Rate constants for the reactions of F atoms with H 2 and D 2 over the temperature range 220-960 K Yuri Bedjanian # ▶ To cite this version: Yuri Bedjanian. Rate constants for the reactions of F atoms with H 2 and D 2 over the temperature range 220-960 K. International Journal of Chemical Kinetics, 2020, 53 (4), pp.527-535. $10.1002/\mathrm{kin}.21462$. hal-03049858 HAL Id: hal-03049858 https://hal.science/hal-03049858 Submitted on 7 Oct 2021 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Rate Constants for the Reactions of F Atoms with H2 and D2 over the Temperature Range 220-960 K Yuri Bedjanian* Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS 45071 Orléans Cedex 2, France Abstract The kinetics of the reactions of F atoms with hydrogen and deuterium has been studied in a discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer at nearly 2 Torr total pressure of helium and in the temperature range 220 - 960 K. The rate constant of the reaction F + $H_2 \rightarrow HF + H$ (1) was determined using both relative rate method (using reaction F + Br₂ as a reference) and absolute measurements, monitoring the kinetics of F atom consumption in excess of H₂: $k_1 = (1.24 \pm 0.09) \times 10^{-10}$ exp(- $(507 \pm 23)/T)$ cm³molecule⁻¹s⁻¹. The rate constant of the reaction F + D₂ \rightarrow DF + D (2) was measured under pseudo-first order conditions in excess of D_2 over F atoms: k_2 = (8.47± $0.42)\times10^{-11}$ exp(-(670 ± 16)/T) cm³molecule⁻¹s⁻¹ (the uncertainties on both k_1 and k_2 represent precision at the 2σ level, the estimated total uncertainty on the rate constants being 15% at all temperatures). The kinetic isotope effect measured independently, k_1/k_2 = $(1.58 \pm 0.05) \times \exp((131 \pm 2)/T)$, was found to be in excellent agreement (within 7% in the temperature range of the work, T = 220-960 K) with the ratio of k_1 to k_2 calculated with the Arrhenius expressions for k_1 and k_2 determined in the study. The kinetic data from the present work are discussed in comparison with previous measurements and theoretical calculations. **Keywords:** F, hydrogen, rate coefficient, temperature dependence, KIE. Correspondence to: Yuri Bedjanian: Tel.: +33 238255474, e-mail: yuri.bedjanian@cnrs-orleans.fr Supporting Information is available in the online issue at www.wileyonlinelibrary.com. 1 # 1 INTRODUCTION Reaction of F atoms with H₂ $$F + H_2 \rightarrow HF + H$$ (1) is of practical and theoretical interest and was extensively studied over the past few decades. The kinetics of this reaction was explored in multiple studies, at high temperatures (up to 765 K),¹ in relation with problematic of chemical lasers based on the vibrationally excited HF formed in the reaction, and at very low temperatures (down to 10 K), in relation to the chemistry in interstellar environments where reaction (1) is considered as the only source of HF.² In parallel, the F + H₂ reaction has been the subject of numerous dynamic and theoretical investigations (e.g. review 3 and refs therein). Indeed, since 1972, when the first *ab initio* potential energy surface (PES) was created,⁴ about two dozen new or modified PES have appeared.³ Theoretical research of the F + H₂ reaction has made a progress, and at present the theory seems to reproduce the experimental kinetic and dynamic observations quite well.³ Accurate experimental determination of the Arrhenius parameters for the rate constants of the reactions of F atom with H_2 and its isotope D_2 $$F + D_2 \rightarrow DF + D$$ (2) in an extended temperature range is of importance for theory, since they carry information on the energetics of the reaction and the extent of the tunneling effect, which are important for further refinement of PES. However, despite the interest to the reactions of F atoms with H_2 and D_2 , and a large number of dedicated studies, kinetic database for these reactions seems incomplete and unsatisfactory compared to the current high level of the theoretical calculations. For the $F + H_2$ reaction, only two^{5,6} of the four most extended temperature-dependent studies⁵⁻⁸ were carried out at temperatures above 376 K, and, in addition, the data on the rate constant from one of them⁶ are widely scattered. For reaction $F + D_2$, only one study⁵ was realized at temperatures above 373 K and the results of three available relatively extended temperature-dependent studies differ by a factor of 1.3-1.5 at temperatures between 230 and 360 K.^{5,7,8} As a result of the uncertainties in the values of the rate constants for reactions (1) and (2) (k_1 and k_2 , respectively), the kinetic isotope effect (KIE) calculated as k_1/k_2 varies by a factor of up to 1.7 depending on temperature. Above analysis is in line with the conclusion of the most recent critical review of the kinetic data for reactions (1) and (2) by Persky and Kornweitz¹ that "additional careful experimental studies of the kinetics of the $F + H_2$ system would be very useful in order to support our evaluations or to update them." This paper presents the results of an experimental study of the reactions of F atom with H_2 and D_2 , including measurements of the rate constants and an independent determination of the kinetic isotope effect (k_1/k_2 ratio) as a function of temperature in an extended temperature range, T = 220 - 960 K. ## **2 EXPERIMENTAL** Kinetic measurements have been conducted at nearly 2 Torr total pressure of Helium using a conventional fast-flow reactor combined with a molecular beam sampling electron-impact ionization mass spectrometer operated at 25–30 eV energy. Depending on the temperature range two different flow reactors were used. High temperature reactor, used at T = 299 - 960 K, consisted of a Quartz tube (45 cm length and 2.5 cm i.d.) with an electrical heater and water-cooled attachments (Figure S1a, Supporting Information (SI)). Low temperature reactor (Figure S1b, SI), used at T = 220 - 325 K, consisted of a Pyrex tube (45 cm length and 2.4 cm i.d.) surrounded by a jacket through which a thermostated ethanol was circulated. To reduce the heterogeneous loss of F atoms, the inner surface of the low temperature reactor was coated with Halocarbon wax. Fluorine atoms were generated from the microwave discharge in F_2 /He mixtures in a ceramic (Al₂O₃) tube (Figures S1a – S1c), which was used to avoid potential reactions of F atoms with glass surface inside the microwave cavity. Monitoring of molecular fluorine by mass spectrometry showed that more than 95% of F_2 was dissociated in the microwave discharge. Prior to their sampling to the mass spectrometer, fluorine atoms were converted to FBr by reaction with Br_2 ([Br₂] = (4 - 6)×10¹³ molecule cm⁻³, added at the end of the reactor 6 cm upstream of the sampling cone as shown in Figure S1a), F + Br₂ $$\rightarrow$$ Br + FBr (3) $k_3 = (1.28 \pm 0.20) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} (\text{T} = 299 - 940 \text{ K}),^{13}$ and were finally detected at m/z = 98/100 (FBr⁺). Reaction (3) in excess of Br₂ was also used for the determination of the absolute concentrations of F atoms by linking the concentration of F atoms to the consumed fraction of [Br₂]: [F] = [FBr] = Δ [Br₂]. The absolute concentrations of all stable species (H₂, D₂, Br₂, F₂) in the reactor were calculated from their flow rates obtained from the measurements of the pressure drop of their mixtures in He stored in calibrated volume flasks. All species were detected by mass spectrometry at their parent peaks: m/z = 160 (Br₂⁺), 98/100 (BrF⁺), 38 (F₂⁺), 21 (DF⁺). The purities of the gases used were as follows: He >99.9995% (Alphagaz), passed through liquid nitrogen trap; D_2 >99.7% (Alphagaz); H_2 >99.998% (Alphagaz); Br_2 >99.99% (Aldrich); F_2 , 5% in helium (Alphagaz). ## **3 RESULTS AND DISCUSSION** #### 3.1 Rate Constant of Reaction (1): Absolute Measurements The absolute measurements of k_1 were carried out under pseudo-first order conditions monitoring consumption of F atoms ($[F]_0 = (2 - 4) \times 10^{11}$ molecule cm⁻³) in excess of H₂ (the ranges of the initial concentrations of H₂ used are shown in Table 1). The flow velocity in the reactor was in the range (1750-2920) cm s⁻¹. The F atom decays were treated with an exponential function, $[F] = [F]_0 \times \exp(-k_1' \times t)$, where $k_1' = k_1 \times [H_2] + k_w$ is the pseudo-first-order rate constant and k_w corresponds to F atom loss rate in the absence of H_2 in the reactor. Examples of the kinetic runs observed at T = 400 K are shown in Figure S2 (SI). To take into account the consumption of the excess reactant, H2, the average concentration of H2 in the reaction zone, calculated as $[H_2]=[H_2]_0-\Delta[F]\times(k_1'-k_w)/k_1'$, was used in the treatment of the experimental data. As one could expect, the corrections on [H₂]₀ were insignificant (within a few percent) in the most kinetic runs, however reached up to 20% in a few experiments with the lowest concentrations of H2. Examples of the dependencies of the pseudo-first order rate constant, $k_1' = k_1 \times [H_2] + k_w$, on concentration of H_2 at different temperatures are shown in Figures 1 and S3(SI). All measured values of k_1 were corrected for the effects of axial and radial diffusion of fluorine atoms. 14 Corrections were <10 % in the vast majority of the experiments and up to 18% in a few kinetic runs. The slopes of the straight lines in Figures 1 and S3 provide the values of k_1 at respective temperatures. All the results of the absolute measurements of k_1 at different temperatures are shown in Table 1. The combined uncertainty on the measurements of the rate constants was estimated to be \leq 15 %, including (in quadrature) statistical error (within a few percent, Table 1) and those on the measurements of the flows (5%), pressure (3%), temperature (1%) and absolute concentration of H_2 (< 10%). #### 3.2. Rate Constant of Reaction (1): Relative Measurements In this series of experiments, the rate constant of the reaction of F atoms with H_2 was measured relative to that of F atoms with Br_2 . The experiments consisted in a fast titration of F atoms in reaction with a mixture of H_2 and Br_2 and the measurements of FBr yield as a function of the $[H_2]/[Br_2]$ ratio: $$F + H_2 \rightarrow HF + H$$ (1) $$F + Br_2 \rightarrow FBr + Br$$ (3) The fraction of the initial concentration of F atoms, [F]₀, transformed to FBr in reaction 3, is: $$[FBr] = \frac{k_3[Br_2]}{k_3[Br_2] + k_1[H_2] + k_w} \times [F]_0$$ Rearrangement of this expression provides: $$\frac{[F]_0}{[FBr]} - 1 = \frac{k_1[H_2]}{k_3[Br_2]} + \frac{k_W}{k_3[Br_2]}$$ (I) At a constant concentration of Br₂, the second term in equation (I) is constant and k_1/k_3 can be determined as a slope of the linear dependence of ([F]₀/[FBr] - 1) on the [H₂]/[Br₂] ratio. In the experiments, FBr was monitored in the presence of Br₂ in both H₂ -free system, corresponding to [F]₀, and in the presence of H₂ in the reactor, corresponding to the fraction of [F]₀ reacted with Br₂. Reaction time was around 0.02 s, [F]₀ = (0.5-1.0)×10¹¹, [Br₂] \approx 9×10¹² molecule cm⁻³, the ranges of concentrations of H₂ are presented in Table 2. The relative measurements of k_1 were carried out in an uncoated quartz reactor at three temperatures: T = 320, 370 and 575 K. The observed experimental data are shown in Figure 2. In accordance with Equation I, the slopes of the straight lines in Figure 2 provide the values of k_1/k_3 at respective temperatures. Final values of k_1 (Table 2) were calculated with $k_3 = (1.28 \pm 0.20) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ (T = 299 – 940 K), determined in a recent study from this group.¹³ #### 3.3. Rate Constant of Reaction (1): Comparison with Previous Data Figure 3 summarizes the results of the current measurements of the rate constant of reaction (1) in comparison with those from previous temperature dependence studies. The multiple experimental data for k_1 at room temperature (293-300 K)¹⁵⁻²⁴ were analyzed in previous evaluations.^{1,25} Persky and Kornweitz¹ considered that the most accurate results for k_1 available at that moment were those of Clyne and Hodgson,²² Wurzberg and Houston,⁸ and Stevens et al.,⁷ and recommended $k_1 = (2.43 \pm 0.15) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at T = 298 K, the mean value from the three studies. Concerning the results from this study, one can note an excellent agreement between absolute and relative measurements of the rate constant. Least-squares analysis of the present temperature dependent data for k_1 yields the following Arrhenius expression in the temperature range T = 220-960 K: $$k_1 = (1.24 \pm 0.09) \times 10^{-10} \exp(-(507 \pm 23)/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$$ with 2σ uncertainties representing the precision of the fit. Our data are in very good agreement with the previous studies of Wurzberg and Houston,⁸ and Stevens et al.,⁷ reporting $k_1 = 1.0 \times 10^{-10} \exp(-(433 \pm 50)/T)$ at T = 190-373 K and $(1.2 \pm 0.1) \times 10^{-10} \exp(-(470 \pm 10) \times 10^{-10})$ 30)/T) cm 3 molecule $^{-1}$ s $^{-1}$ at T = 221-376 K, respectively. In the work of Stevens et al., ⁷ the rate constant of reaction (1) was measured in a discharge flow system under experimental conditions close to those of the present work. F atoms were detected through their chemical conversion to D atoms in reaction with D2, followed by D-atom detection by atomic resonance scattering. In the study of Wurzberg and Houston, 8 the reaction rate constant was derived by monitoring the chemiluminescence of the reaction product, HF, formed upon dissociation of SF₆ in the presence of H₂. Similar method was applied in the study of Heidner et al. who reported $k_1 = (2.16 \pm 0.42) \times 10^{-10} \exp(-(595 \pm 50)/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \text{ at T} = 295$ 765 K. The absolute values of k_1 measured by Heidner et al.⁵ are by a factor of 1.4-1.7 higher than the current data, and the difference increases with temperature. The values of k_1 measured by Igoshin et al.²⁶ at two temperatures (195 and 296 K), although considered in previous reviews as rather uncertain, 1,25 and those reported by Homann et al. 27 (in a rather narrow temperature range 300-400 K) are also in a reasonable agreement with the present measurements. In loffe et al. 6 determined k_1 at T = 293-700 K in a discharge flow system with direct detection of fluorine atom decays in excess of H2 by Electron Spin Resonance (ESR) method. As one can see in Figure 3, their rather scattered data differ significantly from other studies, especially at T < 500 K. The present measurements are in good agreement (within <20%) with the recommendation from the critical review of Persky and Kornweitz, $^1k_1 = (1.1 \pm 0.1) \times 10^{-10} \exp(-(450 \pm 50)/T) \text{ cm}^3 \text{molecule}^{-1}\text{s}^{-1} \text{ for T} = 190-376 \text{ K} \text{ (dashed blue line in Figure 3), and with that from the most recent NASA/JPL evaluation,} <math>^{28}k_1 = 1.4 \times 10^{-10} \exp(-500/T) \text{ cm}^3 \text{molecule}^{-1}\text{s}^{-1} \text{ (uncertainty factor of 1.2) for T} = 190-765 \text{ K} \text{ (dotted blue line in Figure 3).}$ In Figure 4, the experimental data for k_1 are shown in comparison with some theoretical calculations²⁹⁻³¹ of the rate constant in the relevant temperature range. Looking at Figure 4, one can state that the current level of theoretical understanding of the F + H₂ system makes it possible to reproduce the kinetic data with very good accuracy. It is interesting to note the almost perfect agreement (most likely, accidental) between experimental data from the present work and those calculated by Wang et al.³¹ and Chen et al. with CSZ (Chen, Sun and Zhang) PES.³⁰ ## 3.4. Rate Constant of Reaction (2) The rate constant of the reaction of F atoms with D_2 was determined in an absolute way, similar to the measurements of k_1 , from the kinetics of F atom consumption ($[F]_0 = (2.0 - 4.0) \times 10^{11}$ molecule cm⁻³) monitored in excess of D_2 (see Table 3 for the range of D_2 concentrations). Examples of F atom decays observed at different concentrations of D_2 at T = 440 K are shown in Figure S4 (SI). Typical plots of the pseudo-first-order rate constant, $k_2' = k_2 \times [D_2] + k_w$, versus concentration of D_2 are shown in Figures 5 and S5 (SI). Diffusion corrections on k_2' were usually less than 10% being up to 15% in a few kinetic runs at highest temperatures of the study. All the results obtained for k_2 in the current work are shown in Table 3. The available for k_2 experimental data are summarized in Figure 6. The solid line in Figure 6 results from a least-squares analysis of the present experimental data and provides the following Arrhenius expression for k_2 : $$k_2 = (8.47 \pm 0.42) \times 10^{-11} \exp(-(670 \pm 16)/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1},$$ where the uncertainties are 2σ statistical ones. The total uncertainty on the rate constant of 15% is estimated for the whole temperature range of the study. The present data for k_2 are practically identical to those reported by Stevens et al. T = 228-358 K: $k_2 = (9.3 \pm 1.1) \times 10^{-1}$ 11 exp(-680± 50/T) cm³ molecule⁻¹ s⁻¹. The absolute values of k_2 reported by Heidner et al.⁵ (T = 295-678 K) and Wurzberg and Houston⁸ (T = 190-373 K) are up to a factor of 1.5 higher than the present data, although the reaction activation factors reported in those studies, 604±71 and 554±50 K, respectively, are close to those determined by Stevens et al. and in the present work. The parallel shift between the two sets of kinetic data seems to support the assumption of Stevens et al.⁷ on the possible systematic error between their data and those of both Heidner et al. 5 and Wurzberg and Houston. 8 The values of k_{2} reported by Igoshin et al.²⁶ at two temperatures, 195 and 295 K, which are significantly higher than all other data, were analyzed in the reviews of Anderson²⁵ and Persky and Kornweitz¹ and estimated to be highly uncertain. The Arrhenius expression $k_2 = (1.06 \pm 0.12) \times 10^{-10}$ exp(-635± 55/T) cm³molecule⁻¹s⁻¹ (dashed line in Figure 6), recommended by Persky and Kornweitz¹ in a critical evaluation of the available kinetic data for reaction of fluorine atoms with D_2 for T = 190-376 K, provides the values of k_2 by a factor of 1.4-1.5 higher than those measured in the present work. The above recommendation was based on the expression for $k_1 = 1.1 \times 10^{-10} \text{ exp}(-450/\text{T}) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ and that for the kinetic isotope effect, $k_1/k_2 =$ $1.04 \times 10^{-10} \exp(186/T)$.³⁴ It can be noted that $k_1/k_2 = 1.46 \times 10^{-10} \exp(163/T)$, based on the Arrhenius expressions for k_1 and k_2 determined in the present work, provides the values of KIE by nearly 30% higher (at T = 220-376 K) compared with those used in the critical evaluation. To determine the kinetic isotope effect more accurately, we have carried out independent relative measurements of the k_1 to k_2 ratio described in the next section. ## 3.5. Kinetic Isotope Effect In addition to the direct measurements of the rate constants k_1 and k_2 , their ratio was measured using a relative rate method. The applied procedure was similar to that employed in the relative measurements of the rate constant of the F + H₂ reaction. F atoms were titrated with a mixture of H₂ and D₂ (Figure S1c, SI) and the yield of DF was measured as a function of the [H₂]/[D₂] ratio: $$F + H_2 \rightarrow HF + H$$ (1) $$F + D_2 \rightarrow DF + D$$ (2) The fraction of the initial concentration of F atoms, $[F]_0$, transformed to DF, is: $$[DF] = \frac{k_2[D_2]}{k_2[D_2] + k_1[H_2] + k_w} \times [F]_0,$$ or after rearrangement: $$\frac{[F]_0}{[DF]} - 1 = \frac{k_1[H_2]}{k_2[D_2]} + \frac{k_W}{k_2[D_2]} \tag{II}$$ Examples of the observed experimental data are shown in Figures 7 and S6 (SI). The final values of k_1/k_2 at different temperatures, determined, in accordance with equation II, from the slopes of the linear dependencies in Figures 7 and S6, are given in Table 4. Figure 8 summarizes the results of the previous and current temperature dependent measurements of the kinetic isotope effect for the F atom reactions with H2 and D2. One can note that the experimental data from the present study obtained with two different methods, direct measurements of k_1 and k_2 (dashed black line, $k_1/k_2 = 1.46 \times \exp(163/T)$ with estimated total uncertainty of 20% at all temperatures) and relative measurements of KIE (filled circles, fitted with a solid black line, $k_1/k_2 = (1.58\pm0.05)\times \exp((131\pm2)/T)$ (with 2σ statistical uncertainties, total estimated uncertainty being of nearly 10%), are in excellent agreement (within 7%) in the temperature range used, T = 220 – 960 K. Although KIE derived from the rate constant data of Heidner et al. $(k_1/k_2 = 2.1 \times \exp(9/T))^5$ and Stevens et al. $(k_1/k_2 = 2.1 \times \exp(9/T))^5$ = 1.29×exp(210/T))⁷ exhibit different temperature dependence, the absolute values of k_1/k_2 from these studies deviate by less than 15% from the present results. KIE reported in the relative measurements of Grant and Root, $k_1/k_2 = (1.04\pm0.06)\times\exp((192\pm18)/T)$, 35 and Persky $(k_1/k_2 = (1.04\pm0.02)\times \exp((186\pm5)/T))^{34}$ are very close to each other and are by approximately 20% lower compared to the current data. Grant and Root³⁵ used a reactive competition between H₂(D₂) and C₃F₆ for F atoms, measuring HF(DF) yield as a function of the composition of the $H_2(D_2) + C_3F_6$ mixtures. In the study of Persky, ³⁴ carried out in a discharge flow system, KIE was determined through mass spectrometric detection of [HF] to [DF] ratio upon consumption of F atoms in competitive reactions with H2 and D2. Similar approach, except for a few details, was used in the present relative measurements of KIE. Firstly, in the current work only DF was monitored and, as a result, there was no need to apply the corrections on HF signal due to formation of this compound in the microwave discharge and on the walls of the reactor and movable injector, and due to contribution of D_2O at m/z = 20.34 Secondly, there was no need to measure the absolute concentrations of HF and DF (in ref. 34 the sensitivities for the detection of these species by mass spectrometry were assumed to be identical): in the current experiments, initial concentration of F atom in the reactor could be related to DF signal intensity in the H_2 -free system, when F atoms are consumed exclusively in reaction with D_2 . Considering the self-consistence of the independent measurements of the rate constants, k_1 and k_2 , and their ratio, the following Arrhenius expressions are recommended from this study at T = 220 – 960 K: $$k_1 = (1.24 \pm 0.09) \times 10^{-10} \exp(-(507 \pm 23)/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$$ $$k_2 = (8.47 \pm 0.42) \times 10^{-11} \exp(-(670 \pm 16)/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1},$$ with conservative independent of temperature uncertainty of 15%. For the kinetic isotope effect both expression resulting from the ratio of the recommended k_1 and k_2 , $$k_1/k_2 = 1.46 \times \exp(163/T)$$, and that directly measured (leading to similar within 7% results), $$k_1/k_2 = 1.58 \times \exp(131/T)$$, can be used with conservative uncertainty of 10% at all temperatures of the study. The self-consistent kinetic data set for the reaction of F atom with H_2 and its isotope analog F + D_2 , reported in this paper, seems to represent a good experimental basis for further refinement of the theoretical models. ## **4 CONCLUSIONS** The rate constants of the reactions of F atoms with H₂ and D₂ have been measured using a discharge flow reactor combined with an electron impact ionization mass spectrometer at T = 220 - 960 K: $k_1 = (1.24 \pm 0.09) \times 10^{-10} \exp(-(507 \pm 23)/\text{T}) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \text{ and } k_2 = (8.47 \pm 0.42) \times 10^{-11} \exp(-(670 \pm 16)/\text{T}) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$. The Arrhenius expressions for k_1 and k_2 and independently measured kinetic isotope effect, $k_1/k_2 = (1.58 \pm 0.05) \times \exp((131 \pm 2)/\text{T})$, provide a self-consistent data set for the F + H₂ reaction and its isotope analog F + D₂ over an extended temperature range and represent a good experimental basis to further refine the theoretical calculations. ## **ACKNOWLEDGEMENT** This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. # **SUPPORTING INFORMATION** Additional supporting information may be found online in the Supporting Information section at the end of the article. #### **REFERENCES** - 1. Persky A, Kornweitz H. The kinetics of the reaction $F + H_2 \rightarrow HF + H$. A critical review of literature data. *Int. J. Chem. Kinet.* 1997;29:67-71. - 2. Tizniti M, Le Picard SD, Lique F, et al. The rate of the $F + H_2$ reaction at very low temperatures. *Nat. Chem.* 2014;6:141-145. - 3. Sun Z, Zhang DH. Development of the potential energy surface and current stage of the quantum dynamics studies of the $F + H_2/HD$ reaction. *Int. J. Quantum Chem.* 2015;115:689-699. - 4. Bender CF, Pearson PK, O'Neil SV, Schaefer HF. Potential energy surface including electron correlation for the chemical F + $H_2 \rightarrow$ FH + H I. Preliminary surface. *J. Chem. Phys.* 1972;56:4626-4631. - 5. Heidner RF, Bott JF, Gardner CE, Melzer JE. Absolute rate coefficients for F+H₂ and F+D₂ at T=295–765 K. *J. Chem. Phys.* 1980;72:4815-4821. - 6. Ioffe MA, Gershenzon YM, Rozenshtein VB, Umanskii SY. Non-Arrhenius behavior of the F+H₂ reaction rate at 293–700 K. *Chem. Phys. Lett.* 1989;154:131-134. - 7. Stevens PS, Brune WH, Anderson JG. Kinetic and mechanistic investigations of F + H_2O/D_2O and F + H_2/D_2 over the temperature range 240-373 K. *J. Phys. Chem.* 1989;93:4068-4079. - 8. Wurzberg E, Houston PL. The temperature dependence of absolute rate constants for the F+H₂ and F+D₂ reactions. *J. Chem. Phys.* 1980;72:4811-4814. - 9. Bedjanian Y. Temperature-dependent rate constant for the reaction of F atoms with HNO₃. *Int. J. Chem. Kinet.* 2019;51:753-759. - 10. Bedjanian Y. Reaction $F + C_2H_4$: rate constant and yields of the reaction products as a function of temperature over 298–950 k. *J. Phys. Chem. A.* 2018;122:3156-3162. - 11. Bedjanian Y, Lelièvre S, Bras GL. Kinetic and mechanistic study of the F atom reaction with nitrous acid. *J. Photochem. Photobio. A.* 2004;168:103-108. - 12. Morin J, Romanias MN, Bedjanian Y. Experimental study of the reactions of oh radicals with propane, n-pentane, and n-heptane over a wide temperature range. *Int. J. Chem. Kinet.* 2015;47:629-637. - 13. Bedjanian Y. Kinetics and products of the reactions of fluorine atoms with CINO and Br_2 from 295 to 950 K. *J. Phys. Chem. A.* 2017;121:8341-8347. - 14. Kaufman F. Kinetics of elementary radical reactions in the gas phase. *J. Phys. Chem.* 1984;88:4909-4917. - 15. Zhitneva GP, Pshezhetskii SY. Chain interaction in reaction between chlorine monofluoride and hydrogen. *Kinet. Catal.* 1978;19:231-236. - 16. Fasano DM, Nogar NS. The infrared chemiluminescent reaction of Cl atoms with H₂CO. *Int. J. Chem. Kinet.* 1981;13:325-332. - 17. Clyne MAA, McKenney DJ, Walker RF. Reaction kinetics of ground state fluorine, F(²P), atoms. I. Measurement of fluorine atom concentrations and the rates of - reactions F+CHF₃ and F+Cl₂ using mass spectrometry. *Can. J. Chem.* 1973;51:3596-3604. - 18. Kompa KL, Wanner J. Study of some fluorine atom reactions using a chemical laser method. *Chem. Phys. Lett.* 1972;12:560-563. - 19. Pearson R, Cowles J, Hermann G, Gregg D, Creighton J. Relative performance of a variety of NF₃₊ hydrogen-donor transverse-discharge HF chemical-laser systems. *IEEE J. Quantum Electron.* 1973;9:879-889. - 20. Dodonov AF, Lavrovskya GK, Morozov II, Talroze VL. Mass-spectrometric measurement of rate constant of elementary reaction between fluorine atoms and hydrogen. *Dokl. Akad. Nauk SSSR.* 1971;198:622. - 21. Rabideau SW, Hecht HG, Lewis WB. A study of the kinetics of the reaction between H_2 and F_2 by EPR methods. *J. Magn. Reson.* 1972;6:384-395. - 22. Clyne MAA, Hodgson A. Absolute rate constants for the reaction of fluorine atoms with H₂, CH₂Cl₂, CH₂ClF, CH₂F₂ and CHCl₂. *J. Chem. Soc. Faraday Trans. 2.* 1985;81:443-455. - 23. Goldberg IB, Schneider GR. Kinetic study of the reaction of F with H₂ and CF₃H by ESR methods. *J. Chem. Phys.* 1976;65:147-153. - 24. Preses JM, Weston RE, Flynn GW. Infrared chemiluminescence from hydrogen halides produced in IR photodissociation. *Chem. Phys. Lett.* 1977;48:425-430. - 25. Anderson JB. The Reaction F + $H_2 \rightarrow$ HF + H. Adv. Chem. Phys. 1980;41:229-268. - 26. Igoshin VI, Kulakov LV, Nikitin AI. Determination of the rate constant of the chemical reaction $F + H_2(D_2) \rightarrow HF(DF) + H(D)$ from the stimulated emission of the HF(DF) molecules. Sov. J. Quantum Electron. 1974;3:306-311. - 27. Homann KH, Solomon WC, Warnatz J, Gg. Wagner H, Zetzsch C. Eine methode zur erzeugung von fluoratomen in inerter atmosphäre. *Ber. Bunsenges. Phys. Chem.* 1970;74:585-589. - 28. Burkholder JB, Sander SP, Abbatt J, et al. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation No. 18, JPL publication 15-10, Jet Propulsion Laboratory. 2015; http://jpldataeval.jpl.nasa.gov. Accessed September 2020. - 29. Aquilanti V, Cavalli S, De Fazio D, Volpi A, Aguilar A, Lucas JM. Benchmark rate constants by the hyperquantization algorithm. The F+H₂ reaction for various potential energy surfaces: features of the entrance channel and of the transition state, and low temperature reactivity. *Chem. Phys.* . 2005;308:237-253. - 30. Chen J, Sun Z, Zhang DH. An accurate potential energy surface for the $F + H_2 \rightarrow HF + H$ reaction by the coupled-cluster method. *J. Chem. Phys.* 2015;142:024303. - 31. Wang H, Thompson WH, Miller WH. "Direct" Calculation of Thermal Rate Constants for the F + $H_2 \rightarrow$ HF + F Reaction. *J. Phys. Chem. A.* 1998;102:9372-9379. - 32. Stark K, Werner HJ. An accurate multireference configuration interaction calculation of the potential energy surface for the $F+H_2\rightarrow HF+H$ reaction. *J. Chem. Phys.* 1996;104:6515-6530. - 33. Fu B, Xu X, Zhang DH. A hierarchical construction scheme for accurate potential energy surface generation: An application to the F+H₂ reaction. *J. Chem. Phys.* 2008;129:011103. - 34. Persky A. Kinetic isotope effects in the reaction of fluorine atoms with molecular hydrogen. I H_2/D_2 kinetic isotope effect. *J. Chem. Phys.* 1973;59:3612-3615. - 35. Grant ER, Root JW. Hydrogen abstraction reactions by atomic fluorine. III. Temperature dependence of the intermolecular kinetic isotope effect for the thermal F+H₂ reaction. *J. Chem. Phys.* 1975;63:2970-2979. # **TABLES LEGENDS** - **TABLE 1** Reaction F + H₂: summary of the absolute measurements of the rate constant - **TABLE 2** Experimental conditions and results of the relative measurements of k_1 - **TABLE 3** Reaction $F + D_2$: summary of the measurements of the rate constant - **TABLE 4** Experimental conditions and results of the relative measurements of k_1/k_2 **TABLES** **TABLE 1** Reaction F + H₂: summary of the absolute measurements of the rate constant | T (K) ^a | [H ₂]
(10 ¹³ molecule cm ⁻³) | k_1 (± 2 σ) (10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹) | Reactor surface ^b | | | |--------------------|--|---|------------------------------|--|--| | 220 | 0.18-2.98 | 1.39±0.03 | HW | | | | 235 | 0.22-3.31 | 1.47±0.02 | HW | | | | 250 | 0.17-3.09 | 1.66±0.02 | HW | | | | 265 | 0.18-2.98 | 1.84±0.03 | HW | | | | 285 | 0.12-2.44 | 1.97±0.03 | HW | | | | 298 | 0.13-2.97 | 2.26±0.04 | HW | | | | 299 | 0.16-2.26 | 2.24±0.04 | Q | | | | 320 | 0.15-2.51 | 2.40±0.03 | HW | | | | 340 | 0.20-1.85 | 2.59±0.05 | Q | | | | 400 | 0.17-1.87 | 3.51±0.07 | Q | | | | 445 | 0.21-1.82 | 3.83±0.04 | Q | | | | 540 | 0.12-1.51 | 4.92±0.07 | Q | | | | 660 | 0.12-1.14 | 5.77±0.03 | Q | | | | 780 | 0.11-1.14 | 6.44±0.11 | Q | | | | 960 | 0.08-0.97 | 7.90±0.11 | Q | | | | a 0 12 kinatia mur | a 0.43 hipatia wwa at angle tamanawatuwa | | | | | $^{^{\}sigma}$ 8-13 kinetic runs at each temperature. b HW: halocarbon wax; Q: quartz. **TABLE 2** Experimental conditions and results of the relative measurements of k_1 | $T(\mathbf{K})$ | $[H_2]^a$ | $[H_2]/[Br_2]$ | $k_1/k_3 \ (\pm 2\sigma)$ | $k_1^{\ b}$ | |-----------------|-----------|----------------|---------------------------|-------------| | 320 | 0.64-26.5 | 0.58-25.9 | 0.187 ± 0.002 | 2.39 | | 370 | 0.49-16.3 | 0.51-17.2 | 0.238 ± 0.002 | 3.05 | | 575 | 0.45-14.0 | 0.54-16.7 | 0.414 ± 0.004 | 5.30 | **TABLE 3** Reaction F + D₂: summary of the measurements of the rate constant | <i>T</i> (K) ^a | $[D_2]$ (10 ¹³ molecule cm ⁻³) | $k_2 (\pm 2\sigma)^b$ (10 ⁻¹¹ cm ³ molecule ⁻¹ s ⁻¹) | Reactor surface ^c | |---------------------------|---|---|------------------------------| | 220 | 0.64-7.77 | 0.416±0.034 | HW | | 235 | 0.57-7.06 | 0.494±0.007 | HW | ^a Units of 10^{13} molecule cm⁻³. ^b Units of 10^{-11} cm³ molecule⁻¹ s⁻¹, estimated total uncertainty on k_1 is nearly 20% and includes the uncertainty on the rate constant of the reference reaction. | 2 | 250 | 0.64-6.04 | 0.580±0.009 | HW | |---|-------------|-----------|-------------|----| | 2 | 265 | 0.36-6.21 | 0.666±0.008 | HW | | 2 | 285 | 0.31-4.70 | 0.835±0.007 | HW | | 2 | 199 | 0.46-4.95 | 0.861±0.012 | Q | | 3 | 305 | 0.30-6.21 | 0.930±0.017 | HW | | 3 | 325 | 0.30-5.69 | 1.04±0.09 | HW | | 3 | 365 | 0.31-3.30 | 1.39±0.02 | Q | | 4 | 140 | 0.25-3.11 | 1.72±0.02 | Q | | 5 | 335 | 0.12-2.09 | 2.45±0.03 | Q | | 6 | 550 | 0.15-1.84 | 3.00±0.04 | Q | | 7 | ' 90 | 0.20-2.18 | 3.65±0.04 | Q | | 9 | 960 | 0.13-1.59 | 4.39±0.08 | Q | | | | | | | **TABLE 4** Experimental conditions and results of the relative measurements of k_1/k_2 | <i>T</i> (K) ^a | [H ₂] ^b | $[D_2]^b$ | k_1/k_2 (± 2 σ) | Reactor surface ^c | |---------------------------|--------------------------------|-----------|---------------------------|------------------------------| | 220 | 0.21-6.0 | 8.2 | 2.98±0.04 | HW | | 235 | 0.32-6.4 | 6.6 | 2.74±0.03 | HW | | 250 | 0.19-7.2 | 5.9 | 2.62±0.02 | HW | | 265 | 0.21-6.7 | 5.4 | 2.54±0.04 | HW | | 285 | 0.27-6.1 | 4.9 | 2.44±0.02 | HW | | 298 | 0.17-6.7 | 5.8 | 2.38±0.03 | HW | | 301 | 0.19-5.5 | 4.2 | 2.45±0.02 | Q | | 320 | 0.30-6.0 | 5.2 | 2.36±0.04 | HW | | 365 | 0.11-4.7 | 4.6 | 2.31±0.02 | Q | | 440 | 0.18-4.6 | 3.9 | 2.12±0.01 | Q | | 535 | 0.12-4.9 | 4.0 | 2.08±0.02 | Q | | 650 | 0.18-4.7 | 3.2 | 1.90±0.02 | Q | | 790 | 0.08-3.6 | 2.5 | 1.85±0.04 | Q | | 960 | 0.06-3.1 | 2.0 | 1.81±0.02 | Q | ^a 10-13 runs at each temperature. ^b Units of 10¹³ molecule cm⁻³. ^c HW: halocarbon wax; Q: quartz. $[^]a$ 9-11 kinetic runs at each temperature. b estimated total uncertainty on k_2 is ≤ 15%. c HW: halocarbon wax; Q: quartz. #### FIGURE LEGENDS - **FIGURE 1** Reaction F + H₂: plots of pseudo-first-order rate constant k_1' versus concentration of H₂ at different temperatures. Partially shown error bars represent typical uncertainties (\leq 5%) on the determination of k_1' . - **FIGURE 2** Yield of FBr from F atom titration by the reaction with $Br_2 + H_2$ mixtures at different temperatures. Partially shown error bars represent typical uncertainties of the measurements ($\sim 5\%$). - **FIGURE 3** Reaction $F + H_2$: summary of the data on the temperature dependence of the reaction rate constant. - **FIGURE 4** Reaction $F + H_2$: comparison of the experimental data with theoretical calculations of the reaction rate constant. Potential energy surface (PES) used in calculations: SW (Stark and Werner), ³² FXZ (Fu, Xu and Zhang), ³³ CSZ (Chen, Sun and Zhang). ³⁰ - **FIGURE 5** Reaction F + D₂: plots of pseudo-first-order rate constant k_2 ' versus concentration of D₂ at different temperatures. - **FIGURE 6** Reaction $F + D_2$: summary of the available data on the temperature dependence of the reaction rate constant. - **FIGURE 7** Yield of DF from F atom titration with $D_2 + H_2$ mixtures at different temperatures. Partially shown error bars represent typical uncertainties of the measurements ($\sim 5\%$). - **FIGURE 8** Temperature dependence of the kinetic isotope effect k_1/k_2 . AM: k_1/k_2 calculated from the reported values of k_1 and k_2 ; RM: relative measurements of the k_1 to k_2 ratio. Partially shown error bars represent estimated total uncertainty of 10% on the present measurements. Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8.