllability of the heat equation [START_REF]Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]. The standard backstepping approach relies on the Volterra transform of the second kind. It is worth noting that, in some situations, more general transformations have to be considered as for Korteweg-de Vries equations [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], Kuramoto-Sivashinsky equations [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right[END_REF], Schrödinger's equation [START_REF] Coron | Rapid stabilization of a linearized bilinear 1-D Schrödinger equation[END_REF], and hyperbolic equations with internal controls [START_REF] Zhang | Finite-time internal stabilization of a linear 1-D transport equation[END_REF].

II. STATEMENT OF THE MAIN RESULTS

Define

B := B ∈ R k×m ; (15) holds for 1 ≤ i ≤ min{k, m -1} , (13) and 
B e := B ∈ R k×m ; (15) holds for 1 ≤ i ≤ k , (14) 
where the i × i matrix formed from the last i columns and the last i rows of B is invertible. [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] We first show that the system (1), ( 6), and ( 7) is nullcontrollable for B ∈ B and is exact controllable for B ∈ B e at the time T opt generically. More precisely, we have [13, Theorem 1.1]:

Theorem 2.1: Assume that (3) and ( 4) hold. We have i) for each B ∈ B, outside a discrete set of γ in R, the control system (1) with C replaced by γC, [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is null-controllable at the time T opt . ii) for each γ outside a discrete set in R, outside a set of zero measure of B in B, the control system (1) with C replaced by γC, [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is null-controllable at the time T opt . Remark 2.1: In the case m = 1, we can show that there exists a (linear) time independent feedback which yields the null-controllability at the time T opt for (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7 

(T opt = τ k + τ k+2 = τ k-1 + τ k+1 if k ≥ 2 and T opt = τ 1 + τ 3 = τ 2 if k = 1)
, then there exists a non-zero constant matrix C such that the system is not null-controllable at the time T opt .

Concerning the exact controllability, we have Theorem 2.2: Assume that m ≥ k ≥ 1, (3) and (4) hold. We have i) for each B ∈ B e , outside a discrete set of γ in R, the control system (1) with C replaced by γC, [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is exactly controllable at the time T opt . ii) for each γ outside a discrete set in R, outside a set of zero measure of B in B e , the control system (1) with C replaced by γC, [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is exactly controllable at the time T opt . For the exact controllability and T > T opt , the generic assumption was removed in [START_REF] Hu | Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls[END_REF] (see also [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]Theorem 4]), where the following theorem is established [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]. The control system (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is exactly controllable at any time T greater than T opt . (In fact [START_REF] Hu | Minimal time for the exact controllability of one-dimensional first-order linear hyperbolic systems by one-sided boundary controls[END_REF] gives the optimal time of exact controllability even if B ∈ B e .)

Theorem 2.3: Let m ≥ k ≥ 1. Assume that B ∈ B e defined in
For the null controllability and T > T opt , we removed the generic assumption was in [14, Theorems 2], where the following theorem is established [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF]. The control system (1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and ( 7) is nullcontrollable at any time T greater than T opt .

Theorem 2.4: Let k ≥ m ≥ 1. Assume that B ∈ B de- fined in
Remark 2.3: Related controllability results can be also found in [START_REF] Hu | Sharp time estimates for exact boundary controllability of quasilinear hyperbolic systems[END_REF], [START_REF] Weck | A remark on controllability for symmetric hyperbolic systems in one space dimension[END_REF].

Concerning the optimality of T opt , we can prove the following result [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF]Proposition 1.6] Proposition 2.1: Assume that C ≡ 0 and (15) holds for 1 ≤ i ≤ min{k, m}, then, for any T < T opt , there exists an initial datum such that u(T, •) ≡ 0 for every control.

Remark 2.4: The controls used in Theorems 2.1 to 2.4 are of the form

w + (t, 1) = R ∑ r=1 A r (t)w(t, x r ) + 1 0 M(t, y)w(t, y) dy + h(t), (16) where R ∈ N, A r : [0, T ] → R m×n , x r ∈ [0, 1] (1 ≤ r ≤ R), M : [0, T ] × [0, 1] → R n×n , and h ∈ [L ∞ (0, T )] m .
Moreover, the following conditions hold:

x r < c < 1 for some constant c, ( 17 
) A r ∈ [L ∞ (0, T )] n×n , M ∈ [L ∞ (0, T ) × (0, 1) ] n×n , (18) 
for 1 ≤ r ≤ R. The well-posedness of ( 1), ( 6), and ( 16) for broad solutions (see [13, Definition 3.1]) was established in [13, Lemma 3.2].

We next discuss homogeneous quasilinear hyperbolic systems. More precisely, we consider the equation, for

(t, x) ∈ [0, +∞) × (0, 1), ∂ t w(t, x) = Σ x, w(t, x) ∂ x w(t, x), ( 19 
)
instead of (1), and the boundary and control conditions ( 6) and [START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]. We assume that Σ(x, y) for x ∈ [0, 1] and y ∈ R n is of the form

Σ(x, y) = diag -λ 1 (x, y), • • • , -λ k (x, y), λ k+1 (x, y), • • • , λ k+m (x, y) , (20) 
where

-λ 1 (x, y) < • • • < -λ k (x, y) < 0 < λ k+1 (x, y) < • • • < λ k+m (x, y). ( 21 
)
We assume, for 1

≤ i ≤ n = k + m, λ i is of class C 2 with respect to x and y ( 22 
)
Concerning the quasilinear system ( 19), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and (7), we prove [15, Theorem 1.1]:

Theorem 2.5: Assume that B ∈ B. For any T > T opt , there exist ε > 0 and a time-independent feedback control for [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF], [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and [START_REF]A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] such that if the compatibility conditions (at x = 0) (23) and ( 24) below hold for w(0, •), and

w(0, •) C 1 ([0,1]) < ε, then w(T, •) = 0.
The compatibility conditions considered in Theorem 2.1 are:

w -(0, 0) = B w + (0, 0) (23) 
and

Σ -0, w(0, 0) ∂ x w -(0, 0) = B w + (0, 0) Σ + 0, w(0, 0) ∂ x w + (0, 0). ( 24 
)
Here we denote

w -= (w 1 , • • • , w k ) T , w + = (w k+1 , • • • , w k+m ) T . Σ -(x, y) = diag -λ 1 (x, y), • • • , -λ k (x, y) and Σ + (x, y) = diag λ k+1 (x, y), • • • , λ n (x, y) .
Remark 2.5: In [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF], we also consider nonlinear boundary condition at x = 0, i.e., instead of ( 6), we deal with

w -(t, 0) = B w + (t, 0) for t ≥ 0, for some B ∈ C 2 (R m ) k with B(0) = 0, Theorem 2.5 also holds if the condition B ∈ B is replaced by ∇B(0) ∈ B.
Remark 2.6: The feedbacks constructed in [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] use additional 4m state-variables (dynamics extensions) to avoid imposing compatibility conditions at x = 1.

In our recent work [START_REF]Lyapunov functions and finite time stabilization in optimal time for homogeneous linear and quasilinear hyperbolic systems[END_REF], we present Lyapunov's functions for the feedbacks given in Theorem 2.5 and use estimates for Lyapunov's functions to rediscover the finite stabilization result.

III. THE IDEAS OF THE PROOF OF THEOREM 2.1-THEOREM 2.4

The starting point of our analysis is the backstepping approach. The key idea of the backstepping approach is to make the following change of variables u(t, x) = w(t, x) -x 0 K(x, y)w(t, y) dy, [START_REF] Leugering | On the modelling and stabilization of flows in networks of open canals[END_REF] for some kernel K : T → R n×n which is chosen in such a way that the system for u is easier to control. Here

T = (x, y) ∈ (0, 1) 2 ; 0 < y < x . (26) 
To determine/derive the equations for K, we first compute ∂ t u(t, x) -Σ(x)∂ x u(t, x). Taking into account (25), we for- mally have 1

∂ t u(t, x) = ∂ t w(t, x)-K(x, x)Σ(x)w(t, x)+K(x, 0)Σ(0)w(t, 0) + x 0 ∂ y K(x,

y)Σ(y) w(t, y) -K(x, y)C(y)w(t, y) dy,

and

∂ x u(t, x) = ∂ x w(t, x) - x 0 ∂ x K(x,
y)w(t, y) dy -K(x, x)w(t, x). 1 We assume here that u, w, and K are smooth enough so that the below computations make sense.

It follows from (1) that

∂ t u(t, x) -Σ(x)∂ x u(t, x) = C(x) -K(x, x)Σ(x) + Σ(x)K(x, x) w(t, x) + K(x, 0)Σ(0)u(t, 0) + x 0 ∂ y K(x, y)Σ(y) + K(x, y)Σ ′ (y)
-K(x, y)C(y) + Σ(x)∂ x K(x, y) w(t, y) dy. [START_REF] Hu | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF] We search a kernel K which satisfies the following two conditions ∂ y K(x, y)Σ(y) + Σ(x)∂ x K(x, y)

+ K(x, y)Σ ′ (y) -K(x, y)C(y) = 0 in T (28)
and, for x ∈ (0, 1),

C (x) := C(x) -K(x, x)Σ(x) + Σ(x)K(x, x) = 0, (29) 
so that one formally has

∂ t u(t, x) = Σ(x)∂ x u(t, x) + K(x, 0)Σ(0)u(t, 0) for (t, x) ∈ R + × (0, 1). ( 30 
)
Set

Q := 0 k B 0 m,k I m . (31) 
and

S(x) := K(x, 0)Σ(0)Q. ( 32 
)
Here and in what follows, 0 i, j denotes the zero matrix of size i × j for i, j ∈ N, and M pq denotes the (p, q)-component of a matrix M. From (31), the matrix S ∈ [L ∞ (0, 1)] n×n has the structure

S = 0 k,k S -+ 0 m,k S ++ , (33) 
Using [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], equation ( 30) becomes, for (t, x) ∈ R + × (0, 1),

∂ t u(t, x) = Σ(x)∂ x u(t, x) + S(x)u(t, 0). ( 34 
)
We are able to show that such a K exists so that (34) holds [13, Lemma 3.3]; moreover, K can be chosen in such a way that (S ++ ) pq (x) = 0 for 1 ≤ q ≤ p ≤ m, [START_REF]Boundary control of an anti-stable wave equation with antidamping on the uncontrolled boundary[END_REF] this point turns out to be important for our analysis. It is shown in [13, Proposition 3.1] that the null-controllability and the exact controllability of ( 1), ( 6), and ( 7) at the time T can be derived from the null-controllability and the exact controllability at the time T of (34) equipped the boundary condition at x = 0

u -(t, 0) = Bu + (t, 0) for t ≥ 0, ( 36 
)
and the boundary controls at x = 1

u + = U(t) for t ≥ 0 where U is the control. ( 37 
)
In what follows, we discuss the idea of the proof of Theorem 2.1 and Theorem 2.4. The proofs of Theorem 2.2 and Theorem 2.3 (given in [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]Theorem 4]) are in the same spirit of these ones and not dealt with.

A. On the proof of Theorem 2.1

The idea of the proof is to derive the sufficient conditions for which the null-controllability holds. Using the characteristic method, these conditions will be written under the form U + K U = F where K is an analytic compact operator with respect to λ where C is replaced by λC. We then apply the Fredholm theory to obtain the conclusion. The process to derive the equation U + K U = F is somehow involved. We refer the reader to [START_REF]Optimal time for the controllability of linear hyperbolic systems in one-dimensional space[END_REF] for the details.

B. On the proof of Theorem 2.4

As mentioned above the null-controllability of ( 1), [START_REF] Coron | A lyapunov approach to control irrigation canals modeled by saintvenant equations[END_REF], and (7) at the time T is equivalent to the one ( 34)-( 37) at the same time. The proof of the null-controllability of the later system is based on the Hilbert uniqueness method given in the following result [14, Lemma 1] whose proof is standard.

Lemma 3.1: Let T > 0. System (34)-( 37) is null controllable at the time T if and only if, for some positive constant C,

0 -T |v + (t, 1)| 2 dt ≥ C 1 0 |v(-T, x)| 2 dx ∀ v ∈ [L 2 (0, 1)] n , (38) 
where v(•, •) is the unique solution of the system, for

(t, x) ∈ (-∞, 0) × (0, 1), ∂ t v(t, x) = Σ(x)∂ x v(t, x) + Σ ′ (x)v(t, x), (39) with 
, t < 0, v -(t, 1) = 0, (40) 
Σ + (0)v + (t, 0) = -B T Σ -(0)v -(t, 0) + 1 0 S T -+ (x)v -(t, x) + S T ++ (x)v + (t, x) dx, (41) and v(t = 0, •) = v in (0, 1). (42) 
The next key part of the proof of Theorem 2.4 is the following compactness result for (39)-(41) [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF]Lemma 4]; the structure of S given in [START_REF]Boundary control of an anti-stable wave equation with antidamping on the uncontrolled boundary[END_REF] plays a role in the proof.

Lemma 3.2:

Let k ≥ m ≥ 1, B ∈ B, and T ≥ T opt . Assume that (v N ) be a sequence of solutions of (39)-(41) (with v N (0, •) in [L 2 (0, 1)] n ) such that sup N v N (-T, •) L 2 (0,1) < +∞, (43) lim 
N→+∞ v N,+ (•, 1) L 2 (-T,0) = 0. ( 44 
)
We have, up to a subsequence,

v N (-T, •) converges in L 2 (0, 1), (45) 
and the limit V ∈ [L 2 (0, 1)] n satisfies the equation

V = K V, (46) 
for some compact operator K from [L 2 (0, 1)] n into itself. Moreover, K depends only on Σ, S, and B; in particular, K is independent of T .

Proof: [Proof of Theorem 2.4] For T > T opt , set

Y T := V ∈ L 2 (0, 1) : V is the limit in L 2 (0, 1) of some subsequence of solutions v N (-T, •)
of ( 39)-(41) such that (43) and (44) hold . (47)

It is clear that Y T is a vectorial space. Moreover, by (46) and the compact property of K , we have

dimY T ≤ C, (48) 
for some positive constant C independent of T .

We next show that

Y T 2 ⊂ Y T 1 for T opt < T 1 < T 2 . ( 49 
) Indeed, let V ∈ Y T 2 .
There exists a sequence of solutions (v N ) of ( 39)-( 41) such that

v N (-T, •) → V in L 2 (0, 1), lim N→+∞ v N,+ (•, 1) L 2 (-T 2 ,0) = 0. ( 50 
) By considering the sequence v N (• -τ, •) with τ = T 2 -T 1 , we derive that V ∈ Y T 1 .
The arguments are then in the spirit of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] (see also [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]) via an eigenvalue problem in finite dimension using a contradiction argument. By Lemma 3.1, to obtain the nullcontrollability at the time T > T opt , it suffices to prove [START_REF] Zhang | Finite-time internal stabilization of a linear 1-D transport equation[END_REF] by contradiction. Assume that there exists a sequence of solutions (v N ) of ( 39 (51) By (45), up to a subsequence, v N (-T, •) converges in L 2 (0, 1) to a limit V . It is clear that V L 2 (0,1) = 1; in particular, V = 0. Consequently,

Y T = {0}. (52) 
By ( 48), (49), and (52), there exist

T opt < T 1 < T 2 < T such that dimY T 1 = dimY T 2 = 0.
We can prove that, for V ∈ Y T 1 ,

Σ∂ x V + Σ ′ V is an element in Y T 1 . (53) 
Recall that Y T 1 is real and of finite dimension. Consider its natural extension as a complex vectorial space and still denote its extension by Y T 1 . Define

A : Y T 1 → Y T 1 V → Σ∂ x V + Σ ′ V.
From the definition of Y T 1 , it is clear that, for V ∈ Y T 1 ,

V -(1) = 0 (54) 
and

Σ + (0)V + (0) = -B T Σ -(0)V -(0) + 1 0 S T -+ (x)V -(x) + S T ++ (x)V + (x) dx. (55) Since Y T 1 = {0} and Y T 1 is of finite dimension, there exists λ ∈ C and V ∈ Y T 1 \ {0} such that A V = λV. Set v(t, x) = e λ t V (x) in (-∞, 0) × (0, 1).
Using ( 54) and (55), one can verify that v(t, x) satisfies (39)-(41). Applying the characteristic method, one can deduce that v(t, •) = 0 in (0, 1) for t < -τ k+1 -• • • -τ k+m . It follows that V = 0 which contradicts the fact V = 0. Thus [START_REF] Zhang | Finite-time internal stabilization of a linear 1-D transport equation[END_REF] holds and the null-controllability is valid for T > T opt . The details can be found in [START_REF]Null-controllability of linear hyperbolic systems in one dimensional space[END_REF].

IV. ON THE PROOF OF THEOREM 2.5 We will also deal with the nonlinear boundary condition at x = 0 as mentioned in Remark 2.5. We first consider the case m > k. Consider the last equation of ( 6) and impose the condition w k (t, 0) = 0. Using [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] with i = 1 and the implicit function theorem, one can then write the last equation of ( 6) under the form

w m+k (t, 0) = M k w k+1 (t, 0), • • • , w m+k-1 (t, 0) , (56) 
for some C 2 nonlinear map M k from U k into R for some neighborhood U k of 0 ∈ R m-1 with M k (0) = 0 provided that |w + (t, 0)| is sufficiently small. Consider the last two equations of (6) and impose the condition w k (t, 0) = w k-1 (t, 0) = 0. Using [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] with i = 2 and the Gaussian elimination approach, one can then write these two equations under the form (56) and

w m+k-1 (t, 0) = M k-1 w k+1 (t, 0), • • • , w m+k-2 (t, 0) , (57) for some C 2 nonlinear map M k-1 from U k-1 into R for some neighborhood U k-1 of 0 ∈ R m-2 with M k-1 (0) = 0 provided that |w + (t, 0)| is
sufficiently small, etc. Finally, consider the k equations of ( 6) and impose the condition [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF] with i = k and the Gaussian elimination approach, one can then write these k equations under the form (56), (57), . . . , and

w k (t, 0) = • • • = w 1 (t, 0) = 0. Using
w m+1 (t, 0) = M 1 w k+1 (t, 0), • • • , w m (t, 0) , (58) 
for some C 2 nonlinear map M 1 from U 1 into R for some neighborhood U 1 of 0 ∈ R m-k with M 1 (0) = 0 provided that |w + (t, 0)| is sufficiently small. These nonlinear maps M 1 , . . . , M k will be used in the construction of feedbacks. Define d dt x j (t, s, ξ ) = λ j x j (t, s, ξ ), w t, x j (t, s, ξ ) with x j (s, s, ξ ) = ξ for 1 ≤ j ≤ k, and d dt x j (t, s, ξ ) = -λ j x j (t, s, ξ ), w t, x j (t, s, ξ ) , with x j (s, s, ξ ) = ξ for k + 1 ≤ j ≤ k + m. We do not precise at this stage the domain of the definition of x j . Later, we only consider the flows in the regions where the solution w is well-defined.

To arrange the compatibility of our controls, we also introduce following auxiliary variables satisfying autonomous dynamics. Set δ = T -T opt > 0. For t ≥ 0, define, for k + 1 ≤ j ≤ k + m, ζ j (0) = w 0, j (0), ζ ′ j (0) = λ j 0, w 0 (0) w ′ 0, j (0), (59) and η j (0) = 1, η ′ j (0) = 0, (60)

ζ j (t) = η j (t) = 0 for t ≥ δ /2,
The feedback is then chosen as follows:

w m+k (t, 1) = ζ m+k (t) + (1 -η m+k (t))M k w k+1 t, x k+1 (t,t + t m+k , 0) , . . . , w k+m-1 t, x k+m-1 (t,t + t m+k , 0) (61)

w m+k-1 (t, 1) = ζ m+k-1 (t)

+ (1 -η m+k-1 (t))M k-1 w k+1 t, x k+1 (t,t + t m+k-1 , 0) , . . . , w k+m-2 t, x k+m-2 (t,t + t m+k-1 , 0)

. . . w m+1 (t, 1) = ζ m+1 (t) + (1 -η m+1 (t))M 1 w k+1 t, x k+1 (t,t + t m+1 , 0) , . . . , w m t, x m (t,t + t m+1 , 0)

and, for k + 1 ≤ j ≤ m, w j (t, 1) = ζ j (t),

This feedback is well-determined by noting that (61) depends only on the current state, (62) depends only on the current state and (61), etc.

For m ≤ k, the feedback law is given as follows:

w m+k (t, 1) = ζ m+k (t) + (1 -η m+k (t))M k w k+1 t, x k+1 (t,t + t m+k , 0) , . . . , w k+m-1 t, x k+m-1 (t,t + t m+k , 0) , . . .

w k+2 (t, 1) = ζ k+2 (t)
+ (1 -η k+2 (t))M 2 w k+1 t, x k+1 (t,t + t k+2 , 0) , and w k+1 (t, 1) = ζ k+1 (t).

The null-controllability for small initial data can be derived from the properties of M j for 1 ≤ j ≤ k. An key technical part of the proof is the well-posedness for [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] and ( 6) equipped these feedback laws, see [START_REF]Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space[END_REF]Lemma 2.2].

Conclusion:

This paper is devoted to the null-controllability, exact controllability, and stabilization of hyperbolic systems for the optimal time. The starting point of the analysis in the inhomogeneous case is based on the backstepping approach. The ideas of the analysis are presented.

2 . 2 :

 22 ) for all B, see [13, Theorem 1.1]. Remark In the case m = 2, we also established [13, Theorem 1.1] the following result on the optimality of T opt : If B ∈ B, B k1 = 0, Σ is constant, and

1 0

 1 N,+ (t, 1)| 2 dt ≤ |v N (-T, x)| 2 dx = 1.