
HAL Id: hal-03049876
https://hal.science/hal-03049876v1

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Out-of-equilibrium dynamics and excess volatility in
firm networks

Théo Dessertaine, José Morán, Michael Benzaquen, Jean-Philippe Bouchaud

To cite this version:
Théo Dessertaine, José Morán, Michael Benzaquen, Jean-Philippe Bouchaud. Out-of-equilibrium
dynamics and excess volatility in firm networks. Journal of Economic Dynamics and Control, 2022,
138, pp.104362. �hal-03049876�

https://hal.science/hal-03049876v1
https://hal.archives-ouvertes.fr
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We study the conditions under which input-output networks can dynamically attain competitive
equilibrium, where markets clear and profits are zero. We endow a classical firm network model
with simple dynamical rules that reduce supply/demand imbalances and excess profits. We show
that the time needed to reach equilibrium diverges as the system approaches an instability point
beyond which the Hawkins-Simons condition is violated and competitive equilibrium is no longer
realisable. We argue that such slow dynamics is a source of excess volatility, through accumulation
and amplification of exogenous shocks. Factoring in essential physical constraints, such as causality
or inventory management, we propose a dynamically consistent model that displays a rich variety
of phenomena. Competitive equilibrium can only be reached after some time and within some
region of parameter space, outside of which one observes periodic and chaotic phases, reminiscent
of real business cycles. This suggests an alternative explanation of the excess volatility that is of
purely endogenous nature. Other regimes include deflationary equilibria and intermittent crises
characterised by bursts of inflation. Our model can be calibrated using highly disaggregated data
on individual firms and prices, and may provide a powerful tool to describe out-of-equilibrium
economies.

∗ theo.dessertaine@polytechnique.edu

ar
X

iv
:2

01
2.

05
20

2v
1 

 [
ec

on
.G

N
] 

 9
 D

ec
 2

02
0

mailto:theo.dessertaine@polytechnique.edu


2

CONTENTS

I. Introduction 3

II. Firm networks at equilibrium 5
A. Network and production function 5
B. Equilibrium conditions on prices and productions 5

III. A First “Naive” Approach 7
A. Forces Restoring Equilibrium 7
B. Dynamical Equations 8
C. Perturbations Around Equilibrium 8
D. Excess Volatility 9
E. Limitations 9

IV. A Fully Consistent Approach 10
A. Imbalances and Causality 10
B. Time-line 11

1. Planning 11
2. Exchanges & Price/Wage Updates 12
3. Production 13

C. Expected Profits and Imbalances 14
D. Household Demand and Labour 14

1. Work-elastic Households 14
2. The optimization sequence 15
3. Confidence Effects 16
4. Savings Update 16

E. Discussion 16

V. An Exploratory Numerical Study 17
A. Summary of Parameters 17
B. Perturbations Around Equilibrium 18
C. Phase Diagrams and Dynamical Types 18

1. Relaxation towards competitive equilibrium 19
2. Relaxation towards deflationary equilibrium 20
3. Oscillatory patterns 21
4. Intermittent Crises 22

D. The unstable phase ε < 0 22
E. The Role of Perishability 23

VI. Summary & Conclusion 25

Acknowledgments 26

Notations 26
Production function and networks 26
Firms 26
Household 27

References 28

A. General Equilibrium Conditions 30
1. Case q < +∞ 30
2. Case q = +∞ 31

B. Relaxation Time for the Naive Model 32
1. Linearisation of the dynamics 32
2. Relaxation time in the high productivity regime 33
3. Perturbation expansion in ε for D 33



3

4. Marginal stability for ε = 0 34
5. Relaxation time in the limit ε→ 0 35

C. Blocks of the stability matrix 38
1. Perturbation of peq and γeq 38

a. Prices 38
b. Productions 40

2. Stability blocks 40

D. Critical volatility of prices and outputs with fluctuations 41
1. General computation for marginally stable linear stochastic systems 41
2. Computation of the volatility induced by gaussian shocks on productivity factors 43

E. Code for the simulation 44
1. Objects 44
2. Pseudo-code to execute one step of the time-line 45

I. INTRODUCTION

Classical macroeconomic models picture the world as a succession of equilibria where markets clear perfectly and
firms make no profit. Each equilibrium is characterized by a different level of productivity or household preferences,
themselves driven by exogenous “shocks”. Drawing an analogy from physics, one may call such an approach “adi-
abatic” – i.e. the time needed for the system to reach equilibrium is much shorter than the time over which the
environment changes, so that one can compute the properties of the system as if the environment was static. The
time evolution of the economy is then slaved to the time evolution of the exogenous parameters.

There are however many reasons to believe that the economy is permanently out-of-equilibrium. One of these reasons
is the “small shock, large business cycle” paradox: aggregate fluctuations seem much too large to be explained by
exogenous shocks alone [1–3]. Some endogenous dynamics, intrinsic to economic systems, appear to be at play, like
in financial markets (see e.g. [4], ch. 20, for a recent review). From a conceptual point of view, economic equilibrium
requires so much cooperation between rational, forward looking agents, that the only way such equilibrium can
plausibly be achieved is through some kind of learning, or tâtonnement, that inevitably takes some time to complete.1

If this time is comparable to, or longer than, the evolution time of technology, or of any other type of events
(political, social, geo-political, sanitary, etc.) that do affect the economy, then the adiabatic hypothesis is doomed to
fail, and calls for a richer modelling framework where dynamics is an integral part of the description. We do not only
need to describe the equilibrium state, but also the path to equilibrium.2 We might realize that in some cases it is in
fact never reached – opening the possibility of purely endogenous macro-economic fluctuations.

There is of course a large literature on out-of-equilibrium macroeconomics, see e.g. [9–15]. Part of this litera-
ture is concerned with “disequilibrium”, i.e. the impact of frictions and price or wage rigidities, that prevent the
economy from reaching equilibrium, but with no particular focus on dynamical effects. Another strand of literature
postulates “reduced form” differential equations that describe the coupled evolution of a set of aggregate variables
(e.g. employment, wage and output in the Goodwin model [16, 17]). These low-dimensional dynamical equations can
generate interesting phenomena, such as business cycles in the Goodwin model which is, mutatis mutandis, equivalent
to the classic Lotka-Volterra (or predator-prey) model [18, 19]. Yet another direction is explored by Agent Based
Models (ABM), where individual agents/firms make decisions based on plausible heuristic rules. ABM are explicitly
dynamical models [20]: decision rules lead to actions (buy/sell, produce, update prices and wages, etc.) that move
the economy one step forward in time (see e.g. [21–26]). Although these three different avenues of research have led
to a considerable number of papers in the last decades, they are often spurned by mainstream macroeconomists who
prefer “micro-founded” models where agents/firms are forward looking and optimize inter-temporal utility functions.

In this paper, we want to revisit these ideas within the framework of network economies, where firms interact through
a supply/demand (or input/output) network. Such models have recently become popular as a way to generate excess

1 This is true even for financial markets where transactions take place at the second time scale. In reality, a large amount of the
supply/demand volume is latent and is only slowly revealed [4–6].

2 In fact, if one delves into the history of the notion of economic equilibrium from Walras up to the Arrow-Debreu general equilibrium
theory, it is striking to see that the focus has been mainly on the existence and the properties of an economic equilibrium. It is assumed
that a mechanism exists that leads the economy towards that point, but it is not made explicit [7, 8].
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aggregate volatility, as shocks may possibly propagate through the input-output network. However, the seminal
papers of Long & Plosser [1], and of Acemoglu, Carvalho & collaborators [27] are studied within the “adiabatic”
framework discussed above. Furthermore, these papers assume a Cobb-Douglas production function, which ensures
that an equilibrium always exists, whatever the input-output network and independently of the productivities of the
firms. But as shown in [28], for more general production functions (such as the Constant Elasticity of Substitution –
CES – family) equilibrium ceases to exist when the average connectivity of the network is too large, firm productivities
are too low, or markups are too large. In these cases, the description of a time evolving economy as a succession of
static equilibria just does not make sense. In fact, Moran & Bouchaud [28] argue, in the spirit of a conjecture by
Bak, Chen, Scheinkmann and Woodford [29], that economies may generically sit close to a point where equilibrium
disappears.

One therefore needs to endow the model with plausible dynamical rules, which would allow one to follow the fate of
the economy outside of the adiabatic regime, and in fact identify cases where equilibrium does exist mathematically
but can never be reached. A step in this direction was proposed by Mandel et al. [30] and, independently, by Bonart
et al. [31], where a dynamical Cobb-Douglas economy was considered, with plausible update rules for production and
prices. Interestingly, the model considered in [31] leads to a phase transition between a region where equilibrium is
reached (when firms slowly adapt to shocks) and a region where coordination breaks down (when firms adapt too
aggressively) and where equilibrium is no longer dynamically accessible.3 In the latter phase, endogenous volatility
becomes dominant. But this model only goes half-way towards a full-fledged dynamical description, since market-
clearing was imposed by fiat in [31], with no excess production or excess demand – leading to conceptual inconsistencies
and, in fact, spurious instabilities.

In the present work, we attempt to provide a consistent framework to describe dynamical out-of-equilibrium effects in
network economies. Our approach is a hybrid between classical economics thinking (where firms attempt to optimize
profits in a competitive environment, and households optimize their utility function to balance consumption and
labour) and Agent Based Models, where simplified behavioural assumptions allow one to specify the decision-making
process of firms. Much to our surprise, we have found that in order to obtain well-behaved outcomes, extra care has to
be devoted to treat all the decision steps in a strictly causal way (for example, goods must be produced before they are
consumed) and to satisfy all inequalities (for example, consumption cannot exceed production plus inventories). Any
attempt to write down “reasonable” dynamical equations that violate these constraints consistently lead to spurious
instabilities. We in fact consider this as a blessing: physical constraints provide a discriminant straight-jacket for
modelling. We propose a minimal parametrisation of the heuristic rules used by firms to update production, prices
and wages, which already leads to a surprisingly rich phenomenology of the resulting economy.

In a sense, our model can be seen as a multidimensional, discrete time version of the reduced form differential
equations à la Goodwin [16] and followers. The main difference is that we describe the dynamics of the economy at
a highly disaggregated level (that of firms), which is an important aspect in view of the amount of micro-data now
available to calibrate such a model. In view of the diversity of phenomena that can take place within our framework,
we are quite confident that the model is flexible enough to account for many empirical facts. However, in the current
era of “big data”, some extensions of the model may be worthwhile investigating – each extension bringing one or
several new parameters that need to be calibrated. In particular, some of our behavioural assumptions may appear
too primitive and could be enriched, as we discuss in section IV C.

The most important generalisation, in our opinion, will be to include debt, interest rates and bankruptcies in the
model. In particular, the way the network “rewires” after the removal of a bankrupt firm, with the possibility of
cascading defaults, is clearly one of the most interesting aspects of firm network models when it comes to understanding
economic crises and, in fact, the very motivation for studying network models.

The manuscript is organized as follows. In section II, we set up the stage of firm networks at equilibrium. Section
III presents a simple heuristic for an out-of-equilibrium dynamical model of interacting firms. We show that reaching
equilibrium might take an infinite amount of time (therefore jeopardizing the adiabatic hypothesis) and that the
dynamics displays excess volatility when the economy sits close to an instability. In section IV, we present a fully
consistent extension of the model of section III which incorporates natural constraints which were overlooked such as
causality or shortages. We propose a preliminary numerical study of this extension in section V where we highlight and
discuss the existence of other interesting dynamical regimes besides competitive equilibrium. We also provide several
technical appendices for completeness. In Appendix A, we detail the derivation of competitive equilibrium equations
in the most general setting of production function. Appendix B shows the computation of the relaxation time of

3 A similar phenomenology is reported in Ref. [30], where it is stated that depending on the stringency of the financial constraints the
model can settle in two very different regimes: one characterized by equilibrium, the other by disequilibrium and financial fragility.
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the naive model which relies on Appendix C that compiles necessary intermediate results on the stability matrix. In
Appendix D we show that a marginally stable linear stochastic system creates excess volatility and we apply this result
to a generic case of the naive model of III. Finally in Appendix E, we provide a pseudo-code for simulation of the fully
consistent approach of section IV. The code itself is made available at: https://yakari.polytechnique.fr/dash.

II. FIRM NETWORKS AT EQUILIBRIUM

A. Network and production function

Following references [1, 27, 31], we model the economy as consisting of N firms that interact with one another and
with a single representative household which provides labour and consumes goods. The economy is described by a
“technology network”, namely a directed graph where each node i = 1, . . . , N represents a firm and where the link
j → i exists if i uses the good produced by j for its own production. The node labelled i = 0 conventionally represents
households. Each edge in the graph i → j carries a “weight” that is a measure of the number of j goods needed to
make an unit of i. The production function gives the quantity of goods πi produced by i as a function of input goods
and labour (no capital at this stage) and the intrinsic, possibly time dependent, productivity of the firm zi (i.e. its
efficiency in converting a given amount of inputs into outputs). The standard CES production function writes [32]:

πi = zi




N∑

j=0

aij

(
Qij
Jij

)−1/q


−bq

:= ziγi, (II.1)

where Qij is the amount of good j (or labour if j = 0) available to i, Jij ≥ 0 and aij ≥ 0 link variables that measure
the importance of good j in the production of i4, and where we define γi as the level of production of firm i. The
parameter b sets the return to scale: if all inputs and work hours are multiplied by a factor λ, then total output is
multiplied by λb.

Finally, q is a parameter measuring the substitutability of inputs. For example, when q → 0+ we get the Leontief
production function

πi = zi

(
min
j

(
Qij
Jij

))b
,

corresponding to the case where production falls to zero if a single input is missing. This represents a setting where
firms only keep a small, very optimized portfolio of suppliers that does not allow for redundancy. If q → +∞, we get
the Cobb-Douglas production function

πi = zi


∏

j

(
Qij
Jij

)aij


b

,

for which some amount of substitutability is present. Indeed, halving the quantity Qik of input k can be compensated
by multiplying the input of ` by 2aik/ai` .

Although our dynamical model applies to any production function, and is not restricted to the CES family specified
above, we will illustrate our general arguments using the special case of a Leontief production function with constant
return to scale (b = 1), as its simplicity allows for equilibrium conditions to be worked out explicitly.

B. Equilibrium conditions on prices and productions

Given the prices pi of the goods and wage p0, the profit Pi of firm i can be written as

Pi =
∑

j

Qjipi −
∑

j

Qijpj , (II.2)

4 The aij are normalized such that
∑
j aij = 1, ∀i.

https://yakari.polytechnique.fr/dash
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where Q0i := Ci is the consumption of good i by the households. For a certain target production π̂i := ziγ̂i, the

optimal quantities Q̂ij that the firm needs to buy (including workforce) are obtained by minimising the second term
in Eq. (II.2), corresponding to production costs, with the target production constraint. Within the CES framework,
this leads to:

Q̂ik = aqζikJ
ζ
ik


∑

j

aqζij J
ζ
ij

(
pj
pk

)ζ


q

γ̂
1/b
i , (II.3)

with ζ = (1 + q)−1. In the Leontief case with b = 1, this boils down to

Q̂ik = Jikγ̂i. (II.4)

Equilibrium prices and productions are then fully determined by assuming perfect competition, i.e. Pi = 0 for
all firms, and perfect market clearing, meaning that all of the production is consumed. This last condition can be
written as

πeq,i = Ceq,i +
∑

j

Qeq,ji, (II.5)

where Ci is the households’ demand for good i. For Leontief production functions with b = 1, the resulting equations
are linear and read:

Mpeq = V (II.6a)

Mt γeq =
κ

peq
, (II.6b)

where M is a matrix defined as Mij = ziδij − Jij , Vi = Ji0 is the workforce need of firm i and κ a positive vector
describing final demand.5 For more general production functions, the equations can be written down as well – see
Appendix A – but we will not consider them in the present paper. The important features are:

• For Eqs. (II.6a, II.6b) to have positive solutions for prices and productions, M must be a so-called M -matrix
[28, 33, 34]. Owing to its particular shape, with non-negative terms on the diagonal and negative terms on the
off-diagonal, this is equivalent to the spectrum of M having a positive real part. For a given set of input-output
coefficients Jij , this imposes that firms productivities must be large enough, otherwise no realisable equilibrium
exists.

• For all finite values of q in the CES production function, some analogous conditions must be fulfilled for a
realisable equilibrium to exist [28].

• When q = +∞ (i.e. in the Cobb-Douglas case), positive solutions to the equilibrium equations always exist,
independently of productivities or network coefficients [27].

The possible non-existence of static solutions for generic production functions and network topologies compels us
to go beyond equilibrium and formulate dynamical equations that would still make sense in such cases. But even in
situations where such an equilibrium exists, it is by no means automatic that the economy is able to reach it on its
own device. And even if it does, the description of non-adiabatic situations, i.e. those for which technologies and
productivities evolve on a time shorter than the time needed to reach equilibrium, also require consistent dynamical
equations. Interestingly, when the economy is close to an instability, e.g. when the smallest eigenvalue of M tends
to zero in the Leontief case, the time needed to reach equilibrium becomes infinitely large. This not only makes the
adiabatic assumption moot but, as we shall see, compels the modeller to handle dynamical effects with special care.

5 Vector division in Eq. (II.6b) is understood as component-wise division.
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III. A FIRST “NAIVE” APPROACH

In this section, we introduce the simplest version of a dynamical model aimed as describing out-of-equilibrium effects
(transient or permanent) in a network economy. The equations we will postulate are based on reasonable “rules of
thumb” that firm decision makers are likely to use in real life conditions [35–37]. There is obviously still a demarcation
line between purists, who insist that these decision rules must be based on rational, forward looking optimisation
programs, and a growing cohort of pragmatists who believe that modellers should embrace radical uncertainty and
adopt behavioural rules closer to reality, with enough flexibility to avoid absurd paradoxes and accommodate, at least
to some extent, Lucas’ critique [38].

In looking for such dynamical equations, we draw inspiration from what physicists call “phenomenological ap-
proaches”, heavily based on symmetry and genericity arguments. Such arguments allow one to avoid getting lost in
the “wilderness” of possible models – to paraphrase Sims – once the straight-jacket of rationality is jettisoned. As we
have learnt from physics, general arguments can often be used to write down correct equations before the underlying
foundations have been worked out. For example, the Navier-Stokes equations for fluid motion have been postulated
in the XIXth century based on general arguments, 50 years before Boltzmann’s statistical theory of molecular motion
gave a solid, first principle justification of these equations.

A. Forces Restoring Equilibrium

Whereas in economic equilibrium profits are zero and markets clear, out-of-equilibrium situations means, tautolog-
ically, non zero profits and/or excess supply or demand. So we naturally introduce, for each firm, two indicators that
measure the distance from equilibrium: Ei(t) is the excess production at time t (interpreted as unsatisfied demand if
Ei(t) < 0), and Pi(t) the instantaneous profit or losses of the firm at time t. Prices and productions will then adapt,
through some kind of tâtonnement to reduce these discrepancies. Faced with excess production, firms will lower prices
to prop up demand, and/or reduce production to limit losses. Faced with excess demand, on the other hand, firms
can consider increasing prices and/or increase production. Similarly, when profits are positive, firms can be tempted
to increase production but at the same time competition, attracted by the prospect of a profit, should put pressure
on prices. If profits are negative, firms will try to adapt by lowering production and increase prices, with the hope of
better compensating production costs.

All these rules are common sense and it is hard to argue that they are not at play in the real economy. What is
more debatable, however, is how to model them quantitatively. In this work, we further assume that all these effects
are linear in Ei(t),Pi(t), at least when these imbalances are small enough. It is also reasonable to think in terms of
relative, non-dimensional quantities, i.e. ratios of Ei(t) to total production ziγi(t) and Pi(t) to total sales ziγi(t)pi(t).
Hence we write our tâtonnement rules as:

log

(
pi(t+ δt)

pi(t)

)
=

(
−α Ei(t)

ziγi(t)
− α′ Pi(t)

zipi(t)γi(t)

)
δt (III.1a)

log

(
γi(t+ δt)

γi(t)

)
=

(
β

Pi(t)

zipi(t)γi(t)
− β′ Ei(t)

ziγi(t)

)
δt, (III.1b)

where δt is an elementary time step, and the parameters α, α′, β, β′ characterize the speed of adjustment in the face
of imbalances. From our general arguments above, we expect that all these parameters are non-negative, i.e. that
firm policies and market forces tend to dampen imbalances. Whether these will be sufficient to stabilize the whole
economy around the classical equilibrium described in the previous section is the whole point of the present research.

Note that we could have chosen these parameters to depend on the firm i, some firms choosing to be more aggressive
than others in their adjustment policy. In the present work we will stick to firm independent values for α, α′, β, β′.
Finally, the simple rules Eqs. (III.1a, III.1b) are very similar in spirit to rules used in several well studied Agent
Based Models – see [22, 26].
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B. Dynamical Equations

Now, Eqs. (III.1a, III.1b) are closed by expressing imbalances in terms of prices pi and productions πi, as:

Pi(t) = pi(t)πi(t)−
N∑

j=1

Qij(t)pj(t)− p0(t)`i(t) = γi(t)


zipi(t)−

N∑

j=1

Jijpj(t)− Ji0p0(t)


 (III.2a)

Ei(t) = πi(t)−
N∑

j=1

Qji(t)− Ci(t) = ziγi(t)−
N∑

j=1

Jjiγj(t)− Ci(t), (III.2b)

where Ci(t) is the consumption of households, `i(t) the quantity of labour, and where we again stick to constant
return to scale Leontief production functions.

Finally, one must model the consumption of households. For simplicity, we assume here that households work
full time, with L being the total amount of labour (this assumption will be relaxed below, as we will allow for
unemployment). Consumption is obtained by saturating the current budget p0(t)L to maximize a log-consumption
utility, i.e.

max
C(t)

θ · log C(t) with p(t) ·C(t) ≤ p0(t)
∑

i

`i(t), (III.3)

where θi is the preference for good i. The optimal consumption is then Ci(t) = µ(t)θi/pi(t) with µ(t) = p0(t)L0/
∑
i θi.

Putting all these ingredients together and taking the continuous time limit δt → 0 yields the following system of
coupled non-linear ordinary differential equations:

ziγi(t)
dpi
dt

= −αpi(t)


∑

j

Mjiγj(t)−
µ(t)θi
pi(t)


− α′γi(t)


∑

j

Mijpj(t)− Vi


 (III.4a)

zipi(t)
dγi
dt

= βγi(t)


∑

j

Mijpj(t)− Vi


− β′pi(t)


∑

j

Mjiγj(t)−
µ(t)θi
pi(t)


 . (III.4b)

C. Perturbations Around Equilibrium

Equations (III.4) are the “naive” candidate equations for the out-of-equilibrium dynamics of the firm network
model. One immediately checks that injecting the equilibrium solutions peq,i and γeq,i (given by Eqs. (II.6a, II.6b))
cancels out the right hand sides of these equations, as it should be. One can also study the linear stability of this
equilibrium. Writing pi(t) = peq,i + δpi(t) and γi(t) = γeq,i + δγi(t) and keeping only terms of order 1 in δ(.), one
finds a linear evolution equation for a 2N dimensional vector U = (δp, δγ), of the form:

dU(t)

dt
= DU(t). (III.5)

The equilibrium stability is determined by the sign of the eigenvalues of the corresponding 2N × 2N dynamical
matrix D. Such an analysis is provided in Appendix B.

When all eigenvalues are negative, equilibrium is locally stable. Any small perturbation away from equilibrium
decays towards zero, at a rate asymptotically given by the eigenvalue closest to zero. The corresponding relaxation
time τrelax can be computed explicitly when the economy is on the verge of becoming un-realisable, i.e. when the
smallest eigenvalue of the network matrix M is at a distance ε→ 0 away from 0. We find:

τrelax ≈
2 maxj zj

ε
×
{(

α′ + β′ + α−
√

(α′ + β′ + α)2 − 4(αβ + α′β′)
)−1

if (α′ + β′ + α)2 > 4(αβ + α′β′)

(α′ + β′ + α)
−1

if (α′ + β′ + α)2 ≤ 4(αβ + α′β′).
(III.6)

This expression allows us to draw two important conclusions:
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FIG. 1: Relative distance to equilibrium values of prices for the non-linear discrete dynamics Eqs. (III.4) for
N = 100 firms. The initial relative distance in the simulation is taken to be δ = 10−3. The high productivity regime
corresponds to a high value of ε = 1000 and leads to a very short relaxation time τrelax. On the other hand, in the

low productivity regime where ε→ 0, the system takes longer and longer to reach equilibrium again, and the
relaxation time τrelax diverges.

• When ε→ 0, the relaxation time of the system diverges, i.e. it takes an infinitely long time to reach equilibrium.
As we mentioned in the introduction, this makes the adiabatic approximation unsuitable as changes in the
technologies and in the network structure will happen before equilibrium can be reached. This long time scale
also leads to an amplification of exogenous volatility in the system, see below.

• As long as α, α′ or β′ are strictly positive, the relaxation time is finite. The equilibrium is still stable if some
coefficients are negative provided others are positive and sufficiently large.

A numerical illustration of the type of weakly out-of-equilibrium dynamics predicted by the model is shown in
Fig. 1. One sees a complex interplay of spontaneous oscillations (coming from the imaginary part of the eigenvalues
of the dynamical matrix D) with a slowly decaying envelope, ∝ exp(−t/τrelax).

D. Excess Volatility

Note that if the parameters describing the economic equilibrium (such as productivities or household preferences,
etc.) are slightly changing over time, the dynamical equation governing economic fluctuations, Eq. (III.5), becomes:

dU(t)

dt
= DU(t) + ξ(t), (III.7)

where ξ(t) represents the exogenous shocks to the economy. It is then not hard to show (see Appendix D) that in
the limit ε → 0, the volatility of prices and output is proportional to ε−1/2, and can thus be much larger than the
variance of the exogenous shocks when the system approaches the limit of stability.

The intuitive reason is that past shocks linger a very long time (comparable to τrelax) in the system and aggregate
with more recent shocks, leading to a much larger overall perturbation. Hence, the proximity to the point of instability
is a natural candidate to explain the “small shocks, large business cycle” paradox (see [31] for a related discussion).
An illustration of this phenomenon for our model is given in Fig. 2. However, such very long time persistence of
fluctuations may be at odds with empirical data. We will discuss in section V C 3 below another scenario for “large
business cycles” based on non-linear, endogenous fluctuations rather than on long-lived exogenous fluctuations.

E. Limitations

The above results suggest that, although “naive”, our equations may be a reasonable starting point to describe the
dynamics of firm networks, and actually provide an interesting generic scenario for anomalous fluctuations of output.
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yielding the volatility increase (as described in

Appendix D) after productivity shocks with volatility σ = 10−8 and ε = 10−4, y-scale 10−6 (left), ε = 103, y-scale
10−11 (right). For ε = 10−4, the volatility of output and prices is of the order of 10−6, i.e. 100 times larger than σ,

as expected from theory.

However, further numerical explorations of these equations reveal that the basin of attraction of the competitive
equilibrium described in II is extremely narrow: only initial conditions less than 1% away from equilibrium lead to
well behaved trajectories. Initial conditions that lie further away from equilibrium soon lead to a divergence of both
prices and production levels, showing the limitations of the naive approach.

Another limitation concerns cases where the equilibrium is no longer defined, i.e. when ε < 0. In such a case, Eqs.
(III.4) again cease to make sense (prices and productions are dragged below zero). Because of these impediments, our
naive model cannot be usefully calibrated to empirical data, precisely because economic fluctuations are not small.
As we will discuss in the next section, the only way to obtain well-behaved equations is to formulate the model such
as to satisfy some incontrovertible constraints, i.e. causality (or “time to build”) and physical bounds (consumption
cannot be larger than production plus inventories).

IV. A FULLY CONSISTENT APPROACH

A. Imbalances and Causality

The naive approach of the previous section sweeps under the rug two important constraints, which are irrelevant at
equilibrium: supply/demand imbalances (which are zero if markets clear) and causality (firms must decide production
before they know how much they will manage to sell).

Accounting for the first implies the following. If demand exceeds supply, all of a firm’s production will be sold and
exchanged, whereas if supply exceeds demand, only the quantity that was demanded will be traded, leaving a surplus
that will add to the firm’s inventories. Hence, the flow of goods going from i to j must be computed with care; instead
of the single quantity Qji(t) considered in the previous section, we need to introduce the amount of goods i demanded
by firm j, Qd

ji, that can only be smaller or equal to the quantity actually exchanged, Qji. This can be understood
as a contract that may only be fully honoured if firm i produces enough to meet all demands. In a similar fashion,
we distinguish the amounts Cd demanded by households from what will be effectively sold to them, C, as well as the
work hours posted by firms `di from the total amount of work Ls households are willing to provide. To handle the
situation where supply exceeds demand, we keep track of firm i’s inventory of good j, denoted by Iij(t) and to which
we successively add the goods that the firms did not manage to sell or to use and subtract those that perished.

Implementing causality in the dynamics also means dissecting the firms’ decision processes. Clearly, goods can only
be sold at time t after they have been produced at time t− 1, and prices may change (if only slightly) between these
two times. More importantly, firms only have partial information about the amount of goods they will be able to
buy and sell when they plan for the next production cycle. Likewise, the number of employees they will be able to
hire is not known precisely, because it depends on the amount of work deemed acceptable by the households. It is at
this stage that we will introduce a heuristic rule that allows firms to plan for the next production round by making
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FIG. 3: Time-line of the model.

more or less informed guesses about these unknown quantities. In the present work, we assume that firms base their
estimate on what happened in the previous time step, although more complicated and more general rules can already
be imagined.

B. Time-line

In order to keep all causal constraints satisfied, one must carefully set up a consistent chronology for the actions
of firms and households. The resulting time-line of the model is schematized in Fig. 3. Each time step δt (δt = 1
hereafter) is conveniently sliced in three successive “epochs”, represented as boxes in Fig. 3. At the end of time step
t− 1, goods have been produced and are available for consumption at t in quantities πi(t) and prices pi(t).

1. Planning

At any given time, firms must plan how much to produce for the following period. To capture this, we keep the
same tâtonnement rule as in the naive version of our model, Eq. (III.1b), but using now the expected profits Et[Pi]
and excess productions Et[Ei] at the end of the period, which we specify below.

The target production available at t+ 1, π̂i(t+ 1), is set using

log

(
π̂i(t+ 1)

πi(t)

)
= 2β

Et[Pi(t)]

Et[Gi(t)] + Et[Li(t)]
− 2β′

Et[Ei(t)]
Et[Si(t)] + Et[Di(t)]

, (IV.1)

where Gi(t) denotes the proceeds of the sales (“gains”), Li(t) the production costs (“losses”) and Di(t) the overall
demand for good i. We underline that since the available amount of good i is already known to the firm at time t,
one has Et[Si(t)] ≡ Si(t).

Once the target productions for t + 1 are decided, the corresponding quantities Q̂ij are computed according to
Eq (II.3). Firm i then posts its demands for inputs j for delivery at time t, taking into account their current stock of
Iij of said inputs, with the rule6

Qd
ij =

{
max

(
0, Q̂ij − Iij

)
i = 1, . . . , N ; j = 1, . . . , N

Q̂i0 i = 1, . . . , N ; j = 0.
(IV.2)

6 A more complicated expression would have to be written in the general CES case with b 6= 1.
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Thus, if stocks are plentiful, the firm will prefer drawing from them instead of buying new inputs. In the meantime,
households calculate their own consumption target for good i as detailed below and they also decide, given offered
wages, how much labour they are willing to supply, a quantity we call Ls(t) that may now not correspond to full
employment.

2. Exchanges & Price/Wage Updates

At this point, firms start hiring workers from the job market, albeit without exceeding the total supply of work Ls,
i.e.

`i(t) = `di (t) min

(
1,
Ls(t)

Ld(t)

)
; Ld(t) :=

∑

i

`di (t), (IV.3)

where `i is the real amount of work contracted by firm i. Workers are paid the same wage p0(t) independently of their
employer.7 Conventionally, we prescribe that wages are paid immediately upon hiring – regardless of any technical
unemployment in the future caused by shortages of inputs – which allows the household to compute its available
budget for the present period:

B(t) = S(t) + p0(t)
∑

i

`i(t). (IV.4)

The household’s demands for goods Cd
i (t) are computed in section IV D.

Trading can now start, whereby firms sell their production and buy the goods they need, in a way to satisfy the
constraint that the total amount of goods sold cannot exceed production plus inventory, viz.

Ci(t) +
∑

j

Qji(t) ≤ πi(t) + Iii(t) := Si(t). (IV.5)

If demand exceeds supply, buyers are satisfied proportionally to their posted demand, and so quantities Q that are
effectively exchanged are given by

Qji(t) = Qd
ji(t) min

(
1,

Si(t)

Di(t)

)
; Di(t) := Cd

i (t) +
∑

j

Qd
ji(t), (IV.6)

where Di(t) is the total demand for good i at time t. The equation for Ci(t) is slightly more convoluted because we
do not give households access to debt, see Eq. (IV.30) below.

At this point, firms have an exact knowledge of their earnings and expenses. Their profit at round t may now be
computed:

Pi(t) = pi(t)


∑

j

Qji(t) + Ci(t)


−


∑

j

pj(t)Qij(t) + p0(t)`i(t)


 := Gi(t)−Li(t), (IV.7)

Firms also know how much excess supply or demand they actually registered:

Ei(t) = Si(t)−Di(t). (IV.8)

Realised profits and supply/demand imbalances then generate price updates. We describe them exactly as in
Eq. (III.1a), which now reads:

log

(
pi(t+ 1)

pi(t)

)
= −2α

Ei(t)

Si(t) + Di(t)
− 2α′

Pi(t)

Gi(t) + Li(t)
, (IV.9)

7 Extending the model to firm-dependent wages would be interesting but requires one to move beyond a representative agent description
of the household sector.
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where now all quantities are known.8

Prices are updated because of tension between supply and demand. By the same token, tensions on the job market
are bound to lead to wage updates, which we postulate to be of the same form as for price updates, namely

log

(
p0(t+ 1)

p0(t)

)
= 2ω

Ld(t)− Ls(t)

Ld(t) + Ls(t)
, (IV.10)

meaning that excess demand of labour increases wages, and vice-versa. This rule implements a Phillips curve at each
time step [39, 40]. One could also use an asymmetric update rule, accounting for the fact that lowering nominal wages
is more difficult than raising them. Finally, one could also consider adding a direct coupling between the inflation of
the price of goods and wages, as an extra term in the right hand side of Eq. (IV.10).

3. Production

The last epoch corresponds to the start of production. Firm i uses the workforce `i, along with available quantities

Qa
ij that depend on exchanges Q, optimal inputs Q̂ and inventories I, as

Qa
ij(t) = Qij(t) + min

(
Iij , Q̂ij

)
. (IV.11)

Indeed, if the inventory I allows to provide for optimal input Q̂, then no demand is posted (see Eq. (IV.2)): Q = 0

and Qa = Q̂. Otherwise, the firm acquired a quantity Q that now adds to available stocks, and so Qa = Q + I ≤ Q̂.
Note that labour cannot be stored, and therefore Ii0 = 0 at all times.

Now that all of the available inputs Qa
ij and labour `i are known, the outputs are determined by the firms’ production

functions, which in the Leontief case with b = 1 entails:

πi(t+ 1) = zi(t) min

[
min
j

(
Qa
ij(t)

Jij

)
,
`i(t)

Ji0

]
. (IV.12)

The firms’ inventories of their own production is also updated, as

Iii(t+ 1) = e−σi


πi(t) + Iii(t)−

∑

j

Qji(t)


 , (IV.13)

where the decay factor σi measures the perishability of good i. For durable goods, σi � 1 and e−σi ≈ 1, whereas
σi � 1 and e−σi � 1 for perishable goods.

Furthermore, in the Leontief framework total production is limited by the scarcest input, which is therefore depleted
during production, leaving a fraction of the other inputs unused. We denote

j? = arg min
j

(
Qa
ij

Jij

)
,

so that we can write the fraction of inputs k 6= j? effectively used as

Qu
ik(t) =

Jik
Jij?

Qa
ij? . (IV.14)

The remainder of these unspent inputs goes to firm inventories, and their update may be written using Eq. (IV.11),
as

Iik(t+ 1) = e−σk (Qa
ik −Qu

ik) . (IV.15)

8 Since markets do not clear and profits are non zero, we choose symmetric normalisation factors involving the average of supply and
demand for the first term, and the average of sales and costs for the second.
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Finally, for numerical purposes, it is convenient to rescale new prices pi(t+ 1) by the new wage p0(t+ 1) to avoid
exponential growth (or decay) of prices induced by inflation (or deflation), effectively measuring prices in units of
wages. We therefore set:

pi(t+ 1) −→ pi(t+ 1)

p0(t+ 1)
; p0(t+ 1) −→ 1. (IV.16)

[Note that profits and savings should also be appropriately rescaled, when necessary, e.g. S(t+1)→ S(t+1)/p0(t+1),
etc.]

This concludes the third and last epoch of the time step. The process is then repeated at time t+1, with productions
πi(t+ 1) and prices pi(t+ 1).

To close the model, we now need to specify how firms estimate their future profits/losses and excess/deficit produc-
tion. The behaviour of households must also be spelled out, to allow for the determination of the demand of goods
and the supply of labour.

C. Expected Profits and Imbalances

We may write the expected profit of firm i as

Et[Pi] = pi(t)


∑

j

Et[Qji] + Et[Ci]


−


∑

j

pj(t)Et[Qij ] + p0(t)Et[`i]


 , (IV.17)

showing that in the planning phase firms must estimate future goods and labour demand, which we will denote
generically as Et[Q]. Similarly, the expected excess production is also a function of Et[Q]:

Et[Ei] = πi(t) + Iii(t)−
∑

j

Et[Qji]− Et[Ci]. (IV.18)

The simplest assumption we can adopt is that firms are sticky, and estimate all future demands to be equal to their
last observation (which follows the rationale that they produced in order to meet total demand), i.e.

Et[Q] = Qd(t− 1). (IV.19)

This is the rule that we will explore in the present paper, but some immediate generalisations come to mind: one
is that firms may factor in realized quantities Q(t− 1) in their estimate, and set

Et[Q] = λQd(t− 1) + (1− λ)Q(t− 1), (IV.20)

where λ ∈ [0, 1] is a parameter, set to λ = 1 henceforth in our “sticky” assumption.

The second possible generalisation is that firms may use a more sophisticated learning rule that allows them to
estimate Et[Q] using time-series analysis, the simplest of which is “constant gain learning” (equivalent to computing the
exponential moving average) of past realized demands. Trend-following, extrapolative rules may also be considered.
These extensions are beyond the scope of the present paper; at this stage, our ambition is to set up a minimal
consistent framework, free of numerical instabilities, that can be calibrated to micro-data.

D. Household Demand and Labour

1. Work-elastic Households

As in standard macroeconomic models, we assume that households are represented by a single representative agent
with a certain disutility for work, who seeks to maximize the following utility function9

U(t) =
∑

j

θj logCj(t)−
Γ

1 + ϕ

(
L(t)

L0

)1+ϕ

, (IV.21)

9 We restrict to a “myopic” optimisation here, that does not take into account the long-term forecasts and desires of the household.
Inter-temporal effects would require to add interest rates, which we completely disregard in the present study.
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where L(t) =
∑
j `j(t) :=

∑
j Qj0(t) is the total amount of work provided by the representative household. The

so-called Frisch elasticity index ϕ [41] gives a measure of the convexity of the disutility of work, L0 is the scale of the
amount of work that the household is able to provide and Γ is a parameter that can be set to unity without loss of
generality. In the limit ϕ → ∞, firms are indifferent to the amount of work provided L(t) < L0, but refuse to work
more than L0. With an utility function of this form, the household may then compute its optimal demand for good
i, Cd

i (t) which it will set as a consumption target for period t, and the optimal amount of labour Ls(t) it is willing to
provide to firms.

2. The optimization sequence

To compute the aforementioned quantities, the household needs to know its current savings S(t) and anticipate its
income for the next period. The expected utility is estimated with optimistic forecasts (i.e. consumption demand
will be met and available labour will be fully utilized). Wage p0(t) and prices pi(t), on the other hand, are all known
before the “Exchange and Update” stage, see IV B 2. Hence,

Et[U ] =
∑

i

θi logCd
i (t)− 1

1 + ϕ

(
Ls(t)

L0

)1+ϕ

, (IV.22)

with an expected budget constraint that reads10

∑

i

pi(t)C
d
i (t) = p0(t)Ls(t) + S(t) := Et[B], (IV.23)

where Et[B] is the expected (or in fact hoped for!) budget. For convenience, we denote as W0 = p0L0 the wage
associated to L0 work-hours.

The household optimizes its expected utility while enforcing the budget constraint using a Lagrange multiplier
µ(t)/W0, so that

Cd
i (t) = L0

θi
µ(t)

p0(t)

pi(t)
(IV.24a)

Ls(t) = L0 µ(t)1/ϕ. (IV.24b)

In order to find µ(t), one must enforce (IV.23). We find the following equation on µ(t):

µk(t) +
S(t)

W0(t)
µ(t) = θ̄, (IV.25)

with k = 1 + 1/ϕ and θ̄ =
∑
i θi. For instance, if ϕ =∞ (constant work offer Ls(t) = L0), we have

µ(t) =
θ̄W0(t)

W0(t) + S(t)
. (IV.26)

When ϕ = 1 (a common value found in the literature and corresponding to a quadratic work-disutility), we have

µ(t) =
1

2W0(t)

(√
S(t)2 + 4θ̄W0(t)2 − S(t)

)
. (IV.27)

We highlight that, because of possible unemployment, the household may want to consume more than it is able to
spend when Ld(t) < Ls(t).

A final word on the scaling behaviour of these quantities with N is in order. For large N we expect that the size of
the household will also be of order N . Noting that θ̄ is of the same order, one finds the following consistent scalings
if we assume that L0 ∼

√
N :

µ ∼
√
N ; Ls ∼ N ; Cd

i (t) ∼ 1, (IV.28)

meaning that total work-hours and total consumption are proportional to the size of the population, as it should be.

10 In a follow-up paper [42] we shall introduce precautionary savings and interest rates, which lead to the appearance of inflationary
equilibria.
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3. Confidence Effects

In the setup above, households consume regardless of the state of the economy. Although not necessary for the
purpose of the present paper, we believe it is important to introduce a notion of confidence in the economy by coupling
the consumption propensity to the unemployment level, taken as a proxy of consumer confidence. Hence we allow the
utility of consumption to vary as:

log

(
θi(t)

θ0i

)
= 2ω′

Ld(t)− Ls(t)

Ld(t) + Ls(t)
, (IV.29)

where θ0i are the baseline values for consumption preferences.

In a booming economy where demand for workforce is high, households will tend to consume more (increased θ’s);
whereas it will consume less in a failing economy with high unemployment.

4. Savings Update

Because we do not allow households to borrow, real consumption must be adjusted in the case of partial un-
employment. In this case, the available budget is necessarily smaller that what was hoped, leading to a realized
consumption:11

Cr
i (t) = Ci(t) min

(
1,

B(t)∑
j pj(t)Cj(t)

)
; Ci(t) = Cd

i (t) min

(
1,

Si(t)

Di(t)

)
, (IV.30)

with B(t) their available budget computed in (IV.4) . The difference between Ci(t) and Cr
i (t), if positive, is added to

the inventory Iii(t) of firm i. The households’ savings are then updated as:

S(t+ 1) = B(t)−
∑

i

pi(t)C
r
i (t). (IV.31)

E. Discussion

The above steps look rather tedious and considerably more complex than the simple logic behind our first “naive”
model. Nonetheless, they are quite natural when one decomposes all the stages of a real production process. But
more importantly, we have found that short-circuiting any of these steps leads to inconsistent dynamics with spurious
instabilities, reflecting that natural constraints are in fact violated.

An important difference with the naive version of section III is the large number of update rules that involve non-
linearities, such as those involving taking the maximum or minimum of two expressions. Furthermore, the number of
thumb rules used by firms and households to aid their decision has increased, and so has the number of parameters
that describe a given instance of our toy economy.

Therefore, and in spite of the fact that the naive model permits a reasonably good understanding of certain regions
of the parameter-space of the full model, we cannot reasonably attempt an exhaustive description using analytical
tools only. We must therefore resort to a numerical exploration of its properties, using computer simulations that are
described in detail in the pseudo-code provided in Appendix E. We also provide access to an open access simulation
tool that allows the reader to explore different configurations here: https://yakari.polytechnique.fr/dash.

11 An extension could be imagined, where workers borrow money to compensate the gap between the expected and realised budget, but
we do not consider this in the present version of our model.

https://yakari.polytechnique.fr/dash
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V. AN EXPLORATORY NUMERICAL STUDY

The following section is an early attempt to describe some of the very rich phenomenology this model can produce.
Because of the many possible parameter configurations we only scratch the surface here, and leave a more detailed
account for a later communication.

To facilitate reading this section, we will first recall the different parameters we can adjust. We will then explore
the different types of dynamical trajectories that can be observed in our toy economy, and classify them into different
“phases”. This idea comes from physics, where the macroscopic properties of a system can be split into different
regions where its aggregate behaviour is qualitatively the same. These regions only depend on the values taken by
a handful of parameters that describe the system; an eloquent example is that of water, which depending on the
pressure or temperature can be in either the liquid, solid or gas phase.

We will therefore present in the following “phase diagrams” that summarize the influence of the parameters on the
broad dynamical behaviour of our model, an idea that was already advocated for economic Agent-Based Modelling
in [26].

A. Summary of Parameters

The different parameters introduced in the previous sections may be split into two categories: static parameters,
describing the production network and the production function, and dynamic parameters, describing the evolution
of prices, labour and outputs. We provide an overview of them and of the typical values we assign to them in our
simulations below.

a. Static Parameters

1. Number of firms N – here N = 100.

2. Type of network – here a random regular directed network [43, 44], where each firm has the same number of
clients and suppliers d = 15.

3. CES production function – here a Leontief production function (q = 0+) with a return to scale parameter
b = 0.95.12

4. The smallest eigenvalue ε of the production matrix M, which for large values corresponds to a presumably
stable economy.

5. Firm inter-linkages Jij , which we all take to be 1 when firms i and j are linked and zero otherwise.

6. Firm productivities zi, first set to 1 and then adapted to adjust ε to take the required value.13

7. Household consumption preferences θ0i , modelled by iid uniform random variables rescaled to have
∑
i θ

0
i = 1.

8. Work disutility Frisch index, set to ϕ = 1 (quadratic disutility of labour) and scale of workforce set to L0 = 1.

9. The behavioural parameter λ, defined in Eq. (IV.20), is set to 1.

b. Dynamic Parameters

1. Parameters describing restoring forces: α, α′, β, β′, (see Eqs. (IV.1)-(IV.9)). We restrict ourselves to the case
β′ = α′ = β = α and scan for varying values of α.

2. Phillips curve parameter, relating wages to tensions in the job market: ω (see Eq. (IV.10)).

3. Confidence parameter, relating consumption propensities to unemployment: ω′ (see Eq. (IV.29)). For this study,
we take ω′ = ω.

12 Choosing b slightly below unity helps stabilising the dynamics and also prevents the relaxation time from diverging as the smallest
eigenvalue of the production matrix ε→ 0. An in-depth discussion of this point will be provided in a follow-up paper.

13 Modifying the productivity factors as z′ = z + ε−min Sp (M) makes the minimum eigenvalue of M equal to ε.
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4. Perishability parameters σi describing the speed of decay of good i, all taken as σi = σ except when otherwise
indicated.

These choices therefore reduce the number of parameters to explore to four: ε, α, ω and σ. We will now show how
they may lead to a very rich phenomenology.

B. Perturbations Around Equilibrium

As stressed above, the naive model section III C could be linearised, and lead to a complete analytical estimation of
the time needed to reach equilibrium. The non-linearities in the full-model, however, imply that perturbative analysis
leads at best to piecewise-linear equations.14

To be precise, it is possible to attempt to linearise the different update rules by writing δx(t) = xeq − x(t) for the
perturbed value of any quantity x and developing the different equations to lowest order in δ·. For example, this
procedure applied to the flows Qji reads:

δQji(t) = δQd
ji(t) + min

(
0,
δSi(t)− δDi(t)

ziγeq,i

)
. (V.1)

Depending on the value of δSi(t)−δDi(t), the system can be characterized by two different linear stability matrices.
As the system evolves in time, and even for very small fluctuations around equilibrium values, it may switch back
and forth between these two stability matrices, explaining some of the behaviour we observe.

We also stress that the model is well-defined even if we choose initial conditions very far from equilibrium. Prelim-
inary studies show that initial conditions well above equilibrium values (up to 6 orders of magnitude) may still lead
to an overall stable system. However, if the initial conditions are instead too small this can lead to divergences.

C. Phase Diagrams and Dynamical Types

For each set of values of the parameters (α, ω, σ, ε), we start from a random perturbation about equilibrium of
relative magnitude δ = 10−3, taking e.g. pi(t) = peq,i(1 + δu) with u uniform in [−1, 1].15 We then run the dynamics
for T = 5000 time-steps and consider only the last 2500 to classify the trajectory into one of several classes that are
detailed below.

In general, we observe five types of behaviour or “phases”: convergence towards the competitive equilibrium, con-
vergence towards deflationary equilibria, crises, business-cycle like oscillations or chaotic oscillations and divergence,
where the economy crashes after a finite number of time steps. Different phase diagrams corresponding to this clas-
sification can be seen on Figure 4 with ε in [100, 10, 1,−5], and the study and description of these phases is detailed
in the sections below.

We note in particular that:

• The region where the competitive equilibrium is reached shrinks as the economy approaches the instability ε→ 0
from above. When ε < 0, there is no equilibrium and only deflationary equilibria can be attained.

• For a fixed perishability σ one observes the following succession of phases as the restoring parameter α is in-
creased: divergence when α is too small, followed by deflationary equilibria, then the reaching of the competitive
equilibrium and finally cycles and chaos, corresponding to firms that are overly sensitive to imbalances.

• At the boundary between these phases, one can observe specific trajectories that we call crises, similar to the
“tipping points” and “dark corners” described in [26, 46] – see below.

14 This, as the general time-line framework outlined in section IV B, is a feature common to other ABMs, such as Mark-0 [26], or the one
recently developed in [45].

15 When ε < 0 and no competitive equilibrium can be defined, we start from random initial conditions between 1 and 2 for prices and
productions.
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FIG. 4: Phase diagrams in the plane (α, σ) for the same network economy, ω = 0.1 and different values of ε. The
color code is explained in the legends. The region where the competitive equilibrium state is stable shrinks when ε
decreases, and disappears when ε < 0 and deflationary equilibria take over. One also observes regions with cycles

and chaos, and crises. Finally, when restoring forces are to weak (small α) the economy crashes.

The trajectory we will use to classify the behaviour of our model is that of relative price differences δp(t) :=
p(t)/peq,i − 1.16 In order to provide more vivid illustrations of some of these dynamical types, we have made firms
slightly heterogeneous in their values of the parameters α and σ. In the figure captions below, the notation α, σ ∈ [A,B]
means that these quantities are chosen uniformly in [A,B], independently for each firm.

1. Relaxation towards competitive equilibrium

The most natural behaviour one would expect is for the economy to converge to a competitive equilibrium, where
all profits are zero and markets clear, as classically assumed in economics models.

Within the corresponding phase, convergence can either be purely exponential, or correspond to damped oscillations
or even damped chaos, see Fig. 5. The precise nature of the relaxation seems to depend on the relative time-scales
for prices and production updates.

16 The trajectories of produced quantities are qualitatively similar within each phase, except that, as expected, high prices correspond to
production troughs, and vice versa.
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FIG. 5: Relaxation towards the competitive equilibrium after a perturbation of magnitude δ = 10−3. Top:
Exponential relaxation for ε = 10, ω = ω′ = 0.2, α = α′ = β = β′ ∈ [0.6, 0.7] and σ ∈ [0.5, 0.6]. Middle: Damped

oscillations for ε = 1, ω = ω′ = 0.2, α = α′ = β = β′ ∈ [0.8, 0.9] and σ ∈ [0.2, 0.6]. Bottom: Damped chaotic
oscillations for ε = 100, ω = ω′ = 0.2, α = α′ = β = β′ ∈ [0.5, 0.6] and σ ∈ [0.2, 0.6]

2. Relaxation towards deflationary equilibrium

A very interesting feature of our model is the appearance of a different kind of equilibria, namely stationary points
where profits and excess demand are non-zero, but equal to a constant value. We call them “deflationary” equilibria
because prices synchronize with the inflation rate determined by the evolution of wages. This phase does not manifest
itself when there is no wage-induced inflation (ω = 0).

We denote by P̄∞
i and Ē∞i the rescaled values of profits and excess supply/demand in the stationary state. These

must then verify (see Eqs. (IV.1, IV.9)):

αĒ∞i + α′P̄∞
i = ω

Ls,∞ − Ld,∞

Ls,∞ + Ld,∞

β′E∞[Ēi]− βE∞[P̄i] = 0.

(V.2)

In this kind of equilibrium, forecasts of profits and imbalances are typically different from their realized counterpart.
This discrepancy is mostly caused by an error in the forecast of realized consumptions introduced by a positive



21

0 500 1000 1500 2000 2500 3000

t

0.0

0.5

1.0

1.5

2.0

δp
(t

)

×105

FIG. 6: Example of a deflationary equilibrium with ε = 1 and heterogeneous productivity factors. Note that we
show here real prices (deflated by wages). We chose ω = ω′ = 0.2, α = α′ = β = β′ ∈ [0.5, 0.6] and σ = 0.6.

stationary imbalance in the labour market.

In contrast with the competitive equilibrium, which is independent of the dynamical parameter α, α′, β, β′, de-
flationary equilibria are characterized by prices and production levels that depend on the parametrisation of the
dynamics. Explicit expressions for the stationary prices/productions are, however, difficult to compute analytically.

Figure 6 shows an example of the convergence of inflation-adjusted prices towards their stationary values. In this
preliminary study we have found equilibria to be rather stable.

These deflationary equilibria disappear when ω = 0. The corresponding phase diagrams in that case are similar,
when ε > 0, to those of Fig. 4, but with a wider region corresponding to the competitive equilibrium phase. When
when ε < 0, the only possibilities are cycles/chaos (yellow phase) or a complete crash (black phase).

We underline finally that we have not found, within the present specification of the model, inflationary equilibria
where the demand for labour exceeds the supply (although one can easily produce some non-Phillips inflation in
competitive equilibria). However, introducing precautionary savings that yield non-zero interest rate leads to new
phenomena, including a whole region where inflationary equilibria are found.

3. Oscillatory patterns

Owing to the strongly non-linear dynamics defining the model, it is natural to expect that some choices of the
parameters lead – as in generic dynamical systems – to oscillations or to chaotic dynamics, which is indeed what we
observe in a whole region of parameter space.

The first interesting oscillatory behaviour is that of spontaneously emerging business cycles, as shown in Fig. 7.
They can be either synchronized (Fig. 7-a) or completely unsynchronized (Fig. 7-b), depending on the values of ω
and ε, and the relative values of α and β′. Chaotic oscillations also emerge (see Fig. 7-c) [42].

We stress that such persistent oscillations, observed in the rather large portions of the phase diagram, are not due
to external perturbations, absent in these simulations (compare with section III D where small external shocks are
amplified by the proximity of an instability). Rather, this is a region of the phase diagram where the volatility of the
economy is purely endogenous (see [31] for similar observations). This indicates yet another scenario to explain the
“small shock, large business cycle” puzzle [3]: either because of the proximity of an unstable point, as in section III D,
or because of the existence of self-sustained oscillations/chaos, as reported here and in many previous work in which
a dynamical systems approach to economics was advocated, see e.g. [10, 16, 17, 47, 48] and also [13, 21, 26, 49] in the
context of ABMs.



22

2000 2020 2040 2060 2080 2100

0.0

0.5

1.0

1.5

δp
(t

)

×10−1

2000 2025 2050 2075 2100 2125 2150 2175 2200

0.0

0.5

1.0

δp
(t

)

2400 2450 2500 2550 2600 2650 2700 2750 2800

t

0

2

4

6

δp
(t

)

×10−1

FIG. 7: Different types of price (or production) oscillations after an initial perturbation of magnitude δ = 10−3 from
equilibrium. Top: Synchronized business cycles for ε = 100, ω = ω′ = 0.1, α = α′ = β = β′ ∈ [0.4, 0.5], σ ∈ [0.1, 0.4].

Middle: Unsynchronized oscillations for ε = 100, ω = ω′ = 0.2, α = α′ = β ∈ [0.5, 0.8], σ=0.2; β′ = 1.3α. Bottom:
Chaotic oscillations for the same parameters except ε = 1 and β′ = 0.2α.

4. Intermittent Crises

This additional dynamical phase is represented in Figure 8. Here, a fast relaxation to equilibrium is followed by
spontaneous destabilisation. The system enters a cycle of price inflation and plummeting production. This is most
likely due to a switch between the stability matrices of the system, as discussed above in Eq. (V.1). The eigenvalues
of the first matrix all have negative real parts, whereas the second has at least one eigenvalue with a positive real
part, and therefore an unstable direction.

After this, non-linear saturation effects take over to quell the dynamics, and the system flows back towards equi-
librium before the next crisis appears. These acute endogenous crises are one of the most interesting aspects of our
model; they also appear in other Agent Based Models, see [26, 50] where they result from a generic synchronisation
mechanism, see [51].

D. The unstable phase ε < 0

A weakness of the naive model of section III was that it consistently produced divergent trajectories whenever
ε < 0. Our new model produces instead a wide range of behaviours in this case, from deflationary equilibria to rapid
oscillations as illustrated on Figure 9. Of course, since there is no well-defined equilibrium, the convergent phase is
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FIG. 8: Crises-like price pattern for ε = 100, ω = ω′ = 0.1, α = α′ = β = β′ = 1, σ =∞.
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FIG. 9: Different possible price (or production) dynamics in the unstable phase ε = −5, for initial conditions for
prices and productions randomly chosen between 1 and 2 times the equilibrium values. Top: Rapid oscillations for

ω = ω′ = 0.02, α = α′ = β = β′ = 0.9, σ = 0.2. Bottom: deflationary equilibrium for ω = ω′ = 0.02,
α = α′ = β ∈ [0.8, 0.9], σ ∈ [0.2, 0.8].

now proscribed.

E. The Role of Perishability

Finally, we would like to illustrate the crucial role of inventories in determining the type of dynamics we observe.

As shown in the phase diagrams of Figure 10 in the (α, ω) plane at fixed σ, goods that perish immediately (σ =∞)
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FIG. 10: Phase diagrams for non-perishable (σ = 0, left column) and immediately perishable (σ =∞, right column)
goods and for different values of ε (top: ε = 100, middle: ε = 10, bottom: ε = 1).

lead to simple relaxation towards equilibrium (deflationary/competitive) or to a divergence; on the other hand, non-
perishable goods lead to oscillating, volatile economies. Intuitively, if firm i has a stock Iik of good k, it will decrease
its demand to firm k, leading to a decrease of its production. This lasts until all stocks are exhausted. A phase of
booming demands and increase in production follows, firms’ stocks begin to pile up again and the economy enters
another cycle. This is similar to the well-known “bull-whip effect” [52], where inventories are known to lead to
instability effects – these instabilities do indeed disappear completely when σ =∞ (right column of Fig. 10).
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VI. SUMMARY & CONCLUSION

Let us first summarize the main messages of this paper. We started from the observation made in [28] that
generic input-output network models cannot reach an competitive equilibrium state when productivity is too low,
or connectivity too high, or substitutability too low. This begs the question: what happens to the economy in such
cases?

We argued that the answer to such a question is necessarily of dynamical nature, and demands an extension of
the classical equilibrium framework (based on market-clearing and zero-profits requirements) to out-of-equilibrium
equations of motion, that aim to describe how imbalances regress in time and how fast equilibrium is reached – if it
is reached at all.

We first proposed what we called a “naive” model, based on the idea that forces driving the economy back to
equilibrium are linear in the imbalances (profits and supply/demand imbalances). This leads to interesting non-linear
differential equations for prices and productions which predict, among other things, that the equilibration time diverges
as the network economy approaches the instability point at which competitive equilibrium is no longer realisable. We
argued that this long time scale also leads to excess volatility, as the impact of exogenous shocks accumulates in the
system.

We then pointed out that the naive model is numerically unstable as soon as perturbations away from equilibrium
are not very small. This instability was traced back to the fact that the model does not correctly factor in physical
constraints: excess demand cannot be satisfied, excess supply must be stored, consumption can only start after goods
are produced, wages can only be spent after being paid, etc. Accounting for all these constraints within a consistent
model considerably complexifies the resulting equations, but leads to a numerically stable model which can be used
to explore a large variety of possible dynamical behaviour, even far from the competitive equilibrium. In fact, the
model remains well-behaved even in the region of parameters where equilibrium is un-realisable.

A preliminary investigation of the full model leads to rich phase diagrams, which reveal that

• The competitive equilibrium attracts the dynamics only in a restricted range of parameters – the speed at which
firms adapt to imbalances must neither be too slow nor too fast.

• When the adaptation speed is too large, coordination breaks down and the economy enters a phase with periodic
or chaotic business cycles of purely endogenous origin, as was also reported in [31].

• Interestingly, other types of equilibria exist, with a negative inflation but with stationary real prices and produc-
tion different from those pertaining to the competitive equilibrium. In particular, markets – including the job
market – do not clear in such situations: labour supply is always larger than labour demand. For inflationary
equilibria to appear (where labour demand is larger than labor supply), we need to introduce precautionary
savings and interest rates.

• Finally, close to the boundaries between these phases one often observes a regime of intermittent crises, with
long periods of quasi-equilibrium interrupted by bursts of inflation.

Hence, our model suggests two distinct routes to excess volatility (or “large business cycles”): purely endogenous
cycles, resulting from non-linearities and feedback, or persistence and amplification of exogenous shocks, governed by
the proximity of an instability point that leads to long relaxation times.

It should also be borne in mind that many relevant features of the real economy are left out of the present version of
the model. In particular, while firms are allowed to make losses, we have not accounted to the cost of credit that this
entails, nor have we introduced a bankruptcy mechanism when firms go too deep into debt. This would require moving
from a static network of firms, as considered throughout this work, to a dynamically evolving network that rewires
as some firms go bankrupt and others are created. In fact, another motivation for moving from a static framework to
a dynamic model is to be able to describe possible cascades of bankruptcies mediated by the input-output network,
much as cascades of defaults can occur in banking networks.

The household sector also needs to be better described, moving away from the representative household assumption
and introducing wage inequalities, confidence effects and debt.

In fact, our dynamical model can be seen as a hybrid between traditional economic models (describing the static
problem) and Agent Based Models, where extra reasonable but ad hoc rules are implemented to account for out-of-
equilibrium, dynamical aspects. As we have shown, in some swath of parameters, the classical competitive equilibrium
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is reached. If reached fast enough, the “adiabatic” assumption used in most classical descriptions will hold, whereas
when the equilibration time is long (or even infinite) new phenomena appear. We hope that this possibility of
recovering standard results in some limiting cases will make the ABM approach more palatable to economists, and
at the same time elicit the inherent limits of general equilibrium ideas. Conversely, including firm network effects in
ABMs like Mark-0 [26, 46] along the lines of the present model is a promising path.

An interesting feature of our approach is the possibility of using highly disaggregated data on individual firms and
prices (for example through the “Billion Price Project” [53]) to calibrate the model and, hopefully, use it as a powerful
descriptive and predictive tool. We look forward to working in that direction in the near future.
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NOTATIONS

In this section, we summarize all the key notations that are used throughout the paper.

Production function and networks

? q is the elasticity of substitution between inputs. The case q = 0 corresponds to a Leontief production function
where inputs are not substitutable to one another whereas q = ∞ corresponds to a Cobb-Douglas production
function where inputs are fully substitutable.

? b is the return-to-scale parameter.

? J ∈ MN,N+1 (R) is the input-output matrix. Its entries Jij denote the amount of inputs made by j needed by
i to produce one unit of its good, and therefore defines a weighed adjacency matrix and an interaction network.
Conventionally, the input j = 0 corresponds to labour and we use the notation Ji0 = Vi.

? a ∈ MN,N+1 (R) is the substitution matrix. Its entries aij and aik indicate the ease with which firm i can
replace an input k with another input j. For example, ai0 = 0 determines how labour may substitute other
inputs.

? Λ ∈ MN,N+1 (R) = aqζ ◦ Jζ is the aggregate matrix for the Constant-Elasticity of Substitution production
function.

? M = ∆ (zi)−Λ is the network matrix with the productivity factors of the firms on the diagonal. We implicitly
cross out the first column of Λ.

? ε is the smallest eigenvalue of the network matrix.

Firms

? N is the number of firms.

? zi is the productivity factor of firm i.

? α is the log-elasticity of prices’ growth rates against production surplus.

? α′ is the log-elasticity of prices’ growth rates against profits.
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? β is the log-elasticity of productions’ growth rates against profits.

? β′ is the log-elasticity of productions’ growth rates against production surplus.

? ω is the log-elasticity of wage’s growth rate against labor market tensions.

? σi are the depreciation parameters of goods.

? pi(t) ∈ RN is the price of good i time t.

? p0(t) is the common wage used to pay the household at time t.

? πi(t) := ziγi(t) is the production of firm i at time t along with the corresponding production levels γi(t) at time
t.

? π̂i(t) := ziγ̂i(t) is the targeted productions by firm i at time t along with the corresponding targeted production
level γ̂i(t) at time t.

? Iij(t) ∈MN (R) are the inventories. The diagonal terms Iii(t) correspond to the inventory of a firms own good
whereas Iij(t) correspond to inventories of a firms’ inputs.

? Gi(t), Li(t), Si(t) and Di(t) correspond respectively to the proceeds of sales (”gains”), the production costs
(”losses”), the supplies and the demand for each firm at time t.

? Pi(t) := Gi(t)−Li(t) are each firm’s realized profits at time t.

? Ei(t) := Si(t)−Di(t) are each firm’s production surplus at time t.

? Q̂ij(t) is the quantity of good j that minimizes the costs of firm i given a certain production target and a

production function. Q̂i0(t) := ̂̀
i(t) corresponds to the optimal amount of work required.

? Qd
ij(t) is the quantity of input j that is demanded by firm i to firm j. Qd

i0(t) := `di (t) corresponds to the
demanded amount of work.

? Qij(t) is the quantity of input j that is effectively exchanged. Qi0(t) := `i(t) corresponds to the amount of work
the household is hired to do for firm i.

? Qa
ij(t) is the quantity of input j that is available for production. Qa

i0(t) := `ai (t) corresponds to the available
workforce for production.

? Qu
ij(t) is the quantity of input j that effectively used for production. Qu

i0(t) := `ui (t) corresponds to the available
workforce for production.

? λ is a behavioral parameter determining how firms forecast their future exchanges.

Household

? θi is the consumption preference of the household for good i.

? θ̄ =
∑
i θi.

? L0 is the nominal number of hours that the household is willing to work.

? Γ is the aversion to work parameter.

? ϕ is the convexity-to-work parameter.

? ω′ is a consumption confidence parameter.

? U(t) is the utility of the household at time t.

? Ls(t) is the available supply of work at time t.

? Ld(t) is the total demand for work at time t.

? L(t) is the actual amount of work done at time t.

? Cd
i (t) is the demanded consumption at time t.

? Cr
i (t) is the realized consumption at time t.

? B(t) is the budget at time t.

? S(t) are the savings at time t.
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Appendix A: General Equilibrium Conditions

In this appendix, we show the computations that lead to the equilibrium equations on prices and production levels
in the case of a general CES production function and a non-constant return-to-scale b.

1. Case q < +∞

We first enforce the market clearing condition

ziγeq,i =

N∑

j=1

Qeq,ji + Ceq,i, (A.1)

and inject it into the zero-profit condition using (II.3). We can deduce a nicer expression for the quantity pneteq,i =∑N
j=0 Λijp

ζ
eq,j at equilibrium:

zipeq,iγeq,i =

N∑

j=1

Λaijp
ζ
eq,j

(
pneteq,i

)q
γ
1/b
eq,i ⇐⇒ zipeq,iγ

b−1
b

eq,i =
(
pneteq,i

)q∑

j

Λijp
ζ
eq,j

⇐⇒
(
pneteq,i

)q+1
= zipeq,iγ

b−1
b

eq,i

⇐⇒ pneteq,i =
(
zipeq,iγ

b−1
b

eq,i

)ζ
,

and therefore a nicer expression for the exchanged quantities

Qeqij = Λijp
−qζ
eq,jz

qζ
i p

qζ
eq,iγ

ζ(b−1)+1
b

eq,i = zqζi Λaij

(
peq,i
peq,j

)qζ
γ
ζ bq+1

b
eq,i . (A.2)

Using the null budget condition we can retrieve the equilibrium consumption

Ceqi =
θi

θ̄
ϕ

1+ϕΓ
1

1+ϕ

L0

peq,i
:=

κi
peq,i

, (A.3)

so that we have every ingredients to get closed form equations on prices and production levels. We express (A.2) and
(A.3) back into the the zero profit condition to retrieve the first equilibrium equation:

∀i, zipeq,iγeq,i −
N∑

j=1

peq,jz
qζ
i Λij

(
peq,i
peq,j

)qζ
γ
ζ bq+1

b
eq,i = zqζi Λai0p

qζ
eq,iγ

ζ bq+1
b

eq,i

⇐⇒ ∀i, zζi pζeq,iγ
ζ b−1

b
eq,i −

N∑

j=1

Λijp
ζ
eq,j = Λi0

⇐⇒ ∀i, zζi pζeq,i −
N∑

j=1

Λijp
ζ
eq,j = Λi0 + zζi p

ζ
eq,i

(
1− γζ

b−1
b

eq,i

)

⇐⇒ Mpeq
ζ = V + zζ ◦ peq

ζ ◦
(

1− γeq
ζ b−1

b

)
,
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and then in the market clearing condition to retrieve the second equilibrium equation:

∀i, ziγeq,i −
N∑

j=1

zqζj Λji

(
peq,j
peq,i

)qζ
γ
ζ bq+1

b
eq,j =

κi
peq,i

⇐⇒ ∀i, ziγeq,ipqζeq,i −
N∑

j=1

zqζj Λjip
qζ
eq,jγ

ζ bq+1
b

eq,j =
κi

pζeq,i

⇐⇒ ∀i, zζi γeq,izqζi pqζeq,i −
N∑
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Λjiz
qζ
j p

qζ
eq,jγ
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b
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j p
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+ zip
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peq
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+ z ◦ peq
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(
1− γeq
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b

)
.

In the case where q → 0+ and b = 1, one can check that (II.6) is retrieved.

2. Case q = +∞

To retrieve the equations in the case q = +∞, we need to take this limit in (II.3). It yields

Q̂il = aqζil J
ζ
ilp
−qζ
l
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j=0

aqζij J
ζ
ijp

ζ
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We can then express the quantity ziγ
b−1
b

eq,i peq,i through the zero profit condition as

ziγ
b−1
b

eq,i peq,i =

N∏

j=0
Jij 6=0

(
Jij
aij

peq,j

)
. (A.4)

Using the market clearing condition, we can get the first equilibrium equation in the Cobb-Douglas case:

∀i, ziγeq,i =
κi
peq,i

+
∑

j

ajip
−1
eq,iγ

1/b
eq,j

N∏

j=0
Jij 6=0

(
Jij
aij

peq,j

)
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(
IN − at

)
z ◦ γeq ◦ peq = κ

⇐⇒ z ◦ γeq ◦ peq =
(
IN − at

)−1
κ.

To get the second equation, we inject the previous into (A.4) and take the logarithm. It reads

∀i, log ziγeq,ipeq,i −
1

b
log γeq,i =

N∑

l=1
Jil 6=0

ail log
Jil
ail

+

N∑

l=1
Jil 6=0

ail log peq,i
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b
log
[(
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κ
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i
+

1

b
log peq,i +

1

b
log zi =

N∑
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Jil 6=0

ail log
Jil
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+
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ail log peq,i
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(

1

b
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)
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b

log
(
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κ− 1

b
log z + h.

where hi =
∑N

l=1
Jil 6=0

ail log Jil
ail

.

Appendix B: Relaxation Time for the Naive Model

The non-linear dynamics of the naive model are given by (III.4). In this Appendix, we derive the relaxation time
of the system in various limits.

1. Linearisation of the dynamics

To linearise the system ,we write pi(t) = peq,i + δpi(t) and γi(t) = γeq,i + δγi(t) and inject these expressions into
(III.4). After a few computations, we establish the following linear equation in the variable U(t) = (δp(t), δγ(t))t to
first order:

dU

dt
=

(
D1 D2

D3 D4

)
U(t) := DU(t), (B.1)

where the different blocks of the matrix are

D1 = −αµ∆

(
θi

ziγeq,ipeq,i

)
− α′∆

(
z−1i
)
M D2 = −α∆

(
peq,i
ziγeq,i

)
Mt

D3 = β∆

(
γeq,i
zipeq,i

)
M− β′µ∆

(
θi

zip2eq,i

)
D4 = −β′∆

(
z−1i
)
Mt.

(B.2)
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2. Relaxation time in the high productivity regime

In this section, we assume that the productivity factors are large enough to ignore interactions between firms. In
this regime, firms are efficient enough so that the actual amount of inputs does not matter in the final production. In
this limit, we can give approximate expressions for the equilibrium prices and productions

peq,i =
Vi
zi

(B.3a)

γeq,i =
µθi
Vi
. (B.3b)

Similarly, we approximate each block of the stability matrix:

D1 ≈
zi→∞

−(α+ α′)IN D2 ≈
zi→∞

−α∆

(
V 2
i

ziµθi

)

D3 ≈
zi→∞

(β − β′)∆
(
ziµθi
V 2
i

)
D4 ≈

zi→∞
−β′IN ,

(B.4)

and deduce the spectrum of the D by computing its characteristic polynomial and setting it to 0:

det (σI2N − D) =

∣∣∣∣
σIN −D1 −D2

−D3 σIN −D4

∣∣∣∣
≈

zi→∞
det ((σ + α+ α′) (σ + β′) IN + α(β − β′)IN )

=
(
σ2 + σ(α+ α′ + β′) + αβ + α′β′

)N

= 0.

Solving this equation yields two eigenvalues σ±, both with degeneracy N , that read

σ± =
1

2
×
{
−α′ − β′ − α±

√
(α′ + β′ + α)2 − 4(αβ + α′β′) if (α′ + β′ + α)2 > 4(αβ + α′β′)

−α′ − β′ − α± i
√

4(αβ + α′β′)− (α′ + β′ + α)2 if (α′ + β′ + α)2 < 4(αβ + α′β′)
. (B.5)

This in turn lets us deduce the relaxation time:

τrelax = 2×
{

(α′ + β′ + α−
√

(α′ + β′ + α)2 − 4(αβ + α′β′))−1 if (α′ + β′ + α)2 > 4(αβ + α′β′)
(α′ + β′ + α)−1 if (α′ + β′ + α)2 ≥ 4(αβ + α′β′)

. (B.6)

3. Perturbation expansion in ε for D

Studying the behaviour of D as ε → 0+ requires understanding the behaviour of
(
M,peq,γeq

)
in that limit. We

now introduce the matrix J̃ = ∆ (zmax − zi) + J and denote by ρν (resp. |rν〉, 〈`ν |)17 its eigenvalues (resp. right/left
eigenvectors) ordered by their real parts. The Perron-Froebenius theorem implies that the top eigenvalue ρN is real,
simple and associated to a full and positive eigenvector. We next use the following spectral representation of the
matrix M:

M =
(
ρNIN − J̃

)
+ εIN (B.7)

M−1 =
1

ε
|rN 〉 〈`N |+

N−1∑

ν=1

1

ρN − ρν + ε
|rν〉 〈`ν |

=
1

ε
|rN 〉 〈`N |+

∞∑

k=0

(−ε)k
N−1∑

ν=1

1

(ρN − ρν)k+1
|rν〉 〈`ν | ,

(B.8)

17 We use here Dirac bra-ket notation, where |v〉 represents a column vector and 〈v| a row vector.
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which lets us express the equilibrium prices and outputs as well as D. We also use the notation M0 to refer to the
network matrix when ε = 0. This matrix is singular and verifies

M0 |rN 〉 = 0 , Mt
0 |`N 〉 = 0. (B.9)

Expanding in ε and neglecting factors of order ε4 and higher gives the following for the blocks of the stability
matrix:

D1 = D
(0)
1 + εD

(1)
1 + ε2D

(2)
1 + ε3D

(3)
1 D2 =

1

ε
D

(−1)
2 + D

(0)
2 + εD

(1)
2 + ε2D

(2)
2 + ε3D

(3)
2

D3 = εD
(1)
3 + ε2D

(2)
3 + ε3D

(3)
3 D4 = D

(0)
4 + εD

(1)
4 + ε2D

(2)
4 + ε3D

(3)
4 ,

(B.10)

where the exact definition of the perturbation terms D
(l)
i is given in the Appendix C. To ease computations and give

closed-form results, we consider an undirected network (symmetric M) with homogeneous productivity factors. The
qualitative results are however unchanged when considering more general networks. In this setting, the eigenvectors
of M are denoted by |eν〉.

4. Marginal stability for ε = 0

Interestingly enough, although the upper-right block of D diverges as ε→ 0, its spectrum converges to a finite limit.
To see this, we use the block determinant formula

∣∣∣∣
A B
C D

∣∣∣∣ = det (AD−BC) ,

for same-size matrices, where the commutator [C,D] = CD −DC = 0. In our case, we need [D3,D4] = 0 which is
true only in the limit ε = 0. We can then write:18

det (σI2N − D) ≈
ε→0

det
((
σIN −D

(0
1

)(
σIN −D

(0
4

)
−D

(−1)
2 D

(1)
3

)

= det

((
σIN +

α′

ρN
M0

)(
σIN +

β′

ρN
M0

)
+
αβ

ρ2N
M2

0

)

= det

(
σ2IN + σ

α′ + β′

ρN
M0 +

αβ + α′β′

ρ2N
M2

0

)

=

N∏

ν=1

(
σ2 + σ

α′ + β′

ρN
(ρN − ρν) +

αβ + α′β′

ρ2N
(ρN − ρν)2

)

= σ2
∏

ν 6=N

(
σ2 + σ(α′ + β′)

(
1− ρν

ρN

)
+ (αβ + α′β′)

(
1− ρν

ρN

)2
)
.

Each factor in this product yields two eigenvalues:

• If (α′ − β′)2 > 4αβ then

σν± =
1

2

(
−α′ − β′ ±

√
(α′ + β′)2 − 4(αβ + α′β′)

)(
1− ρν

ρN

)
, (B.11)

• If (α′ − β′)2 < 4αβ then

σν± =
1

2

(
−α′ − β′ ± i

√
4(αβ + α′β′)− (α′ + β′)2

)(
1− ρν

ρN

)
, (B.12)

18 We do not need to consider terms of order one in the commutator because
[
D

(1)
3 ,D

(0)
4

]
= 0, see Appendix C.
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• If (α′ − β′)2 = 4αβ then

σν0 = −α
′ + β′

2

(
1− ρν

ρN

)
. (B.13)

The trailing factor shows that 0 is an eigenvalue of D (for ν = N), twice degenerated as ε→ 0. We deduce that the
system exhibits marginal stability in this limit. Figure 11 shows the empirical distribution of eigenvalues of D and
the corresponding theoretical predictions.
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FIG. 11: Spectrum of the continuous stability matrix for N = 1000 firms on a d-regular undirected network with
d = 3. Top: Case (α′ − β′)2 < 4αβ. Bottom: (α′ − β′)2 > 4αβ. The blue histogram gives the distribution of

eigenvalues obtained through numerical diagonalizations of D. The red line is the thermodynamic computation
accounting for (B.12) and (B.11) using the McKay density for the eigenvalues of a random d-regular graph [43].

5. Relaxation time in the limit ε→ 0

We have thus far shown that our system exhibits marginal stability at ε = 0. We now prove that the relaxation
time of the system behaves as τrelax ∼ ε−1. To this end, we use analytical perturbation theory as described in [54],
which in our setting reduces to the ε-perturbation of the characteristic polynomial of D(0)19 as ε goes away from 0.
This characteristic polynomial is given by

χ(σ, 0) = σ2
N∏

ν=1

(
σ − σν+

) (
σ − σν−

)
, (B.14)

with σν± given in the previous section.

19 We have done a slight abuse of notation, since D(0) is not formally defined because of the diverging upper right block.
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We now try to find a perturbation of the σ2 term to retrieve the perturbation on σN± = 0. Using analytical
perturbation theory, we see that (ε, σ) = (0, 0) is a splitting point under the perturbation D(ε) (ε = 0 is a multiple
point – since D has at least one multiple root for ε = 0 – and σN± = 0 is a multiple root.) In this setting, σN± = 0
splits under the perturbation D(ε) to give 2 perturbed eigenvalues. Henceforth, for small enough ε, the prime factor
σ2 of χ(σ, 0) is expressed as a second order polynomial whose coefficients depend on ε.

We may write

p0(σ) := σ2 D(ε)−→ p0(σ, ε) := σ2(1 + a
(1)
2 ε+ a

(2)
2 ε2 + · · · ) + σ(a

(1)
1 ε+ a

(2)
1 ε2 + · · · ) + a

(1)
0 ε+ a

(2)
0 ε2 + · · · .

This expansion makes sure that p0(σ, ε) −→
ε→0

p0(σ). Moreover, at least one of the a
(i)
0 is non-zero. Otherwise we would

be able to factor out σ in p0(σ, ε), meaning that for small enough (but non zero) ε, 0 ∈ Sp(D(ε)) which we know to
be false because the system is stable for ε > 0.

Furthermore, we know that the splitting behaviour of σN± = 0 is imposed, ensuring that the discriminant of p0(σ, ε)
cannot vanish (leading to a multiple root), which yields another condition on the coefficients. Finally, since we are
looking at complex roots in general, p0(σ, ε) will always factor into two irreducible and normalized polynomials of

degree 1. This ensures that ∀i ≥ 1, a
(i)
2 = 0 and that a

(1)
0 = 0.

This last point is not so straightforward and warrants an explanation. From [54], the Puiseux series for the perturbed
eigenvalues σNα(ε) can be written as

σNα(ε) =

∞∑

x=1

bNαxε
x/gNα , α = 1, 2,

where gNα is the degree of the polynomial from which the root σNα is extracted. In our setting gNα = 1 meaning
that the first perturbation to σNα is of order ε. Now, we also know that σNα is obtained by solving the second order
equation p0(σ, ε) = 0. This means that both roots read

σnα = o(ε) + κα
√

∆.

We may now write ∆ as

∆ = o(ε2)− 4a
(1)
0 ε,

so that, if a
(1)
0 6= 0, the dominant term of σNα will be of order o(

√
ε) which contradicts the previous analysis.

Finally, we can attempting looking for a perturbation resembling

p0(σ) := σ2 D(ε)−→ p0(σ, ε) := σ2 + σ(a
(1)
1 ε+ a

(2)
1 ε2 + · · · ) + a

(2)
0 ε2 + · · · .

To determine the different terms in this expansion, we re-use the determinant computation that we carried in the
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previous section, but keeping now terms up to order ε2. This yields:

det (σI2N − D) =

∣∣∣∣
σIN −D1 −D2

−D3 σIN −D4

∣∣∣∣
≈
ε→0

det ((σIN −D1)(σIN −D4)−D2D3)

= det


σ

2IN − σ
(
D

(0)
1 + D

(0)
4

)
+ D

(0)
1 D

(0)
4 −D

(−1)
2 D

(1)
3

︸ ︷︷ ︸
Σ(0)(σ)

+ ε


−σ(D

(1)
1 + D

(1)
4 ) + D

(0)
1 D

(1)
4 + D

(1)
1 D

(0)
4 −D

(−1)
2 D

(2)
3 −D

(0)
2 D

(1)
3︸ ︷︷ ︸

Σ(1)(σ)




+ ε2


−σ(D

(2)
1 + D

(2)
4 ) + D

(0)
1 D

(2)
4 + D

(1)
1 D

(1)
4 + D

(0)
1 D

(1)
4 −D

(−1)
2 D

(3)
3 −D

(0)
2 D

(2)
3 −D

(1)
2 D

(1)
3︸ ︷︷ ︸

Σ(2)(σ)







≈
ε→0

det Σ(0)(σ) + εTr

(
Com

(
Σ(0)

)t
Σ(1)(σ)

)
+ ε2Tr

(
Com

(
Σ(0)

)t
(σ)Σ(2)(σ)

)

+ ε2

(
Tr

(
Com

(
Σ(0)

)t
(σ)Σ(1)(σ)

))2

− Tr

((
Com

(
Σ(0)

)t
(σ)Σ(1)(σ)

)2
)

2 det Σ(0)(σ)
.

The constant term det Σ(0)(σ) is the characteristic polynomial of D for ε = 0 so that det Σ(0)(σ) = χ(σ, 0). Similarly,
it is easy to prove that, for a diagonalizable matrix A with eigenvalues λ and associated eigenvector |λ〉, the matrix
Com (A) can be diagonalized in the same basis and reads

Com (A) =
∑

λ


∏

λ′ 6=λ

λ′


 |λ〉 〈λ| . (B.15)

Using this lemma, we can write

Com
(
Σ(0)(σ)

)
=


∏

ν 6=N

(
σ − σν+

) (
σ − σν−

)

 |eN 〉 〈eN |+

∑

ν 6=N


σ2

∏

µ6=ν,N

(
σ − σµ+

) (
σ − σµ−

)

 |eν〉 〈eν | . (B.16)

We now develop each trace term onto the eigenbasis of Com
(
Σ(0)(σ)

)
. From now on, we drop the σ dependencies

of the Σ matrices but bear in mind that these matrices are polynomials of order one in σ. The first trace reads

Tr

(
Com

(
Σ(0)

)t
Σ(1)

)
=


∏

ν 6=N

(
σ − σν+

) (
σ − σν−

)

 〈eN |Σ(1) |eN 〉

+
∑

ν 6=N


σ2

∏

µ6=ν,N

(
σ − σµ+

) (
σ − σµ−

)

 〈eν |Σ(1) |eν〉 .

Only the first term is of interest for us and we can use the explicit forms of the blocks of D to find

〈eN |Σ(1) |eN 〉 = σ 〈eN |
(
D

(1)
1 + D

(1)
4

)
|eN 〉

= − σ

ρN
(α+ α′ + β′).
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The same computation can be carried out for the second trace term,

〈eN |Σ(2) |eN 〉 = σ 〈eN |
(
D

(2)
1 + D

(2)
4

)
|eN 〉+ 〈eN |D(1)

1 D
(1)
4 |eN 〉 − 〈eN |D

(0)
2 D

(2)
3 |eN 〉

=
σ

ρ2N
(α′ + β′)− α′β′ + αβ

ρ2N
+ σκ,

with κ = 〈eN |D(2)
1 |eN 〉 which we do not need to compute.

The square trace terms are very complicated, and we only sketch out their computation. The terms that could
have entered in the perturbation of p0(σ) cancel out (these are sums of square terms). The terms that are rational
fractions of polynomials (and could be pathological since we look for a polynomial perturbation) cancel out as well.
The other terms do not enter the perturbation of p0(σ) and are non-pathological.

Finally the perturbation of p0(σ) resembles

p0(σ) := σ2 D(ε)−→ p0(σ, ε) ≈ σ2 + σ

(
ε
α+ α′ + β′

ρN
− ε2α

′ + β′

ρ2N
− ε2κ

)
+ ε2

α′β′ + αβ

ρ2N
.

We now write the discriminant of this polynomial at second order to get

∆(ε) =
ε2

ρ2N

(
(α+ α′ + β′)2 − 4(αβ + α′β′)

)
.

We retrieve the same separation as in the large ε regime. Denoting by βc = (α+α′+β′)2−4α′β′
4α , we have at order one in

ε:

σN± ≈
ε→0

ε

2ρN
×




−α′ − β′ − α±

√
(α′ + β′ + α)2 − 4(αβ + α′β′) if β < βc

−α′ − β′ − α± i
√

4(αβ + α′β′)− (α′ + β′ + α)2 if β > βc
−α′ − β′ − α if β = βc

. (B.17)

In the limit ε→ 0, ρN = zmax and we retrieve the equations given in the text. Figure 12 shows the adequacy between
the theoretical estimate and the actual largest eigenvalue (obtained through numerical simulations of the matrix D)
as ε→ 0.

Appendix C: Blocks of the stability matrix

In this section, we give the values of the perturbation terms for the blocks of the stability matrix. We introduce
several notations for quantities that simplify in the case of an undirected network with homogeneous productivity
factors. Finally, we use the bra (resp. ket) notation to refer to a row (resp. column) vector |v〉 and we denote by vi
its ith component.

1. Perturbation of peq and γeq

a. Prices

Equilibrium prices are easily obtained by applying M−1 to the vector |V 〉 yielding

peq,j =
1

ε
〈`N | V 〉 rN,j +

N−1∑

ν=1

〈lν | V 〉
ρN − ρν

rν,j − ε
N−1∑

ν=1

〈lν | V 〉
(ρN − ρν)2

rν,j + ε2
N−1∑

ν=1

〈lν | V 〉
(ρN − ρν)3

rν,j

− ε3
N−1∑

ν=1

〈lν | V 〉
(ρN − ρν)4

rν,j

:=
1

ε
πl−1(V )j + πl0(V )j − επl1(V )j + ε2πl2(V )j − ε3πl3(V )j , (1.a)
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where we introduced for i ≥ 0

πl−1(V ) = 〈`N | V 〉 |rN 〉 , πli(V ) =

N−1∑

ν=1

〈lν | V 〉
(ρN − ρν)i+1

|rν〉 .
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FIG. 12: Plain line: simulated smallest eigenvalue. Dashed: theoretical estimate for ε� 1. Error plot give the error
between the linear estimate from (B.17) and the simulated eigenvalue. Simulations are made for an economy on

N = 100 firms on a 3-regular undirected network with unit weights. We generate 50 such economies and average out
the eigenvalue of D closest to 0 in real part.
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b. Productions

Equilibrium productions can be a little trickier to obtain. We first derive three useful identities to simplify calcu-
lations. For s = 1, . . . , n, we have

1

εpeq,s
=

1

πl−1(V )s
− ε πl0(V )s(

πl−1(V )s
)2 +

ε2

πl−1(V )s

(
πl1(V )s
πl−1(V )s

+

(
πl0(V )s
πl−1(V )s

)2
)

− ε3

πl−1(V )s

(
πl2(V )s
πl−1(V )s

+ 2
πl0(V )sπ

l
1(V )s

πl−1(V )s
+

(
πl0(V )s
πl−1(V )s

)3
)

(i)

1

peq,s
=

ε

πl−1(V )s
− ε2 πl0(V )s(

πl−1(V )s
)2 +

ε3

πl−1(V )s

(
πl1(V )s
πl−1(V )s

+

(
πl0(V )s
πl−1(V )s

)2
)

(ii)

ε

peq,s
=

ε2

πl−1(V )s
− ε3 πl0(V )s(

πl−1(V )s
)2 (iii)

ε2

peqs
=

ε3

πl−1(V )s
(iv)

ε3

peqs
= o(ε3). (v)

These results allow to write the equilibrium productions with ψeq,i = µθi
peq,i

γeq,j =
µ

ε
〈rN | ψeq〉 lN,j + µ

N−1∑

ν=1

〈rν | ψeq〉
ρN − ρν

lν,j − εµ
N−1∑

ν=1

〈rν | ψeq〉
(ρN − ρν)2

lν,j + ε2µ

N−1∑

ν=1

〈rν | ψeq〉
(ρN − ρν)3

lν,j

− ε3µ
N−1∑

ν=1

〈rν | ψeq〉
(ρN − ρν)4

lν,j

= µlN,j

n∑

s=1

rn,sθs
πl−1(V )s

+ εµ

n∑

s=1

{
N−1∑

ν=1

lν,jrν,sθs
(ρN − ρν)πl−1(V )s

− lN,jrn,sθsπ
l
0(V )s

πl−1(V )2s

}

+ ε2µ

n∑

s=1

{
πl1(V )s
πl−1(V )s

+

(
πl0(V )s
πl−1(V )s

)2

−
N−1∑

ν=1

lν,jrν,sθs
(ρN − ρν)πl−1(V )s

(
1

ρN − ρν
+

πl0(V )s
πl−1(V )s

)}

+ ε3µ

n∑

s=1

{
N−1∑

ν=1

lν,jrν,sθs
(ρN − ρν)πl−1(V )s

(
πl1(V )s
πl−1(V )s

+

(
πl0(V )s
πl−1(V )s

)2

+
πl0(V )s

(ρN − ρν)πl−1(V )s

+
1

(ρN − ρν)3πl−1(V )s

)}

:= µf0,j + εµf1,j + ε2µf2,j + ε3µf3,j . (1.b)

2. Stability blocks

The next step is to perturb the stability matrix itself. This yields no particular difficulty but calculations are a bit
long so that we only give the results for the different blocks. We denote by τgk the coefficients of the expansion of zγ
where τi = ρNeN,i/ 〈eN | V 〉 for an undirected network. We have
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(D
(0)
1 )ij = −α′ 1

ρN
Mij

(D
(1)
1 )ij = −αµ θi

τiπl−1(V )i
δij +

α′

ρ2N
Mij −

α′

ρN
δij

(D
(2)
1 )ij = +αµ

θi
τiπl−1(V )i

(
g1,i +

πl0(V )i
πl−1(V )i

)
δij −

α′

ρ3N
Mij +

α′

ρ2N
δij

(D
(3)
1 )ij = −αµε θi

τiπl−1(V )i

(
g21,i − g2,i +

πl0(V )i
πl−1(V )i

g1,i +
πl1(V )i
πl−1(V )i

+

(
πl0(V )i
πl−1(V )i

)2
)
δij +

α′

ρ4N
Mij −

α′

ρ3N
δij ,

(D
(−1)
2 )ij = −απ

l
−1(V )i

τi
Mji

(D
(0)
2 )ij =

α

τi

[
Mji

(
πl−1(V )ig1,i − πl0(V )i

)
− πl−1(V )iδij

]

(D
(1)
2 )ij =

α

τi

[
Mji

(
πl−1(V )ig

2
1,i + 2πl−1(V )ig1,ig2,i + πl0(V )ig1,i − πl−1(V )ig2,i − πl1(V )i

)

+
(
πl−1(V )ig1,i − πl0(V )i

)
δij
]

(D
(2)
2 )ij =

α

τi

[
Mji

(
πl1(V )ig1,i + πl2(V )i − πl−1(V )i

(
g3,i + g31,i

)
+ πl0(V )i

(
g21,i − g2,i

))

+
(
πl−1(V )i

(
g21,i − g2,i

)
− πl0(V )ig1,i − πl1(V )i

)
δij
]
,

(D
(1)
3 )ij =

µβf0,i
ρNπl−1(V )i

Mij

(D
(2)
3 )ij =

µβf0,i
ρN

[(
g1,i

πl−1(V )i
− πl0(V )i

(πl−1(V )i)2
+
g1,i
ρN
− πl0(V )i
ρNπl−1(V )i

)
Mij +

1

πl−1(V )i
δij

]
− β′ µθi

ρNπl−1(V )2i
δij

(D
(3)
3 )ij =

µβf0,i
ρN

[
Mij

(
πl1(V )i

(πl−1(V )i)2
+

(πl0(V )i)
2

(πl−1(V )i)3
− πl0(V )i

(πl−1(V )i)2
g1,i +

g1,i
ρNπl−1(V )i

− πl0(V )i
ρN (πl−1(V )i)2

)

+

(
g1,i

πl−1(V )i
− πl0(V )i

(πl−1(V )i)2
+

1

ρN

(
g1,i −

πl0(V )i
πl−1(V )i

))
δij

]
+ β′

µθi
ρNπl−1(V )2i

(
2πl0(V )i
πl−1(V )i

+
1

ρN

)
δij ,

(D
(0)
4 )ij = −β′ 1

ρN
Mij

(D
(1)
4 )ij =

β′

ρ2N
Mij −

β′

ρN
δij

(D
(2)
4 )ij = − β′

ρ3N
Mij +

β′

ρ2N
δij

(D
(3)
4 )ij =

β′

ρ4N
Mij −

β′

ρ3N
δij .

Appendix D: Critical volatility of prices and outputs with fluctuations

1. General computation for marginally stable linear stochastic systems

In this section, we consider a general evolution of a vector U(t) given by the linear stochastic equation

dU(t)

dt
= DU(t) + ξ(t), (D.1)
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where D is a real N ×N matrix and ξ(t) is a Gaussian correlated noise such that

〈ξi(t)〉 = 0 (D.2)

〈ξi(t)ξj(s)〉 = 2σ2δijG (|t− s|) . (D.3)

We assume the dynamical matrix D to be diagonalizable with real eigenvalues20 such that

λ1 ≤ λ2 ≤ · · · ≤ λN−1 < λN := −ε < 0.

Negative eigenvalues means that the system is stable i.e 〈‖U(t)‖〉 → 0 as t→∞ for any initial condition. We assume
that ε→ 0 and show that the volatility of U(t) increases as ε−1/2. We introduce the eigenvectors eν associated to λν
and we express U into the diagonal basis

U(t) =

N∑

ν=1

uνeν . (D.4)

Injecting this expression into (D.1), we get and evolution equation for the components of U(t) in the diagonal basis

d

dt
uν = λνuν + ξ(t) · eν . (D.5)

We can give an explicit solution for these components

uν(t) = eλνt
[
uν(0) +

∫ t

0

ds e−λνsξ(t) · eν
]
, (D.6)

and focus on uN since this is the component which yields the ε−1/2-volatility. To do so, we compute the average value
of uN (t)2 − 〈uN (t)〉2

〈
uN (t)2 − 〈uN (t)〉2

〉
= e−2εt

〈[
uN (0) +

∫ t

0

ds eεsξ(s) · eN
]2〉

− uN (0)2e−εt

= e−2εt
[
uN (0)2 + 2uN (0)

∫ t

0

ds eεs 〈ξ(s) · eN 〉+

∫
dsds′ eε(s+s

′) 〈(ξ(s) · eN )(ξ(s′) · eN )〉
]
− uN (0)2e−εt

= e−εt
∑

j,k

eN,jeN,k

∫
dsds′ eε(s+s

′) 〈ξj(s)ξj(s′)〉

= 2σ2‖eN‖2e−εt
∫
dsds′ eε(s+s

′)G(|s′ − s|),

we substitute τ = s′ − s in the s integral to get

= 2σ2‖eN‖2e−εt
∫ t

0

ds′ e2εs
′
∫ s′−t

0

dτe−ετG(τ).

Using the quick decay of the exponential term in the τ integral, we can expend the integration domain...

≈ 2σ2‖eN‖2e−εt
∫ t

0

ds′ e2εs
′
∫ ∞

0

dτe−ετG(τ),

... and perform the integration over s′ with an approximately vanishing exponential remainder

≈ σ2‖eN‖2
ε

∫ ∞

0

dτe−ετG(τ).

Denoting be τξ the typical correlation time of G, we see that

20 The case with complex eigenvalues leads to the same conclusions. One must only take into account the fact that, since D is real,
eigenvalues and eigenvectors will be conjugated so that their are two eigenvalues that are smallest in real parts. We make the same
ordering of eigenvalues replacing the λ’s by their real parts.
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• if ετξ � 1 (meaning that G correlates on short time-scales) then G(τ) ∼ δ(0) such that

∫ ∞

0

dτe−ετG(τ) ≈ 1,

• if ετξ � 1 (meaning that G correlates on long time-scales) then G(τ) ∼ G(0) on the decay time of the exponential
such that

∫ ∞

0

dτe−ετG(τ) ≈ G(0)

ε
.

Finally, the volatility of U(t) behaves as
√〈

uN (t)2 − 〈uN (t)〉2
〉
∝
{
ε−1/2 if ετξ � 1
ε−1 if ετξ � 1

. (D.7)

Note also that this result generalizes to discrete time processes (which is of interest in the case of the general ABM
that we present)

Ut+1 = DUt + ξt. (D.8)

The marginal stability condition can be written as λN = 1 − ε 21 with ε → 0. We can carry out the same kind of
computation and derive the same result depending on the behavior of the quantity

∑
τ≥0(1− ε)τG(τ).

2. Computation of the volatility induced by gaussian shocks on productivity factors

If we consider shocks on productivity factors zi(t) = zi + ξi(t) with ξ(t) given as before, we can linearize the
dynamics of the naive model in both small deviations from equilibrium and small shocks. The stochastic equation
that we retrieve reads

dU(t)

dt
= DU(t) + Ξ(t), (D.9)

with a noise Ξ of the form

Ξ(t) =

(
−α+α′zi

peq ◦ ξ(t)
β−β′
zi
γeq ◦ ξ(t)

)
∼
ε→0

(
−α+α′ερN

(`N ·V)rN ◦ ξ(t)
β−β′

(`N ·V)ρN
lN ◦ ξ(t)

)
, (D.10)

with notations from C. The correlations of this noise are slightly more complicated than before

〈Ξi(t)Ξj(s)〉 = σ2G(|t− s|)×





δij

(
(α+α′)(`N ·V)

ρN

)2
rN,irN,jε

−2 if i, j ≤ n

δij

(
β−β′

(`N ·V)ρN

)2
lN,ilN,j if i, j > n

−δi,j−n (β−β′)(α+α′)
ρ2N

rN,ilN,jε
−1 if i ≤ n, j > n

−δi−n,j (β−β
′)(α+α′)
ρ2N

lN,irN,jε
−1 if i > n, j ≤ n

. (D.11)

The dynamical matrix of the naive model with an undirected network two eigenvalues yields σ±N = k±ε → 0 with

associated eigenvectors Σ±N = (eN ,ν
±ε)t for undirected networks. We assume β < βc so that the marginal eigenvalues

are real as well as their eigenvectors. It follows that, at leading order in ε, the volatility of the marginal components
of U(t) behaves as ε−3/2. Indeed

〈
u±N (t)2 −

〈
u±N (t)

〉2〉
=

σ2

(k±)
2
ε3

(
(α+ α′)(eN ·V)

ρN

)2

H (eN )

∫ ∞

0

dτe−ετG
( τ

ν±

)
,

21 Or more generally for complex eigenvalues λN = rNe
iθN with rN = 1− ε.
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where H represents the inverse participation ratio. To retrieve the volatility as ε−1/2 we may rescale δpi(t) (resp.
δγi(t)) by peq,i (resp. γeq,i). Denoting by wi the ith canonical vector of R2N , we have

Var

(
δpi(t)

peq,i

)
= p−2eq,iVar




N∑

k=1
τ=±

uτk(t)(Σ±k ·wi)




≈
ε→0
εt�1

ε2

e2N,i(eN ·V)2
Var

(
u+N (t)eN,i + u−N (t)eN,i

)

=
ε2

(eN ·V)2
[
Var

(
u+N (t)

)
+ Var

(
u−N (t)

)
+ 2Cov

(
u+N (t), u−N (t)

)]

∝ 1

ε
;

Var

(
δγi(t)

γeq,i

)
= γ−2eq,iVar




N∑

k=1
τ=±

uτk(t)(Σ±k ·wi+N )




≈
ε→0
εt�1

(eN ·V)2

e2N,i
Var

(
u+N (t)ν+εeN,i + u−N (t)ν−εeN,i

)

= (eN ·V)2ε2
[
(ν+)2Var

(
u+N (t)

)
+ (ν−)2Var

(
u−N (t)

)
+ 2ν+ν−Cov

(
u+N (t), u−N (t)

)]

∝ 1

ε
.

Appendix E: Code for the simulation

1. Objects

The simulation uses an object-oriented approach. Each object has attributes (parameters of the model, or other
quantities that we can infer from the parameters) along with methods that carry out more complicated tasks. There
are four objects in our simulation. The first two are the firms and household classes, and correspond to the smallest
entities in our model (the agents). The economy class carries all of the static information – essentially the different
parameters describing the interactions between the agents – of the model, along with instances of the firms and
household classes. Finally, the dynamics class handles the evolution of the model by storing the time series of prices,
productions and so on, along with the different methods that allow the model to move forward in time; the dynamics
class contains an instance of the economy class that is used for the simulation. In our framework, classes need one
another to function properly. For instance, firms need to know the input-output network to compute their optimal
quantities as in II.3. As a consequence, some methods take instances of classes in their arguments, as is the case in
e.g. the compute optimal quantities method of the firm firms class. We detail this last method as an example in
Procedure 1.
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Procedure 1 The firms class
class Firms

attributes
z: 1d-array . Productivity factors
α: 1d-array . Log elasticity factors of prices to surplus
α′: 1d-array . Log elasticity factors of prices to profits
β: 1d-array . Log elasticity factors of productions to profits
β′: 1d-array . Log elasticity factors of productions to surplus
ω: float . Log elasticity factors of wages to labor-market tensions

methods
1d-array update prices(p(t),S (t),D(t),G (t),L (t)) . Update prices according to (IV.9)
float update wages(Ls(t), Ld(t)) . Update wages according to (IV.10)
1d-array compute targets(p(t),Et[Q(t)],S (t),γ(t)) . Compute targets according to (IV.1)
4d-array compute forecasts(p(t),Et[Q(t)],S (t)) . Compute forecasts according to (IV.18, IV.17)
1d-array compute optimal quantities(γ̂(t),p(t), economy) . Compute optimal quantities according to (II.3)
4d-array compute profits balance(p(t),Qe(t),S (t),D(t)). Compute profits and balance according to (IV.7, IV.8)

end class

2. Pseudo-code to execute one step of the time-line

In Procedure 2, we present a pseudo-code to execute one time-step of the model. In order to get the full dynamics,
one loops over this procedure during a time T , after a careful initialization. To initialize, one needs to give the
dynamics an initial value for prices pi(t = 1), wages p0(t = 1), production levels γi(t = 1), targets γ̂i(t = 2), stocks
Iij(t = 1) and savings S(t = 1). One also needs to carry out the initial planning by the household to have a value for
E1[Cd(t = 1)] and Ls(t = 1). This entire process of initialization and loop over Procedure 2 in encapsulated into a
class dynamics. This class stores the entire history of the most fundamental quantities (prices, demand matrix...) into
array of the appropriate size, and uses reconstruction methods for all the inferable quantities (productions, targets,
profits...). This way, the algorithm is quicker and less memory-demanding. Finally, Procedure 2 is quite detailed
compared to the actual implementation. Bearing in mind complexity issues, most of the loops of Procedure 2 are
implemented in a single line through matrix multiplication. Using the result (∆M)ij = ∆iiMij and (M∆)ij = ∆jjMij

with ∆ a diagonal matrix, one can implement the procedure to go from demanded quantities to exchanged quantities
as

Q(t) =∆

([
min

(
1,

B(t)∑
i pi(t)C

d
i (t) min (1,Si(t)/Di(t))

)
, 1, . . . , 1

])

Qd(t)

∆

([
min

(
1,
Ls(t)

Ld(t)

)
,min

(
1,

S1(t)

D1(t)

)
, . . . ,min

(
1,

SN (t)

DN (t)

)])

where we use the convention Qd00 = Qe00 = 0. Finally, we denote by ∂ini (resp. ∂outi ) the set of suppliers (resp. buyers)
of firm i.
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Procedure 2 Fundamental time-step

Phase 1 - Planning

Input: Ls(t), γ(t), p(t), I(t), Q(t)
for all firms i do

Si(t)← ziγi(t) + Iii(t)
γ̂i(t+ 1)← compute targets(p(t),Et[Q(t)],Si(t), γi(t)) . Computation of targets according to forecasts

Q̂(t)← compute optimal quantities(γ̂(t+ 1),p(t), economy)
for all firms i do

Qdi0(t) := `di (t)← Q̂i0(t)
for all firms j ∈ ∂ini do

Qdij(t)← max
(

0, Q̂ij − Iij
)

Output: Si(t), γ̂i(t), Q̂(t), Qd(t), `d(t), S(t)

Phase 2 - Exchanges & Updates

Input: Si(t), Q̂(t), Qd(t), `d(t), Cdi (t), Et[B(t)]
for all firms i do

Qi0 := `i ← `di min
(

1, L
s(t)

Ld(t)

)
. Workers are hired

B(t)← S(t) +
∑n
i=1 `

e
i (t) . Wages are paid

for all firms i do
Qd0i := Cdi (t)← Cdi (t)

(
ν + (1− ν) min

(
1, B(t)

Et[B(t)]

))
. Household adjusts its consumption demands (ν = 1 in this paper)

Di(t)←
∑
j∈∂outi

Qdji(t) . Firms compute their total demand

for all firms j ∈ ∂outi do

Qji ← Qdji min
(

1, Si(t)
Di(t)

)
. Exchanges of goods are carried out

Cri (t)← Cdi min
(

1, Si(t)
Di(t)

)
min

(
1, B(t)

p(t)·Ce(t)

)
. Household consumes according to its budget

Gi(t), Li(t)← pi(t)
∑
j∈∂outi

Qeji(t),
∑
j∈∂ini

Qeij(t)pj(t)

S(t+ 1)← B(t)− p(t) ·Ce(t) . The household saves unspent money
for all firms i do

Qai0(t)← Qi0(t) . Labor available for production is the hired workforce
for all firms j ∈ ∂ini do

Qaij(t)← Qij(t) + min
(
Q̂ij(t), Iij(t)

)
. Available goods depend on exchanges and current stocks

p0(t+ 1)← update wage(Ls(t), Ld(t), ω) . Wage is updated
for all firms i do

pi(t+ 1)← update price(Si(t),Di(t),Gi(t),Li(t), α, α
′, β, β′) . Prices are updated

Output: Qe(t), Qp(t), S(t+ 1), B(t), p0(t+ 1), Gi(t),Gi(t)

Phase 3 - Production

Input: S(t+ 1), B(t), p0(t+ 1), Gi(t),Gi(t),Q
e(t), Qp(t), Q̂(t), I(t)

for all firms i do
γi(t+ 1)← production function

(
[Qaij ]j∈∂ini

)
. Production begins

Iii(t)← e−σi
(
Si(t)−

∑
j∈∂outi

Qeji

)
. Firms update inventories for their own good

if q = 0 then . If the economy is Leontief, firms need to stock other goods in addition to their own

j? ← arg min
j

(
[Qpij ]j∈∂ini

)
for all firms j ∈ ∂ini do

Quij(t)←
Jij
Jij?

Qpij?(t)

Iij(t+ 1) = e−σj
[
Qaij(t)−Quij(t)

]
for all firms i do

pi(t+ 1)← pi(t+ 1)/p0(t+ 1) . Prices are updated

B(t), S(t+ 1), p0(t+ 1)← B(t)/p0(t+ 1), S(t+ 1)/p0(t+ 1), 1 . Rescaling of monetary quantities
Cdi (t+ 1), Ls(t+ 1)← compute demands labor(S(t), Ls(t), Ld(t),p(t+ 1), ω′, ϕ) . The household starts planning

Output: B(t), S(t+ 1), p0(t+ 1) = 1, pi(t+ 1), γi(t+ 1), Cdi (t+ 1), Ls(t+ 1), I(t+ 1)
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