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Leveraging the structure of musical preference in

content-aware music recommendation

Paul Magron∗, Cédric Févotte∗

Abstract

State-of-the-art music recommendation systems are based on collaborative filtering, which pre-
dicts a user’s interest from his listening habits and similarities with other users’ profiles. These
approaches are agnostic to the song content, and therefore face the cold-start problem: they cannot
recommend novel songs without listening history. To tackle this issue, content-aware recommenda-
tion incorporates information about the songs that can be used for recommending new items. Most
methods falling in this category exploit either user-annotated tags, acoustic features or deeply-learned
features. Consequently, these content features do not have a clear musicological meaning, thus they
are not necessarily relevant from a musical preference perspective. In this work, we propose instead
to leverage a model of musical preference which originates from the field of music psychology. From
low-level acoustic features we extract three factors (arousal, valence and depth), which accurately
describe musical taste. Then we integrate those into a collaborative filtering framework for content-
aware music recommendation. Experiments conducted on large-scale data show that this approach is
able to address the cold-start problem, while using a compact and meaningful set of musical features.

Keywords— Content-aware music recommendation, musical preference structure, collaborative filtering, cold-
start problem, matrix factorization.

1 Introduction

Music recommendation [1] consists in predicting users’ listening habits in order to suggest them novel tracks
that they might enjoy. This task, which is at the core of many commercial platforms, has been extensively
investigated, but remains challenging due to the complexity of music and to the lack of explicit and reliable users
feedback [2]. Among these many challenges, accounting for contextual information is of paramount importance, so
that recommendations are adequate with a specific situation or location [3]. Besides, music recommender systems
face the cold-start problem [4]: when a new song is added to a music catalog, there is no interaction data between
the users and this song. Consequently, the system cannot properly recommend this new item to existing users.
This problem, which is still considered as a major challenge in music recommendation research [5], is the topic of
interest of the present paper.

State-of-the-art approaches for music recommendation are based on collaborative filtering [2], a family of
techniques which rely solely on users’ listening history: the interest of a given user for a given song is predicted
using similarities between various user profiles. The users’ feedback are most often implicit and in the form of
playcounts, that is, how many times a given user has listened to a particular song. This listening history is
however noisy and lacks negative feedback data [2]. To alleviate this problem, weighted matrix factorization
(WMF) techniques [6, 7] process binarized data computed from the raw playcounts, and associate a measure
of confidence to these binarized feedback. This family of techniques has shown good performance in music
recommender systems [8]. More recently, with the advent of deep learning, collaborative filtering techniques
using deep neural networks (DNNs) have been proposed and yield promising results [9, 10]. However, WMF
techniques remain a solid choice, as they are light, flexible, and still compete with neural collaborative filtering
approaches [11].

Such approaches are however agnostic to any form of song-related content, which becomes a major issue
for new items: a collaborative filtering method is not able to recommend a song without listening history, and
therefore face the cold-start problem. This problem has been tackled with content-based methods, which aim to
exploit additional information about the items for recommendation [12, 13, 14]. For instance, [15] exploits tags
in a co-factorization framework, deep content-based approaches [16, 17] use acoustic features in conjunction with
collaborative filtering, and [8] uses the last hidden layer of an auto-tagging DNN as content feature.

Even though these approaches have been shown useful for addressing the cold-start problem, these content
features lack a clear musicological meaning. Consequently, they are not necessarily relevant in terms of musical
preference, and appropriate for recommendation. On the other hand, research has been conducted on the structure
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of musical preference [18]. Recent studies [19, 20, 21] notably show that musical preference can be accurately
described by using a set of three factors termed arousal, valence and depth (AVD). The usefulness of musical
preference models for recommendation has been pointed out in [22], but to the best of our knowledge, it has only
been exploited in [23]. However, this approach is not based on collaborative filtering and relies on expert ratings
for estimating a genre-specific musical preference model, which hinders its deployment at a larger scale.

In this paper, we propose to leverage the AVD model of musical preference in music recommendation based
on collaborative filtering. Unlike prior work using tag-based or deeply-learned features, we claim that using
descriptors that characterize musical preference is appropriate for recommendation. We therefore aim at bridging
the gap between music recommendation and music psychology, which has notably been motivated in a recent
survey [5]. We compute the AVD factors and we integrate them as content features into a WMF-based framework
for collaborative filtering. We experimentally assess the potential of this method for cold-start recommendation,
where it notably outperforms a pure content-based method.

The rest of this paper is structured as follows. Section 2 presents the collaborative filtering framework.
Section 3 describes the AVD model. Section 4 details the music recommendation experiments. Finally, Section 5
draws some concluding remarks.

2 Collaborative filtering model

In this section, we present the content-aware collaborative filtering framework [8] on which our method is based.
Even though the literature on matrix factorization models is quite abundant, we adopted this WMF framework as
it was shown appropriate for handling implicit feedback data [2, 16]. We first describe the baseline WMF model,
and then present its content-aware extension.

2.1 Weighted matrix factorization

We consider playcount data Y ∈ RU×I , where U and I respectively denote the number of users and items. The
(u, i)-th entry of Y, denoted yu,i, is the number of times the song i has been listened to by user u.

WMF [2, 7] models the data as the product of two low-dimensional factors: a (transposed) user preferences
matrix W ∈ RK×U and an item attributes matrix H ∈ RK×I . The rank K of the decomposition is chosen such
that K(U + I) << UI to ensure dimensionality reduction. In a probabilistic framework [6], these factors are
usually assumed to be drawn from centered normal distributions with scaling parameters λW and λH :

∀u ∈ {1, ..., U}, wu ∼ N (0, λ−1
W IK),

∀i ∈ {1, ..., I}, hi ∼ N (0, λ−1
H IK),

(1)

where wu (resp. hi) is the u-th (resp. i-th) column of W (resp. H), and IK is the identity matrix of dimension K.
In order to better account for the over-dispersed nature of the raw data, it is common to consider the binarized
playcount matrix R, which indicates whether a user has listened to a song more than a certain amount of times
or not [8]. Note that alternative strategies have been proposed to address this issue, notably by crafting refined
statistical models based on the Poisson or compound Poisson distributions [24, 25, 26].
The generative process for the observed data is then:

∀u, i, ru,i ∼ N (wT
uhi, c

−1
u,i), (2)

where T denotes the matrix transpose and

cu,i = 1 + α log
(

1 +
yu,i
ε

)
(3)

is called the confidence, with α = 2 and ε = 10−6 [2, 8]. The model defined by (1) and (2) is estimated in a
maximum a posteriori sense. Then, recommendation can be done based on the predicted ratings r̂u,i = wT

uhi.
However, this only applies to songs for which some listening history is available, hence facing the cold-start
problem.

2.2 Content-aware WMF

In order to incorporate content information in WMF, the authors in [8] propose to modify the prior on the item
attributes matrix (1), which rewrites:

hi ∼ N (φ(zi), λ
−1
H IK), (4)

where zi ∈ RL is a content feature vector of dimension L, and φ is a mapping between this vector and the item
attributes vector hi. The authors consider a linear mapping: φ(zi) = Bzi with B ∈ RK×L. Estimating the
parameters with maximum a posteriori results in the following optimization problem:

min
W,H,B

∑
u,i

cu,i(ru,i −wT
uhi)

2 + λW

∑
u

||wu||2 + λH

∑
i

||hi −Bzi||2, (5)
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Figure 1: Illustration of the content-aware collaborative filtering: content features can be extracted using
an auto-tagging DNN (left, as in [8]) or using the AVD model (right, proposed).

where ||.|| denotes the Euclidean norm. Canceling the gradient of the loss in (5) with respect to each parameter
iteratively yields the following update rules:

wu = (Hdiag(cu)HT + λW IK)−1Hdiag(cu)ru, (6)

hi = (Wdiag(ci)W
T + λHIK)−1(Wdiag(ci)ri + λHBzi), (7)

B = HZT(ZZT + λBIL)−1, (8)

where ru = [ru,1, ..., ru,I ]T and ri = [r1,i, ..., rU,i]
T (and similarly for cu and ci), Z = [z1, ..., zI ], and λB is a small

offset added to the diagonal of ZZT in order to avoid numerical problems when inverting it [8].
The advantage of this approach is two-fold. First, the content features serve as a regularizer for the collabo-

rative filtering model parameters, and promotes a more meaningful representation learning. Second, this model
can be used for solving the cold-start problem. Indeed, for a new item for which there is no user-item interaction,
one can still predict a rating using r̂u,i = wT

uBzi, from which recommendation can be performed.

3 Content features

In this section, we briefly describe the deep features used in [8]. We then motivate the use of the AVD model
which we present subsequently. These two approaches are illustrated in Figure 1.

3.1 Deep features

In [8], the authors use as content features a latent representation that is extracted from an auto-tagging DNN,
which is a system that aims at predicting music-related labels (such as genre) from music audio [27]. A set of
1028 vector-quantized timbre features is calculated for each song, and fed as input to a DNN which predicts a
set of tags associated with each song among 581 possible tags. The proposed DNN consists of 3 feed-forward
layers which serve as feature extractor, plus a logistic regression layer which serves as classifier. Once the tagging
network is trained in a supervised fashion, the authors use the output of the last hidden layer as content features
zi of dimension L = 1200.

This approach allows to alleviate the cold-start problem, but it suffers from several drawbacks. First, the
quality of the content features is highly dependent on the performance of the auto-tagging network. While
these methods have significantly improved in the recent years [27], they are still limited by the noisy nature
of the tags, which are user-annotated. Besides, this approach remains computationally demanding and the high
dimensionality of the features suggests that it might be strongly redundant. Finally, the extracted content features
are not guaranteed to characterize musical preference, and therefore lack a clear musicological meaning, which we
propose to overcome in the following.

3.2 The AVD model

Studies in the field of psychology of music have been conducted in order to design a model of musical preference.
Early research has pointed out that the preference for musical genres can be described in terms of five factors,
termed mellow, unpretentious, sophisticated, intense, and contemporary (MUSIC) [18]. The MUSIC model was
shown to accurately describe preference for genre, but later studies [19, 20, 21] focused on more general musical
preference attributes (i.e., non-genre specific). These studies outlined that musical preference can be conceptual-
ized using three factors:
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• Arousal, which describes how energetic and intense a music piece is (e.g., rousing or calm);

• Valence, which is related to the perceived emotional content of a song (e.g., happy or sad);

• Depth, which is a general indicator of level of sophistication (e.g., complicated or simple).

This AVD model has been shown to correlate well with high-level descriptors of music, whether those are expert-
annotated [20] or automatically computed [21]. Since the AVD factors are a compact representation that is
meaningful from a musical preference perspective, we claim that they are appropriate content features to incor-
porate in the collaborative filtering model presented in Section 2.2.

To compute the AVD factors, we follow the procedure used in [21]. For each song, musical features are
computed using the Essentia toolbox [28], a collection of a variety of music information retrieval algorithms. In a
nutshell, Essentia takes as input the raw audio waveform and outputs a number of features, both low-level (e.g.,
spectral and temporal descriptors) and high-level (e.g., descriptors such as “happy”, “sad” or “danceable”). We
retain the 16 high-level features listed in Table 4.2, which we scale to have zero mean and unit variance. We then
perform a principal component analysis (PCA) with 3 factors and oblimin rotation, which allows the factors to
be non-orthogonal for better interpretability [29]. The resulting principal components are the AVD factors, which
we use as content features zi of dimension L = 3.

Note that we also considered a larger set of Essentia features comprising both low- and high-level descriptors
(84 in total). This yields principal components with overall less correlation with high-level features. This suggests
that the AVD model mostly captures the information contained in high-level features, and that adding some
extra low-level information hampers the easiness to interpret these factors. Finally, this approach did not yield
any significant improvement in terms of recommendation, thus we do not report hereafter the detailed results
obtained in this setting.

4 Experiments

In this section, we present the experiments conducted to assess the potential of the AVD model for music rec-
ommendation. In the spirit of reproducible research, we will release the code related to these experiments along
with the final version of the paper, as well as the Essentia features data.1

4.1 Protocol

Dataset. We use the Taste Profile dataset which is part of the Million Song Dataset [30]. It provides listening
counts of 1 million users and 380, 000 songs. We only keep the songs whose Essentia (and consequently AVD)
features can be calculated, which corresponds to a total of 204, 316 songs [21]. The playcount data is binarized
by retaining values of five or higher as implicit feedback [31]. As in [8, 15], in order to keep the computational
burden low, we retain the top songs and users (sorted by playcounts) and we remove inactive users and items
(that is, we only keep users who listened to at least 20 songs, and songs which have been listened to by at least
50 users). The resulting dataset comprises 9, 132 users and 7, 674 songs, for a total of 247, 414 (0.35 %) non-zero
playcounts.
We use 95 % of the songs for training the WMF model, which corresponds to an in-matrix recommendation
task. That is, the corresponding playcounts are split into 70 %, 20 % and 10 % for training, validation and
in-matrix testing, respectively. The playcounts corresponding to the remaining 5 % of the songs are used for an
out-of-matrix recommendation task. This corresponds to the cold-start scenario, since the WMF model has not
been trained on these songs.

Methods. We compare the content-free WMF (used as a baseline for in-matrix recommendation) to its content-
aware counterpart. As for content features, we use the AVD factors estimated according to the protocol described
in Section 3.2, as well as the Essentia features before PCA. Even though the deep features presented in Section 3.1
would constitute an interesting comparison reference, we were not able to reproduce the results from [8] as we
faced some technical issues when re-implementing the auto-tagging network. Following previous studies [8], WMF
is run with 20 iterations and rank K = 50. The hyperparameters λW and λH are tuned on the validation set
using the normalized discounted cumulative gain (NDCG, see below), and λB = 10−2.
Since content-free WMF cannot perform an out-of-matrix recommendation task, we implemented a pure content-
based method as a baseline for cold-start recommendation based on [23]. This method consists in computing a
mean AVD preference vector for each user from the training set, and then performing recommendations based on
similarities between this mean AVD preference vector and the AVD factors extracted from novel songs. Note that
the original method in [23] used the MUSIC factors [18], but we use here the AVD factors for a fair comparison
with our proposed content-aware collaborative filtering technique.

1https://zenodo.org/record/3860557#.Xs-b7R9fg5l
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Arousal Valence Depth

Mirex clusters
1 (Rousing, Passionate) 0.56 -0.11 -0.12
2 (Fun, Cheerful) -0.03 0.78 0.01
4 (Humorous, Witty) -0.05 0.63 0.12
5 (Aggressive, Intense) 0.34 -0.55 0.30

Mood-related
Aggressive 0.63 -0.48 -0.02
Happy 0.52 0.37 -0.36
Party 0.69 0.05 0.40
Relaxed -0.84 0.01 0.14
Sad -0.80 0.07 -0.21

Sound-related
Acoustic -0.78 0.04 -0.25
Average loudness 0.59 0.14 -0.07
Danceable 0.23 0.42 0.52
Dissonance 0.86 -0.03 -0.04
Dynamic complexity -0.57 0.07 0.21
Electronic 0.08 -0.01 0.74
Instrumental -0.35 -0.06 0.23
Tonal 0.04 0.15 -0.60

Table 1: Correlations between the high-level Essentia features and the AVD factors.

Evaluation metric. We use the NDCG [32] as a measure of the overall quality of the recommendation. For
each user u, we compute a ranked list of items in the test set based on the predicted preference r̂u. We then
compute the relevance of this list with respect to the ground truth preferences (that is, the ratings that were left
out for testing): relu,i = 1 if the item i is in the listening history of user u and 0 otherwise. In order to favor
recommendations that place the test items high in the list, we apply a discounted weight to the relevance, which
yields the discounted cumulative gain (DCG), and from which its normalized version (ranging from 0 to 1) can
be obtain:

DCGu =

I∑
i=1

relu,i
log2(i+ 1)

, NDCGu =
DCGu

IDCGu
, (9)

where IDCG is the ideal DCG, which corresponds to the DCG of a perfectly ranked list. Finally, these scores are
averaged over users to yield an overall recommendation performance.

4.2 Features analysis

First, we analyze the AVD factors computed according to the protocol presented in Section 3.2. We report in
Table 4.2 the correlation between the high-level Essentia features and the AVD factors. We observe that these
correlations are consistent with the definition of these factors. Indeed, the arousal component positively correlates
with features such as “rousing” or “aggressive” and negatively correlates with “relaxed” or “sad”. The valence
factor has a high loading on features such as “happy”, “fun” and “danceable”, while it is negatively correlated
with “aggressive” and “intense”. In order to subjectively assess the validity of these factors, we examine the
songs with maximum and minimum AVD values (the interested reader can use the provided code to replicate and
extend this analysis). We observe that maximum arousal songs belong to the punk, rock or metal genres, and
exhibit relatively high aggressiveness and energy, while low-valence pieces are mostly tracks with a dark and/or
sad atmosphere and lyrical content. These subjective assessments are consistent with the correlations between
high-level Essentia features and the AVD factors highlighted in Table 4.2.

The meaning of the depth factor is less clear: it highly correlates with “electronic” and its lowest loading is
on the “tonal” feature, which suggests that this factor may characterize contemporary and intricate pieces, which
are indeed encountered among the top-depth songs. However, its high correlation with the “danceable” feature
might appear as contradictory with this description. Note that this ambiguity of the depth factor, as well as these
general trends, are overall consistent with the findings of previous studies [20, 21].

4.3 Recommendation results

Table 4.3 presents the results in terms of NDCG for in- and out-of-matrix recommendation. For in-matrix rec-
ommendation, the performance of the methods are similar. A slight improvement is obtained when incorporating
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In-matrix Out-of-matrix

Content-free WMF 0.35 −
Pure content − 0.19
Content-aware WMF

Essentia 0.36 0.22
AVD 0.35 0.21

Table 2: Recommendation performance expressed with the NDCG averaged over users (higher is better).

some content information within WMF in the form of Essentia features, but this improvement is no longer ob-
served when using the AVD model instead. This framework is known to work quite well on those datasets [8], thus
this collaborative filtering method do not benefit greatly from adding extra content information for recommending
items which already have some listening history.

The advantage of content-aware WMF appears more clearly for out-of-matrix recommendation, where the
usage of the proposed features alleviates the cold-start problem. Using the set of Essentia features slightly
outperforms using the AVD factors. Overall, both content-aware WMF methods outpeform the pure content
baseline. This reveals the appropriateness of the AVD model for addressing the cold-start problem, and it
particularly outlines its relevance when combined with user-iterm interaction data in a collaborative filtering-
based framework.

Finally, unlike the approach in [8] which used deep features, our approach is light (it does not require to train
an auto-tagging DNN) and relies on content features with a clear musicological meaning.

5 Conclusion

In this paper, we proposed to leverage the AVD model of musical preference for music recommendation, which was
shown to correlate well with high-level musical properties. We extracted the AVD factors from audio excerpts and
integrated them into a content-aware collaborative filtering method. This approach has shown its potential for
music recommendation, notably for addressing the cold-start problem in a computationally very light framework.

Future work will focus on combining this model with other types of content (such as tags or lyrics) in order to
fully exploit the available data for recommendation. Finally, we will also explore alternative mappings between
content features and item attributes, such as non-linear and/or deep.
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