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We investigate estimation in the Poisson regression model when the count response is right-censored and the censoring indicators are missing at random. We propose several estimators based on the regression calibration, multiple imputation and augmented inverse probability weighting methods. Under appropriate regularity conditions, we prove the consistency of our estimators and we derive their asymptotic distributions. Simulation experiments are carried out to investigate the finite sample behaviour and relative performance of the proposed estimates.

Introduction

Poisson regression is a popular tool for modeling the relationship between a count response (such as the number of cases of a specific disease in epidemiology, or the number of insurance claims within a given period of time) and a set of predictors or covariates. Over the past years, Poisson regression has been extended to accommodate censored count data. Although censoring is usually associated to lifetime data analysis, count data can also be censored, the most common type being right-censoring, which occurs when it is only known that the true count is higher than the observed one. For example, consider a study investigating the smoking habits of some population, where people report their number of cigarettes smoked per day. If one possible answer is "20 cigarettes or more", all cigarettes counts greater than 20 are right-censored at 20. Ignoring censoring is known to yield biased estimates and thus, incorrect inferences. Statistical inference in the censored Poisson regression model and its extensions was therefore addressed by several authors ; see, for example, [START_REF] Terza | A Tobit-type estimator for the censored Poisson regression model[END_REF], [START_REF] Caudill | Modeling household fertility decisions: Estimation and testing of censored regression models for count data[END_REF], [START_REF] Famoye | Censored generalized Poisson regression model[END_REF], [START_REF] Xie | Diagnostics analysis in censored generalized Poisson regression model[END_REF], [START_REF] Mahmoud | On estimating parameters of censored generalized Poisson regression model[END_REF] for censored generalized Poisson regression, [START_REF] Karlis | Finite mixtures of censored Poisson regression models[END_REF] for finite mixtures of censored Poisson regressions and [START_REF] Saffari | Zero-inflated Poisson regression models with right censored count data[END_REF] and Nguyen andDupuy (2019, 2020) for zero-inflated censored Poisson regression. Censored models for count data can be conveniently specified by introducing a censoring indicator which is set to 1 if the observed count is not censored and 0 otherwise. In this paper, we consider the situation where the censoring indicator is missing for some sample individuals. In the context of survival analysis, this issue has been considered by several authors. For example, [START_REF] Van Der Laan | Efficient estimation from right-censored data when failure indicators are missing at random[END_REF] and [START_REF] Subramanian | Survival analysis for the missing censoring indicator model using kernel density estimation techniques[END_REF][START_REF] Subramanian | Multiple imputations and the missing censoring indicator model[END_REF] address estimation of the survival function of a random survival time with missing censoring indicators. [START_REF] Mckeague | Product-limit estimators and Cox regression with missing censoring information[END_REF] consider estimation in Cox proportional hazards regression model with missing completely at random censoring indicators. [START_REF] Wang | Hazard function estimation with cause-of-death data missing at random[END_REF] and [START_REF] Brunel | Nonparametric estimation for survival data with censoring indicators missing at random[END_REF] propose various nonparametric estimates of the hazard and conditional hazard functions with censoring indicators missing at random. [START_REF] Wang | Linear regression analysis of survival data with missing censoring indicators[END_REF] investigate estimation in the linear regression model for survival data with missing censoring indicators. Estimation in censored Poisson regression with missing censoring information is still an open problem. Our aim in this paper is to provide and compare several estimates adapted to this setting.

Missing data problems have given rise to a rich literature and several estimation methods have been proposed for this setting. A common and simple approach is to exclude individuals with missing data. This is the so-called complete-case analysis. This method can induce bias and substantial variance increase. Two alternatives are regression calibration and multiple imputation. In regression calibration, missing data are replaced by their conditional expectation given the observed data. In multiple imputation, missing data are replaced by data generated from an imputation model. This imputation is repeated M times, generating M completed data sets. Each of them is analysed and an overall estimator is obtained by combining the estimates of the M completed samples. Both methods require a model for the missing data given the observed data. Inverse probability weighting constitutes another alternative method for dealing with missing data (see for example [START_REF] Seaman | Review of inverse probability weighting for dealing with missing data[END_REF] for a review of this method). Similarly to the complete-case analysis, inverse probability weighting only uses complete cases, but weights are used to rebalance the set of complete cases. Calculating these weights requires a model for the probability that an individual has complete data. Augmented inverse probability weighting was then proposed to ensure robustness against misspecification of the missingness model (see, for example, [START_REF] Tsiatis | Semiparametric Theory and Missing Data[END_REF] for a detailed account on the method).

In this paper, we investigate, both theoretically and numerically, the regression calibration, multiple imputation and augmented inverse probability weighting estimators of the regression parameter in the censored Poisson regression model with missing censoring indicators. Our analysis of these estimates will be based on parametric assumptions for the conditional models for missing data and the missingness mechanism. The plan of the paper is as follows. In Section 2, we describe the model setup and we introduce the notations that will be used throughout the paper. In Section 3, we introduce our regression calibration estimator and we establish its consistency and asymptotic normality. In Sections 4 and 5, we propose our multiple imputation and augmented inverse probability weighted estimators, and we derive their asymptotic properties. All our theoretical derivations are based on an incomplete gamma function formulation of the distribution function of the Poisson regression model. Consistent asymptotic variance estimates are also proposed for the regression calibration, multiple imputation and augmented inverse probability weighted estimators. In Section 6, we conduct a simulation study to assess the finite sample performance and robustness to parametric assumptions of the proposed estimates. Discussion and perspectives are given in Section 7. All proofs are deferred to appendices.

Model, data, notations

Let Y denote the count of interest and X = (1, X 2 , . . . , X p ) be a p-vector of covariates ( denotes the transpose operator). We assume that the conditional distribution of Y given X is given by a Poisson regression model with parameter λ = exp(β X), where β ∈ R p is a vector of unknown parameters.

We consider the situation where Y can be right-censored, that is, instead of the true Y , we eventually observe a value which is smaller than Y . This can be formalised by introducing a finite random variable C such that we observe either Assume that n independent individuals are available and that for each of them, we observe the triplet (Y * i , X i , δ i ) (with i ∈ {1, . . . , n}). Based on these observations, the likelihood of β is calculated as:

Y if Y < C or C if Y ≥ C,
L n (β) = n i=1 P(Y i = Y * i |X i ) δ i P(Y i ≥ Y * i |X i ) 1-δ i ,
from which we easily deduce the loglikelihood n (β) = log L n (β):

n (β) = n i=1    δ i Y * i β X i -e β X i -log(Y * i !) + (1 -δ i ) log   1 - Y * i -1 k=0 e -exp(β X i )+kβ X i k!      (2.1)
By standard asymptotic theory, the maximum likelihood estimator βn = arg max β n (β) is consistent and asymptotically normal with variance -E[∂ 2 1 (β)/∂β∂β ]. Now, we consider the situation where some additional uncertainty can arise in the observations. Precisely, we consider the situation where the censoring indicator δ i is missing for some individuals. Let ξ be a missingness indicator, that is, ξ = 1 if δ is observed and ξ = 0 otherwise. Then, for individual i ∈ {1, . . . , n}, the observed data are

(Y * i , X i , δ i , ξ i = 1) or (Y * i , X i , ξ i = 0). (2.2)
We consider a missing at random (MAR) mechanism, which means that ξ and δ are independent given all other observed variables (a more restrictive assumption is that ξ and δ are independent, which is called "missing completely at random"). In the next sections, we propose, investigate and compare several estimators of β in this context.

Regression calibration estimation

The proposed estimator

Our first estimator is based on the regression calibration idea. It consists in replacing any missing δ i in (2.1) by its conditional expectation E(δ i |W i ), where W i contains the observed variables Y * i and X i and eventually (if available) some observed surrogate variables V i for δ i . Thus, we let

W i = (Y * i , X i , V i ) (we denote by q the dimension of W i
). An approximated version of δ i can then be defined as:

δi = ξ i δ i + (1 -ξ i )E(δ i |W i ).
The conditional expectation E(δ i |W i ) (or conditional probability P(δ i = 1|W i )) will generally be unknown and will have to be estimated. As is usual with the regression calibration approach, we assume that E(δ i |W i ) can be specified by a parametric model m(W i , θ), where θ is an unknown q-dimensional parameter with true value θ 0 . Remark 1. A convenient candidate for m(•, •) is the logistic regression model m(W i , θ) = logit -1 (θ W i ) but other choices, such as the probit, are possible. One may also allow for polynomial, spline and interaction terms in these models, in order to make them as flexible as desired. In what follows, we assume a general model m(W i , θ) with some regularity conditions stated in section 3.2.

At a first stage, we estimate θ 0 by maximizing a likelihood based on complete cases i ∈ {1, . . . , n|ξ i = 1} only:

θn = arg max θ n i=1 m(W i , θ) ξ i δ i (1 -m(W i , θ)) ξ i (1-δ i ) . (3.3) Let ṁ(W i , θ) = ∂m(W i , θ) ∂θ , m i (θ) = ṁ(W i , θ) m(W i , θ)(1 -m(W i , θ)) ,
and

Θ(θ) = E ṁ⊗2 (W, θ) m(W, θ)(1 -m(W, θ)) ξ ,
where for any column vector u, u ⊗2 = uu . Then it is rather straightforward to see that θn is asymptotically linear with influence function

Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )), that is : √ n( θn -θ 0 ) = 1 √ n n i=1 Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) + o P (1). (3.4)
Finally, it will be useful to note that if Y is distributed as Poisson with parameter λ, then for any u ∈ N, P(Y ≤ u) = u k=0 exp(-λ)λ k /k! = Γ(u + 1, λ)/u! where Γ(u, λ) = ∞ λ t u-1 exp(-t)dt is the incomplete gamma function, whose derivative with respect to λ is given by ∂Γ(u, λ)/∂λ = -exp(-λ)λ u-1 . Now, letting δi (θ) = ξ i δ i +(1-ξ i )m(W i , θ) be the approximation of δ i based on model m(W i , θ), we define our regression calibration estimator of β as

βn = arg max β n (β, θn ), where n (β, θn ) = n i=1    δi ( θn ) Y * i β X i -e β X i -log(Y * i !) + (1 -δi ( θn )) log   1 - Γ Y * i , e β X i (Y * i -1)!     
is an approximated version of (2.1).

Regularity conditions and asymptotic results

The following regularity conditions are needed to establish the asymptotic properties of the regression calibration estimator. We assume: C1 The covariates vectors X i and V i are bounded, for every i = 1, 2, . . . Before stating the asymptotics of βn , we introduce some further notations. Let h β be the function defined by:

h β (y, x) =
e -e β x +β xy (y -1)! -Γ(y, e β x ) (3.5)

for any β ∈ R p , x ∈ R p and y ∈ N\{0}. Let also π(W) = P(ξ = 1|W) and define the matrices

Σ 1 (β) = E XX δe β X + (δ -1) Y * -e β X -h β (Y * , X) h β (Y * , X) , Σ 2 (β, θ) = E X ṁ (W, θ) Y * -e β X -h β (Y * , X) (1 -π(W)) , Σ 3 (β, θ) = E X ṁ (W, θ) Y * -e β X -h β (Y * , X) .
We are now in position to state our first theorem. The proof is given in Appendix A.

Theorem 3.1. Assume that conditions C1-C4 hold. Then βn P -→ β 0 as n → ∞ and √ n( βn -β 0 ) is asymptotically normal with mean zero and variance Σ, where

Σ = Σ -1 1 (β 0 ) Σ 1 (β 0 ) + (2Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) Σ -1 1 (β 0 ).
Remark 3. If π(W) is identically equal to 1 (that is, if there is no missing data), Σ reduces to the asymptotic variance of the maximum likelihood estimator βn in (2.1), which in turn reduces to the usual asymptotic variance (E[XX e β 0 X ]) -1 in Poisson regression if m(W, θ 0 ) is identically equal to 1 (that is, no censoring can affect the data).

A consistent estimator of Σ is given by

Σ -1 1,n ( βn , θn ) Σ 1,n ( βn , θn ) + 2Σ 3,n ( βn , θn ) -Σ 2,n ( βn , θn ) Θ -1 n ( θn )Σ 2,n ( βn , θn ) Σ -1 1,n ( βn , θn ),
where

Σ 1,n (β, θ) = 1 n n i=1 X i X i δi (θ)e β X i + ( δi (θ) -1) Y * i -e β X i -h β (Y * i , X i ) h β (Y * i , X i ) , Σ 2,n (β, θ) = 1 n n i=1 X i ṁ (W i , θ) Y * i -e β X i -h β (Y * i , X i ) (1 -ξ i ), Σ 3,n (β, θ) = 1 n n i=1 X i ṁ (W i , θ) Y * i -e β X i -h β (Y * i , X i ) , Θ n (θ) = 1 n n i=1 ṁ⊗2 (W i , θ) m(W i , θ)(1 -m(W i , θ)) ξ i .
The consistency proof of the variance estimator uses similar arguments as the proof of consistency of βn , it is thus omitted. The estimator βn will be evaluated in the simulation study of Section 6.

Several methods have been proposed to address missing data problems in regression. Among them is the multiple imputation, which provides an alternative, popular and widely-used approach. The basic idea is to create several (say M ) completed data sets, by filling in plausible values for the missing data. Then, each filled sample is analysed as if it were the complete data set. Finally, the M imputed-samples inferences are combined into a single overall inference. In the next section, we investigate this approach for estimating β in our problem.

Multiple imputation

In this section, we assume, as in Section 3, that the conditional expectation E(δ i |W i ) can be specified by a parametric model m(W i , θ 0 ), and we denote by θn the maximum likelihood estimator of θ 0 based on the complete cases i ∈ {1, . . . , n|ξ i = 1}.

The imputation procedure is as follows. Each missing δ i is replaced by a random draw from the Bernoulli distribution B(m(W i , θn )). We obtain a completed data set. This procedure is repeated M times to form M imputed data sets. For a given θ, let D i,j (θ) ∼ B(m(W i , θ)) denote the imputation of δ i in the j-th completed data set (j = 1, . . . , M ). Let also

δ * i,j (θ) = ξ i δ i + (1 -ξ i )D i,j (θ)
be the random variable which is equal to

δ i is ξ i = 1 (that is, if δ i is observed) and to D i,j (θ) if ξ i = 0 (that is, if δ i is missing) (note
the difference between the imputation method, where δ * i,j (θ) ∈ {0, 1}, and the regression calibration approach, where δi (θ)

∈ [0, 1]). A single-imputation estimator β * n,j of β 0 is obtained by maximizing the imputed log-likelihood * n,j (β, θn ) = n i=1    δ * i,j ( θn ) Y * i β X i -e β X i -log(Y * i !) + (1 -δ * i,j ( θn )) log   1 - Γ Y * i , e β X i (Y * i -1)!      .
The final multiple imputation estimator β * n is obtained by averaging the M estimators β * n,j as:

β * n = 1 M M j=1 β * n,j .
The next theorem gives the asymptotic properties of β * n . Its proof is given in Appendix B.

Theorem 4.1.

For j = 1, . . . , M , let f β,θ,j (O i ) = X i {δ * i,j (θ)[Y * i -e β X i -h β (Y * i , X i )]+h β (Y * i , X i )}, where O i denotes the observation (2.2). Let also Σ * 1 (β, θ) = var( 1 M M j=1 f β,θ,j (O 1 ). If conditions C1-C4 hold, then β * n P -→ β 0 as n → ∞ and √ n( β * n -β 0 )
is asymptotically normal with mean zero and variance Σ * , where

Σ * = Σ -1 1 (β 0 ) Σ * 1 (β 0 , θ 0 ) + (2Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) Σ -1 1 (β 0 ).
A consistent estimator of Σ * can be obtained as

Σ-1 1,n ( β * n , θn ) Σ * 1,n ( β * n , θn ) + 2Σ 3,n ( β * n , θn ) -Σ 2,n ( β * n , θn ) Θ -1 n ( θn )Σ 2,n ( β * n , θn ) Σ-1 1,n ( β * n , θn ),
where

Σ * 1,n (β, θ) is the empirical covariance of the vectors 1 M M j=1 f β,θ,j (O i ) (i = 1, . . . , n), Σ1,n (β, θ) is the average 1 M M j=1 Σ 1,n,j (β, θ), with Σ 1,n,j (β, θ) = 1 n n i=1 X i X i δ * i,j (θ)e β X i + (δ * i,j (θ) -1) Y * i -e β X i -h β (Y * i , X i ) h β (Y * i , X i ) ,
and Σ 2,n , Σ 3,n and Θ n are as given in Section 3.

Regression calibration and multiple imputation rely on the ability of the investigator to formulate an appropriate model for E(δ|W). Misspecifying this model is likely to yield biased estimates of the parameters of interest. An alternative approach is to specify the selection probabilities π(W i ) = P(ξ i = 1|W i ) and to use the inverse probability weighting (IPW) of complete-case technique of [START_REF] Horvitz | A generalization of sampling without replacement from a finite universe[END_REF]. The basic idea of IPW is to adjust a complete-case analysis by weighting individuals with no missing data by the inverse of their selection probability. Selection probabilities are generally unknown and have to be estimated. Again, misspecifying the π(W i ), i = 1, . . . , n is likely to yield biased inference. Moreover, by discarding individuals with missing data, IPW is also known to yield loss of efficiency. For these reasons, the augmented IPW approach (AIPW henceforth, see [START_REF] Robins | Estimation of regression coefficients when some regressors are not always observed[END_REF] was proposed to improve the basic IPW. Since its introduction, the method has been shown to be doubly robust in several models, such as the proportional hazards model [START_REF] Wang | Augmented inverse probability weighted estimator for Cox missing covariate regression[END_REF]), the single-index model [START_REF] Guo | Empirical likelihood for single index model with missing covariates at random[END_REF], the additive hazards model [START_REF] Sun | Analysis of two-phase sampling data with semiparametric additive hazards models[END_REF] and the accelerated failure time model [START_REF] Steingrimsson | Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation[END_REF]. Double robustness refers to the fact that the AIPW estimates are consistent as long as either the selection probability model or the conditional expectation of the missing data is correctly specified. In the next section, we propose an augmented IPW estimating equation adapted to our problem, and we investigate the asymptotic properties of the resulting estimator.

Augmented inverse probability weighted estimation

Inspired by [START_REF] Horvitz | A generalization of sampling without replacement from a finite universe[END_REF], the inverse probability weighting of complete cases has become a classical estimation method in missing data problems. One drawback of the method is that the observed variables of subjects with missing data are not fully used, except through the estimation of the unknown selection probabilities. The AIPW method improves IPW by introducing an additional term involving contributions from individuals with some missing data (we refer to [START_REF] Tsiatis | Semiparametric Theory and Missing Data[END_REF] for a detailed account on the method and numerous references). Adapting this idea, we propose the following augmented IPW estimating equation for β:

n i=1 X i ξ i δ i π(W i ) + 1 - ξ i π(W i ) E(δ i |W i ) Y * i -e β X i -h β (Y * i , X i ) + h β (Y * i , X i ) .
The quantities E(δ i |W i ) and π(W i ) are unknown and have to be estimated. We assume that they can be specified by some parametric models m(W i , θ) and π(W i , γ) respectively, where θ and γ are unknown q-dimensional parameters with true values θ 0 and γ 0 . Let θn and γn be the maximum likelihood estimates of θ 0 and γ 0 . θn is given by (3.3). Similarly, γn can be obtained as

γn = arg max γ n i=1 π(W i , γ) ξ i (1 -π(W i , γ)) 1-ξ i .
Finally, our AIPW estimator βn of β solves the estimating equation ˘ n (β, θn , γn ) = 0, where

˘ n (β, θn , γn ) = n i=1 X i ξ i δ i π(W i , γn ) + 1 - ξ i π(W i , γn ) m(W i , θn ) Y * i -e β X i -h β (Y * i , X i ) + h β (Y * i , X i ) .
Before stating the asymptotic properties of βn , we introduce some further notations and regularity conditions. For any θ, γ ∈ R q , we let

δi (θ, γ) = ξ i δ i π(W i , γ) + 1 - ξ i π(W i , γ) m(W i , θ).
Assuming the parametric model π(W i , γ) for the selection probabilities, the maximum likelihood estimator γn is asymptotically linear with influence function

Σ -1 4 (γ 0 ) π i (γ 0 )(ξ i -π(W i , γ 0 )), where π(W i , γ) = ∂π(W i , γ) ∂γ , π i (γ) = π(W i , γ) π(W i , γ)(1 -π(W i , γ)) ,
and

Σ 4 (γ) = E π⊗2 (W, γ) π(W, γ)(1 -π(W, γ))
.

That is :

√ n(γ n -γ 0 ) = 1 √ n n i=1 Σ -1 4 (γ 0 ) π i (γ 0 )(ξ i -π(W i , γ 0 )) + o P (1). (5.6)
If the models m(W i , θ) and π(W i , γ) are misspecified, then by [START_REF] White | Maximum Likelihood Estimation of Misspecified Models[END_REF], there exists θ * and γ * such that θn P → θ * and γn P → γ * . Moreover, the asymptotic linear expansions for θn and γn are given by (3.4) and (5.6), with θ 0 and γ 0 replaced by θ * and γ * respectively. If the model m(W i , θ)

(respectively π(W i , γ)) is correctly specified, then θ * = θ 0 (respectively γ * = γ 0 ). Finally, let Σ 5 (β, θ, γ) = E X Y * -e β X -h β (Y * , X) 1 - ξ π(W, γ) ṁ (W, θ) , Σ 6 (β, θ, γ) = E X Y * -e β X -h β (Y * , X) ξ π (W, γ) π 2 (W, γ) (m(W, θ) -δ) , Σ 7 (β, θ, γ) = Σ 1 (β) + (2Σ 3 (β, θ) -Σ 5 (β, θ, γ)) Θ -1 (θ)Σ 5 (β, θ, γ),
and

Σ 8 (β, θ, γ) = Σ 1 (β) -Σ 6 (β, θ, γ)Σ -1 4 (γ)Σ 6 (β, θ, γ),
We assume the following additional regularity conditions:

C5 The parameter space for γ is a bounded set G ⊂ R q and the true parameter value γ 0 lies in the interior of G.

C6

The function π(w, γ) is strictly greater than 0 for all value of w in the support of W and all γ ∈ G.

C7

The function π(w, γ) is differentiable with respect to γ, for every w.

For every γ, γ ∈ G, |π(w, γ) -π(w, γ)| ≤ g(w) γ -γ for some bounded function g with E[g(W)] = u.
Conditions C5 and C7 for γ and π(•, •) are similar to conditions C2 and C4 for θ and m(•, •). We are now in position to state the asymptotic properties of our AIPW estimator of β. Proofs are given in Appendix C (consistency) and D (asymptotic normality).

Theorem 5.1. Assume that conditions C1-C7 hold. If either or both of the models m(W i , θ) and π(W i , γ) are well specified, then βn

P -→ β 0 as n → ∞.
From this result, the proposed estimator βn is doubly robust, in the sense that it estimates consistently β 0 as long as one of m(W i , θ) and π(W i , γ) is correctly modeled. The next theorem describes the asymptotic distribution of βn .

Theorem 5.2. Assume that conditions C1-C7 hold. Then, as n → ∞, √ n( βn -β 0 ) converges in distribution to the Gaussian random vector N (0, J), where

J =            Σ -1 1 (β 0 )Σ 7 (β 0 , θ 0 , γ * )Σ -1 1 (β 0 ) if m(W i , θ) is correctly specified, Σ -1 1 (β 0 )Σ 8 (β 0 , θ * , γ 0 )Σ -1 1 (β 0 ) if π(W i , γ) is correctly specified, Σ -1 1 (β 0 ) if both m(W i , θ
) and π(W i , γ) are correctly specified.

In order to estimate the asymptotic variance of βn , let:

Σ1,n (β, θ, γ) = 1 n n i=1 X i X i δi (θ, γ)e β X i + ( δi (θ, γ) -1) Y * i -e β X i -h β (Y * i , X i ) h β (Y * i , X i ) , Σ 4,n (γ) = 1 n n i=1 π⊗2 (W i , γ) π(W i , γ)(1 -π(W i , γ)) , Σ 5,n (β, θ, γ) = 1 n n i=1 X i Y * i -e β X i -h β (Y * i , X i ) 1 - ξ i π(W i , γ) ṁ (W i , θ), Σ 6,n (β, θ, γ) = 1 n n i=1 X i Y * i -e β X i -h β (Y * i , X i ) ξ i π (W i , γ) π 2 (W i , γ) (m(W i , θ) -δ i ) , Σ 7,n (β, θ, γ) = Σ1,n (β, θ, γ) + (2Σ 3,n (β, θ) -Σ 5,n (β, θ, γ)) Θ -1 n (θ)Σ 5,n (β, θ, γ),
and

Σ 8,n (β, θ, γ) = Σ1,n (β, θ, γ) -Σ 6,n (β, θ, γ)Σ -1 4,n (γ)Σ 6,n (β, θ, γ),
where Σ 3,n and Θ n are as given in Section 3. Then a consistent estimator of J is given by:

J n =              Σ-1 1,n ( βn , θn , γn )Σ 7,n ( βn , θn , γn ) Σ-1 1,n ( βn , θn , γn ) if m(W i , θ) is correctly specified, Σ-1 1,n ( βn , θn , γn )Σ 8,n ( βn , θn , γn ) Σ-1 1,n ( βn , θn , γn ) if π(W i , γ) is correctly specified, Σ-1 1,n ( βn , θn , γn ) if both m(W i , θ) and π(W i , γ) are correctly specified.
The proof is omitted.

A simulation study

In this section, we evaluate and compare the finite sample performance of the regression calibration (RC), multiple imputation (MI) and AIPW estimators. The simulation design is as follows.

For each of n individuals, the count response Y is simulated from a Poisson regression model with parameter

λ = exp(β 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + β 5 X 5 ),
where β = (0.2, -0.1, 0.4, 0.3, 0.5), X 2 ∼ N (0, 1), X 3 ∼ Bernoulli(0.3), X 4 ∼ N (0, 1.5) and X 5 ∼ uniform [2,5]. The censoring and missingness mechanisms are set to be logit(m(W, θ)

) = θ 1 +θ 2 X 2 + θ 3 X 3 +θ 4 X 4 +θ 5 X 5 +θ 6 Y and logit(π(W, γ)) = γ 1 +γ 2 X 2 +γ 3 X 3 +γ 4 X 4 +γ 5 X 5 +γ 6 Y * respectively.
In a first experiment, θ and γ are chosen so that approximately 20% of the subjects have a censored count response and 20% have a missing censoring indicator. In a second experiment, approximately 20% of the subjects have a censored count and 40% have a missing censoring indicator. We take a sample size n = 500.

We compare the RC, MI and AIPW estimates under three scenario : (i) only m(W, θ) is correctly modeled, (ii) only π(W, γ) is correctly modeled, (iii) both m(W, θ) and π(W, γ) are correctly modeled. In the first scenario, π(W, γ) is incorrectly modeled as logit(π(W, γ)

) = γ 1 + γ 2 X 2 + γ 3 X 3 + γ 4 Y * . In the second scenario, m(W, θ) is incorrectly modeled as logit(m(W, θ)) = θ 1 + θ 2 X 2 + θ 3 X 3 + θ 4 Y * .
Our simulation results are based on N = 1000 simulated samples. For each estimator, we report the average bias, average standard error (SE), empirical root mean square error (RMSE) and empirical coverage probability (CP) of 95%-level confidence intervals. MI estimates are obtained with M = 50 (from our numerical experiments, this is large enough to ensure stability of the estimates). To establish a benchmark for comparisons, we also include an estimator based on the full data set with no missing censoring indicators and the complete-case (CC) estimator which maximizes the log-likelihood (2.1) on the subsample of complete cases only.

The results are summarized in Table 1 (experiment 1) andTable 2 (experiment 2). In the first scenario, the RC, MI and AIPW methods appear to have similar performance, with slightly smaller average SE and RMSE for the AIPW estimates. Coverage probabilities are close to the nominal confidence level, indicating that the asymptotic variances are appropriately estimated. In the second scenario, the bias of the RC and MI estimates increase substantially, resulting in coverage probabilities smaller than desired. This was expected due to misspecification of model m(W, θ). On the other hand, the bias of the AIPW estimate stays moderate, and is similar to the first scenario, which is also expected due to the double robustness property stated in Theorem 5.1. The AIPW method generally achieves the smallest SE and RMSE but when the proportion of missing data increases, its coverage probabilities decrease around 85%-90%, which might indicate that the asymptotic variance is slightly under-estimated. Finally, when both models are correct, all three methods perform similarly (results for the RC and MI methods are the same as for the first scenario). Overall, this simulation study confirms the theoretical results stated in the previous sections. The regression calibration, multiple imputation and robust IPW methods provide similar results when either m(W, θ) or both m(W, θ) and π(W, γ) are correctly specified. When m(W, θ) is misspecified, the AIPW approach performs better than RC and MI in terms of point estimation (with substantially smaller bias for AIPW) but MI seems to provide better coverage probabilities (at the price of larger variance estimates). The CC estimates are outperformed by the three methods in all scenarios. Unreported simulation results with other sample sizes and censoring fractions provide similar observations.

Discussion

In this article, we have investigated several estimators of the regression parameter of the censored Poisson regression model when censoring indicators are partially missing. The regression calibration and multiple imputation estimates and their asymptotic variance estimators lead to reliable inferences when the model for the missing data given the observed variables is correctly specified, while the augmented inverse probability weighted estimator is robust against misspecification of either the model for the missing data or the missingness mechanism. Our estimators rely on parametric assumptions for the conditional models for the missing data and missingness mechanism. It is now important to assess the sensitivity of the statistical inference based on these estimates, with regard to deviations to the model assumptions. An alternative estimation strategy may rely on semiparametric or nonparametric estimation of the models for the missing data and mechanism. This stimulating topic is the subject for our next research.

Appendix A: Proof of Theorem 3.1

Consistency. The consistency of βn can be proved by verifying the conditions of the inverse function theorem [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF]. We describe the main steps of the proof and omit calculation details.

Let ˙ n (β, θ) := ∂ n (β, θ)/∂β. Straightforward calculations yield:

˙ n (β, θ) = n i=1 X i δi (θ) Y * i -e β X i + (1 -δi (θ))h β (Y * i , X i ) ,
where h β (y, x) is given by (3.5). We first need to show that ∂ ˙ n (β, θn )/∂β exists and is continuous in a neighborhood of β 0 . The map β → ˙ n (β, θn ) is trivially differentiable with respect to β and its derivative is given by:

∂ ˙ n (β, θn ) ∂β = n i=1 X i X i -δi ( θn )e β X i + (1 -δi ( θn )) Y * i -e β X i -h β (Y * i , X i ) h β (Y * i , X i ) ,
which is continuous in β.

Secondly, we need to show that n -1 ˙ n (β 0 , θn ) = o P (1). To see this, we decompose n -1 ˙ n (β 0 , θn ):

1 n ˙ n (β 0 , θn ) = 1 n ˙ n (β 0 , θn ) - ˙ n (β 0 , θ 0 ) + 1 n ˙ n (β 0 , θ 0 ).
By the weak law of large numbers, n -1 ˙ n (β 0 , θ 0 ) converges in probability to

E X δ(θ 0 )(Y * -e β 0 X ) + (1 -δ(θ 0 ))h β 0 (Y * , X) = E X E( δ(θ 0 )|W)(Y * -e β 0 X ) + (1 -E( δ(θ 0 )|W))h β 0 (Y * , X) , (7.7) 
where the second line follows by taking the conditional expectation given W. Under the missing at random assumption,

E( δ(θ 0 )|W) = E(ξδ + (1 -ξ)E(δ|W)|W) = E(ξ|W)E(δ|W) + (1 -E(ξ|W))E(δ|W) = E(δ|W).
Therefore, (7.7) is equal to

E X E(δ|W)(Y * -e β 0 X ) + (1 -E(δ|W))h β 0 (Y * , X) = E X δ(Y * -e β 0 X ) + (1 -δ)h β 0 (Y * , X) ,
which is equal to 0 (this can be seen by taking successively the conditional expectations given {δ = 1} and X). Convergence to 0 of n -1 ( ˙ n (β 0 , θn ) -

˙ n (β 0 , θ 0 )
) is a consequence of the consistency of θn and of assumptions C1, C2, C4. Details are omitted.

Thirdly, we need to show that n -1 ∂ ˙ n (β, θn )/∂β converges in probability to a fixed matrix, uniformly in an open neighborhood of β 0 . We have:

1 n ∂ ˙ n (β, θ) ∂β = 1 n n i=1 X i X i -δi (θ)e β X i + (1 -δi (θ)) Y * i -e β X i -h β (Y * i , X i ) h β (Y * i , X i ) .
We proceed as above and decompose n -1 ∂ ˙ n (β, θn )/∂β as

1 n ∂ ˙ n (β, θn ) ∂β = 1 n ∂ ˙ n (β, θn ) ∂β - ∂ ˙ n (β, θ 0 ) ∂β + 1 n ∂ ˙ n (β, θ 0 ) ∂β .
The first term converges to 0 (by the consistency of θn and assumptions C1, C2, C4) and n -1 ∂ ˙ n (β, θ 0 )/ ∂β converges in probability to -Σ 1 (β) (by the weak law of large numbers). Therefore, n -1 ∂ ˙ n (β, θn )/ ∂β converges in probability to -Σ 1 (β). Under conditions C1 and C2, the derivative of n -1 ∂ ˙ n (β, θn )/ ∂β with respect to β is bounded, for every n. Hence the sequence (n

-1 ∂ ˙ n (β, θn )/∂β ) n is equicon- tinuous. It follows from Ascoli theorem that the convergence of n -1 ∂ ˙ n (β, θn )/∂β to -Σ 1 (β) is uniform around β 0 .
Having proved the conditions of the inverse function theorem, we conclude that βn converges in probability to β 0 . Asymptotic normality. A Taylor's expansion of ˙ n ( βn , θn ) around (β 0 , θ 0 ) yields

√ n( βn -β 0 ) = - 1 n ∂ ˙ n (β 0 , θ 0 ) ∂β -1 1 √ n ˙ n (β 0 , θ 0 ) + 1 n ∂ ˙ n (β 0 , θ 0 ) ∂θ √ n( θn -θ 0 ) + o P (1).
We have:

1 n ∂ ˙ n (β, θ) ∂θ = 1 n n i=1 X i Y * i -e β X i -h β (Y * i , X i ) (1 -ξ i ) ṁ (W i , θ) = Σ 2 (β, θ) + o P (1).
Combining this and (3.4), we can write:

√ n( βn -β 0 ) = - 1 n ∂ ˙ n (β 0 , θ 0 ) ∂β -1 1 √ n n i=1 X i δi (θ 0 )(Y * i -e β 0 X i ) + (1 -δi (θ 0 ))h β 0 (Y * i , X i ) + Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) + o P (1) := - 1 n ∂ ˙ n (β 0 , θ 0 ) ∂β -1 1 √ n n i=1 U i + o P (1). Now, note that var X i δi (θ 0 )(Y * i -e β 0 X i ) + (1 -δi (θ 0 ))h β 0 (Y * i , X i ) = Σ 1 (β 0 ), and var Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) = Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 )E m i ⊗2 (θ 0 )ξ i (δ i -m(W i , θ 0 )) 2 ×Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) = Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ),
since under the missing at random assumption, we have :

E m i ⊗2 (θ 0 )ξ i (δ i -m(W i , θ 0 )) 2 = E ṁ⊗2 (W i , θ 0 ) {m(W i , θ 0 )(1 -m(W i , θ 0 ))} 2 E ξ i (δ i -m(W i , θ 0 )) 2 |W i = E ṁ⊗2 (W i , θ 0 ) {m(W i , θ 0 )(1 -m(W i , θ 0 ))} 2 E [ξ i |W i ] E [δ i -2δ i m(W i , θ 0 ) +m 2 (W i , θ 0 )|W i = E ṁ⊗2 (W i , θ 0 ) m(W i , θ 0 )(1 -m(W i , θ 0 )) π(W i ) = Θ(θ 0 ).
We consider now the covariance structure of U i . We have

cov X i δi (θ 0 )(Y * i -e β 0 X i ) + (1 -δi (θ 0 ))h β 0 (Y * i , X i ) , Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) = E X i m i (θ 0 )E δi (θ 0 )(Y * i -e β 0 X i -h β 0 (Y * i , X i )) + h β 0 (Y * i , X i ) ξ i (δ i -m(W i , θ 0 ))|W i ×Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ), and 
E δi (θ 0 )(Y * i -e β 0 X i -h β 0 (Y * i , X i )) + h β 0 (Y * i , X i ) ξ i (δ i -m(W i , θ 0 ))|W i = E ξ i δ i (1 -m(W i , θ 0 ))(Y * i -e β 0 X i -h β 0 (Y * i , X i )) + ξ i h β 0 (Y * i , X i )(δ i -m(W i , θ 0 ))|W i = (1 -m(W i , θ 0 ))(Y * i -e β 0 X i -h β 0 (Y * i , X i ))m(W i , θ 0 )π(W i ), therefore, cov X i δi (θ 0 )(Y * i -e β 0 X i ) + (1 -δi (θ 0 ))h β 0 (Y * i , X i ) , Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) = E X i m i (θ 0 )(1 -m(W i , θ 0 ))(Y * i -e β 0 X i -h β 0 (Y * i , X i ))m(W i , θ 0 )π(W i ) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) = E X i ṁi (W i , θ 0 )(Y * i -e β 0 X i -h β 0 (Y * i , X i ))π(W i ) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) = (Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ). It follows that var(U i ) = Σ 1 (β 0 ) + (2Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ).
Finally, Theorem 3.1 follows from the multivariate central limit theorem and Slutsky's theorem.

Appendix B: Proof of Theorem 4.1

Consistency can be proved in much the same way as βn ; the proof is therefore omitted. We turn to asymptotic normality. A technical lemma is needed. For j = 1, . . . , M , let

˙ * n,j (β, θ) = ∂ * n,j (β, θ) ∂β = n i=1 X i δ * i,j (θ) Y * i -e β X i -h β (Y * i , X i ) + h β (Y * i , X i ) (7.8) := n i=1 f β,θ,j (O i ).
Then the following holds:

Lemma 1. Under conditions C1, C2 and C4 :

1 √ n ˙ * n,j (β 0 , θn ) -nE[ ˙ * 1,j (β 0 , θn )] -˙ * n,j (β 0 , θ 0 ) -nE[ ˙ * 1,j (β 0 , θ 0 )] P -→ 0 (7.9)
as n → ∞.

Proof of Lemma 1. In this proof, for notational simplicity, we will write f θ instead of f β 0 ,θ,j . First, note that

1 √ n ˙ * n,j (β 0 , θ) -nE[ ˙ * 1,j (β 0 , θ)] = 1 √ n n i=1 f θ (O i ) -nE[f θ (O 1 )] = G n f θ ,
where G n f θ denotes the empirical process evaluated at f θ . To prove the lemma, we first prove that the class of functions {f θ : θ ∈ Θ} is Donsker (see, for example, [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF] for a detailed account on empirical processes and Donsker classes). For that purpose, we decompose f θ in (7.8) as

f θ (O i ) = X i (f 1,θ (O i )+f 2,θ (O i )+f 3,θ (O i )), where f 1,θ (O i ) = -δ * i,j (θ)e β 0 X i +h β 0 (Y * i , X i ), f 2,θ (O i ) = δ * i,j (θ)Y * i and f 3,θ (O i ) = -δ * i,j (θ)h β 0 (Y * i , X i
) and we show that the classes F 1 := {f 1,θ : θ ∈ Θ}, F 2 := {f 2,θ : θ ∈ Θ} and F 3 := {f 3,θ : θ ∈ Θ} are Donsker.

For illustration purpose, we show that F 1 is Donsker. Here, it is useful to see

D i,j (θ) ∼ B(m(W i , θ)) as the random variable 1 {U i ≤m(W i ,θ)} , where U i is a uniform random variable on [0, 1], independent of O i . Let d := diam(Θ) denote the diameter of Θ ⊂ R q .
Then the size of Θ in every direction is at most d and thus, we can cover Θ with fewer than (d/κ) q cubes of length κ. The circumscribed balls have radius a multiple κ * := ακ of κ (α > 0) and these balls also cover Θ. Now, for a given θ ∈ Θ, consider the set

{f 1, θ : θ ∈ Θ ∩ B(θ, κ * )}, where B(θ, κ * ) = { θ ∈ R q : θ -θ ≤ κ * } is the ball of radius κ * and center θ. If θ ∈ B(θ, κ * ), condition C4 implies that |m(w, θ) -m(w, θ)| ≤ h(w)κ * , hence m(w, θ)-h(w)κ * ≤ m(w, θ) ≤ m(w, θ)+h(w)κ * and thus 1 {U i ≤m(W i ,θ)-h(W i )κ * } ≤ 1 {U i ≤m(w, θ)} ≤ 1 {U i ≤m(w,θ)+h(w)κ * } . From this, we can see that f L θ (O i ) ≤ f 1, θ(O i ) ≤ f U θ (O i ),
where

f L θ (O i ) = h β 0 (Y * i , X i ) -(ξ i δ i + (1 -ξ i )1 {U i ≤m(W i ,θ)+h(W i )κ * } )e β 0 X i , f U θ (O i ) = h β 0 (Y * i , X i ) -(ξ i δ i + (1 -ξ i )1 {U i ≤m(W i ,θ)-h(W i )κ * } )e β 0 X i .
Moreover, under conditions C1, C2 and C4, there exists a finite positive constant c 1 such that

E f U θ (O i ) -f L θ (O i ) 2 ≤ 2c 1 κ * v. Therefore, [f L θ , f U θ ] is an ε-bracket for {f 1, θ : θ ∈ Θ ∩ B(θ, κ * )}, with ε 2 = 2c 1 κ * v.
Since we can cover Θ with fewer than (d/κ) q balls of radius κ * , we can cover

F 1 = {f 1, θ : θ ∈ Θ} with fewer than (d/κ) q ε-brackets [f L θ , f U θ ], with ε = √ 2c 1 κ * v.
The number of such ε-brackets is thus bounded by (αd/κ * ) q = (2αc 1 dv/ε 2 ) q , which is order ε -2q . Hence, the bracketing integral is of order 1 0

√

-2q log ε dε, which is finite. Therefore, the class of functions F 1 is Donsker, by Theorem 19.5 of [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF].

By using similar arguments, we can prove that F 2 and F 3 are also Donsker classes. It follows that the class of functions {f 1,θ + f 2,θ + f 3,θ : θ ∈ Θ} is Donsker (sums of Donsker classes are Donsker). Finally, X is bounded (by condition C1), thus the class of functions {f θ : θ ∈ Θ} is Donsker.

It follows that the sequence of processes {G n f θ : θ ∈ Θ} converges in distribution to a tight limit process, and as such, is stochastically equicontinuous. Thus, Lemma 14.3 of [START_REF] Tsiatis | Semiparametric Theory and Missing Data[END_REF] and the consistency of θn imply that G n f θn -G n f θ 0 P -→ 0, which is exactly (7.9). This concludes the proof.

We come back to the proof of asymptotic normality. By a Taylor expansion of ˙ * n,j ( β * n,j , θn ) around β 0 (for j = 1, . . . , M ), we have:

0 = 1 √ n ˙ * n,j ( β * n,j , θn ) = 1 √ n ˙ * n,j (β 0 , θn ) + 1 n ∂ ˙ * n,j (β 0 , θn ) ∂β √ n( β * n,j -β 0 ) + o P (1).
Then, using Lemma 1, we obtain: (7.10) where the second line follows from a Taylor expansion of E[ ˙ * 1,j (β 0 , θn )] around θ 0 . Two technical lemmas are now needed : Lemma 2. For j = 1, . . . , M , we have

0 = 1 √ n ˙ * n,j (β 0 , θ 0 ) - √ nE[ ˙ * 1,j (β 0 , θ 0 )] + √ nE[ ˙ * 1,j (β 0 , θn )] + 1 n ∂ ˙ * n,j (β 0 , θn ) ∂β √ n( β * n,j -β 0 ) + o P (1) = 1 √ n ˙ * n,j (β 0 , θ 0 ) + √ n ∂E[ ˙ * 1,j (β 0 , θ 0 )] ∂θ ( θn -θ 0 ) + o P ( θn -θ 0 ) + 1 n ∂ ˙ * n,j (β 0 , θn ) ∂β √ n( β * n,j -β 0 ) +o P (1),
∂E[ ˙ * 1,j (β, θ)] ∂θ = Σ 2 (β, θ).
Proof of Lemma 2. First, we note that

E[δ * 1,j (θ)|W 1 ] = E[ξ 1 δ 1 + (1 -ξ 1 )D 1,j (θ)] = π(W 1 )m(W 1 , θ 0 ) + (1 -π(W 1 ))m(W 1 , θ). (7.11)
Hence, using (7.8) and iterating the expectation with conditioning on W 1 , we obtain:

E[ ˙ * 1,j (β, θ)] = E X 1 δ * 1,j (θ) Y * 1 -e β X 1 -h β (Y * 1 , X 1 ) + h β (Y * 1 , X 1 ) = E X 1 (π(W 1 )m(W 1 , θ 0 ) + (1 -π(W 1 ))m(W 1 , θ)) Y * 1 -e β X 1 -h β (Y * 1 , X 1 ) +h β (Y * 1 , X 1 ))] .
Finally, straightforward calculations yield

∂E[ ˙ * 1,j (β, θ)] ∂θ = E X 1 (1 -π(W 1 )) ṁ (W 1 , θ) Y * 1 -e β X 1 -h β (Y * 1 , X 1 ) = Σ 2 (β, θ).
Lemma 3. For j = 1, . . . , M ,

1 n ∂ ˙ * n,j (β 0 , θn ) ∂β P -→ -Σ 1 (β 0 ).
Proof of Lemma 3. Let j = 1, . . . , M . Straightforward calculations yield:

∂ ˙ * n,j (β 0 , θn ) ∂β = n i=1 X i X i -δ * i,j ( θn )e β 0 X i + (1 -δ * i,j ( θn ))h β 0 (Y * i , X i ) Y * i -e β 0 X i -h β 0 (Y * i , X i ) .
Then we decompose n -1 ∂ ˙ * n,j (β 0 , θn )/∂β as:

1 n ∂ ˙ * n,j (β 0 , θn ) ∂β = 1 n ∂ ˙ * n,j (β 0 , θn ) ∂β - 1 n ∂ ˙ * n,j (β 0 , θ 0 ) ∂β + 1 n ∂ ˙ * n,j (β 0 , θ 0 ) ∂β = 1 n n i=1 X i X i -e β 0 X i (1 -ξ i )(D i,j ( θn ) -D i,j (θ 0 )) +h β 0 (Y * i , X i ) Y * i -e β 0 X i -h β 0 (Y * i , X i ) (1 -ξ i )(D i,j (θ 0 ) -D i,j ( θn )) + 1 n ∂ ˙ * n,j (β 0 , θ 0 ) ∂β = 1 n n i=1 X i X i (1 -ξ i ) e β 0 X i + h β 0 (Y * i , X i ) Y * i -e β 0 X i -h β 0 (Y * i , X i ) ×(D i,j (θ 0 ) -D i,j ( θn )) + 1 n ∂ ˙ * n,j (β 0 , θ 0 ) ∂β = 1 n n i=1 Z i (1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)} ) + 1 n ∂ ˙ * n,j (β 0 , θ 0 ) ∂β , (7.12) 
where

Z i := X i X i (1 -ξ i )[e β 0 X i + h β 0 (Y * i , X i )(Y * i -e β 0 X i -h β 0 (Y * i , X i ))]
(in what follows, we will denote by Z i,( ,k) the ( , k)-th element of Z i ) and U i,j is a uniform random variable on [0, 1], independent of all other random variables.

Consider the first term in the right-hand side of (7.12). The random variable |1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)} | is equal to 0 or 1 and takes the value 1 with probability |m(W i , θ 0 ) -m(W i , θn )|. Let ε > 0. Then, for , k ∈ {1, . . . , p}, Markov's inequality implies that

P 1 n n i=1 Z i,( ,k) (1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)} ) > ε ≤ 1 ε E 1 n n i=1 Z i,( ,k) (1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)} ) .
Under conditions C1 and C2, there exists a finite positive constant c 2 such that |Z i,( ,k) | ≤ c 2 . Thus,

P 1 n n i=1 Z i,( ,k) (1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)} ) > ε ≤ c 2 εn n i=1 |m(W i , θ 0 ) -m(W i , θn )| ≤ c 2 εn n i=1 h(W i ) θ 0 -θn ≤ c 2 ε θ 0 -θn (v + o P (1)),
where the last two lines follow from the condition C4. Finally, consistency of θn implies that

1 n n i=1 Z i,( ,k) (1 {U i,j ≤m(W i ,θ 0 )} -1 {U i,j ≤m(W i , θn)}
) converges in probability to 0, and the first term in the right-hand side of (7.12) also converges to 0.

We consider now the second term in the right-hand side of (7.12). By the weak law of large numbers, n -1 ∂ ˙ * n,j (β 0 , θ 0 )/∂β converges in probability to

E X 1 X 1 -δ * 1,j (θ 0 )e β 0 X 1 + (1 -δ * 1,j (θ 0 ))h β 0 (Y * 1 , X 1 ) Y * 1 -e β 0 X 1 -h β 0 (Y * 1 , X 1 ) . (7.13) Using the fact that E[δ * 1,j (θ 0 )|W 1 ] = m(W 1 , θ 0 ) (see (7. 11 
)), and iterating the expectation in (7.13) with conditioning on W 1 , we easily show that (7.13) is equal to -Σ 1 (β 0 ).

Thus, we have shown that n -1 ∂ ˙ * n,j (β 0 , θn )/∂β converges in probability to -Σ 1 (β 0 ), which concludes the proof.

By combining (7.10) with Lemmas 2 and 3, we obtain the following approximation of β * n,j :

√ n( β * n,j -β 0 ) = Σ -1 1 (β 0 ) 1 √ n n i=1 X i δ * i,j (θ 0 )[Y * i -e β 0 X i -h β 0 (Y * i , X i )] + h β 0 (Y * i , X i ) + Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) + o P (1),
which in turn implies the approximation of the multiple imputation estimator β * n :

√ n( β * n -β 0 ) = 1 M M j=1 √ n( β * n,j -β 0 ) = Σ -1 1 (β 0 ) 1 √ n n i=1   1 M M j=1 X i δ * i,j (θ 0 )[Y * i -e β 0 X i -h β 0 (Y * i , X i )] + h β 0 (Y * i , X i ) + Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )) + o P (1) := Σ -1 1 (β 0 ) 1 √ n n i=1   1 M M j=1 f β 0 ,θ 0 ,j (O i ) + V i   + o P (1), (7.14) 
where

V i := Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 ) m i (θ 0 )ξ i (δ i -m(W i , θ 0 )).
We have already shown (see proof of Theorem 3.1) that var(

V i ) = Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ).
Similar calculations as in the proof of Theorem 3.1 yield:

cov(f β 0 ,θ 0 ,j (O i ), V i ) = (Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ). Therefore, var   1 M M j=1 f β 0 ,θ 0 ,j (O i ) + V i   = var   1 M M j=1 f β 0 ,θ 0 ,j (O i )   + var(V i ) + 2 M M j=1 cov(f β 0 ,θ 0 ,j (O i ), V i ) = Σ * 1 (β 0 , θ 0 ) + Σ 2 (β 0 , θ 0 )Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) +2 (Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) = Σ * 1 (β 0 , θ 0 ) + (2Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ). (7.15)
as n → ∞ (calculations are omitted). Moreover, if the model m(W i , θ) is correctly specified (that is, θ * = θ 0 ), then Σ 6 (β 0 , θ 0 , γ * ) = 0. Similarly, if model π(W i , γ) is correctly specified (and thus, γ * = γ 0 ), then Σ 5 (β 0 , θ 0 , γ * ) = 0. Now, taking Taylor's expansion of ˘ n ( βn , θn , γn ) around (β 0 , θ * , γ * ) gives

√ n( βn -β 0 ) = - 1 n ∂ ˘ n (β 0 , θ * , γ * ) ∂β -1 1 √ n ˘ n (β 0 , θ * , γ * ) + 1 n ∂ ˘ n (β 0 , θ * , γ * ) ∂θ √ n( θn -θ * ) + 1 n ∂ ˘ n (β 0 , θ * , γ * ) ∂γ √ n(γ n -γ * ) + o P (1). (7.17)
Finally, combining (3.4), (5.6), (7.16) and (7.17) and using the limit central theorem yield the asymptotic distribution of √ n( βn -β 0 ) when either m(W i , θ) or π(W i , γ) is correctly specified. Formulas for the asymptotic variance follow from easy albeit tedious calculations.

If both m(W i , θ) and π(W i , γ) are correctly specified, Σ 7 (β 0 , θ 0 , γ 0 ) = Σ 8 (β 0 , θ 0 , γ 0 ) = Σ 1 (β 0 ) and the asymptotic variance of βn reduces to Σ -1 1 (β 0 ), which concludes the proof. -0.0022 -0.0006 0.0008 0.0000 0.0005 0.0311 0.0021 -0.0065 -0.0048 -0.0073 -0.0022 -0.0006 0.0008 0.0000 0.0005 RC SE 0.0780 0.0153 0.0329 0.0117 0.0192 0.0769 0.0153 0.0330 0.0115 0.0188 0.0780 0.0153 0.0329 0.0117 0.0192 RMSE 0.1114 0.0218 0.0463 0.0163 0.0273 0.1177 0.0220 0.0476 0.0174 0.0286 0.1114 0.0218 0.0463 0.0163 0.0273 CP 0.9490 0.9490 0.9520 0.9570 0.9430 0.9100 0.9450 0.9330 0.9160 0.9120 0.9490 0.9490 0.9520 0.9570 0.9430 bias -0.0078 -0.0009 0.0020 0.0007 0.0017 -0.0069 -0.0008 0.0018 0.0009 0.0015 -0.0060 -0.0008 0.0017 0.0006 0.0013 AIPW SE 0.0765 0.0150 0.0322 0.0114 0.0187 0.0747 0.0149 0.0319 0.0112 0.0183 0.0766 0.0150 0.0323 0.0115 0.0188 RMSE 0.1106 0.0217 0.0459 0.0161 0.0271 0.1151 0.0221 0.0474 0.0170 0.0280 0.1106 0.0217 0.0459 0.0162 0.0271 CP 0.9410 0.9450 0.9430 0.9500 0.9390 0.8990 0.9280 0.9290 0.9150 0.9070 0.9420 0.9420 0.9450 0.9520 0.9420 bias -0.0026 -0.0006 0.0009 0.0000 0.0006 0.0301 0.0019 -0.0062 -0.0047 -0.0071 -0.0026 -0.0006 0.0009 0.0000 0.0006 MI SE 0.0772 0.0150 0.0324 0.0115 0.0189 0.0805 0.0155 0.0340 0.0120 0.0196 0.0772 0.0150 0.0324 0.0115 0.0189 RMSE 0.1109 0.0216 0.0460 0.0162 0.0272 0.1199 0.0222 0.0482 0.0177 0.0290 0.1109 0.0216 0.0460 0.0162 0.0272 CP 0.9410 0.9450 0.9430 0.9460 0.9380 0.9340 0.9500 0.9470 0.9330 0.9300 0.9410 0.9450 0.9430 0.9460 0.9380 0.7500 0.8940 0.9400 0.7800 0.8920 0.7500 0.8940 0.9400 0.7800 0.8920 0.7500 0.8940 0.9400 0.7800 0.8920 bias 0.0065 0.0004 -0.0021 -0.0006 -0.0013 0.0779 0.0010 -0.0173 -0.0113 -0.0181 0.0065 0.0004 -0.0021 -0.0006 -0.0013 RC SE 0.0793 0.0154 0.0336 0.0119 0.0196 0.0764 0.0153 0.0335 0.0115 0.0187 0.0793 0.0154 0.0336 0.0119 0.0196 RMSE 0.1134 0.0217 0.0465 0.0167 0.0281 0.1387 0.0220 0.0504 0.0204 0.0335 0.1134 0.0217 0.0465 0.0167 0.0281 CP 0.9430 0.9480 0.9580 0.9490 0.9460 0.7750 0.9420 0.9200 0.8080 0.7920 0.9430 0.9480 0.9580 0.9490 0.9460 bias -0.0052 0.0000 0.0004 0.0010 0.0012 -0.0061 -0.0005 0.0008 0.0014 0.0013 -0.0017 0.0000 -0.0002 0.0007 0.0003 AIPW SE 0.0765 0.0150 0.0322 0.0112 0.0188 0.0698 0.0149 0.0310 0.0105 0.0173 0.0765 0.0150 0.0323 0.0115 0.0188 RMSE 0.1115 0.0215 0.0455 0.0163 0.0276 0.1185 0.0225 0.0480 0.0177 0.0291 0.1113 0.0216 0.0455 0.0164 0.0275 CP 0.9390 0.9400 0.9410 0.9470 0.9370 0.8501 0.9080 0.8925 0.8273 0.8635 0.9410 0.9410 0.9430 0.9550 0.9420 bias 0.0056 0.0004 -0.0018 -0.0005 -0.0011 0.0763 0.0010 -0.0168 -0.0110 -0.0177 0.0056 0.0004 -0.0018 -0.0005 -0.0011 MI SE 0.0777 0.0150 0.0326 0.0116 0.0191 0.0822 0.0156 0.0352 0.0125 0.0200 0.0777 0.0150 0.0326 0.0116 0.0191 RMSE 0.1124 0.0215 0.0458 0.0165 0.0278 0.1412 0.0222 0.0514 0.0209 0.0340 0.1124 0.0215 0.0458 0.0165 0.0278 CP 0.9440 0.9420 0.9440 0.9470 0.9420 0.8330 0.9450 0.9390 0.8690 0.8440 0.9440 0.9420 0.9440 0.9470 0.9420 

correct m(W, θ) / incorrect π(W, γ) incorrect m(W, θ) / correct π(W, γ) both models correct estimator β 1 β 2 β 3 β 4 β 5 β 1 β 2 β 3 β 4 β 5 β 1 β 2 β 3 β 4 β 5 bias -0.

  and an indicator δ (called censoring indicator thereafter) which is equal to 1 if Y < C and 0 if Y ≥ C. Finally, we denote by Y * the observed count value (that is, Y * = min(Y, C)).
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Finally, it follows from (7.14), (7.15) and the multivariate central limit theorem that √ n( β * n -β 0 ) converges in distribution to a Gaussian vector with mean zero and variance Σ -1 1 (β 0 ) Σ * 1 (β 0 , θ 0 ) + (2Σ 3 (β 0 , θ 0 ) -Σ 2 (β 0 , θ 0 )) Θ -1 (θ 0 )Σ 2 (β 0 , θ 0 ) Σ -1 1 (β 0 ), which concludes the proof.

Appendix C: Proof of Theorem 5.1

Assume that the model m(W i , θ) is correctly specified. It is straightforward to check that the map β → ∂ ˘ n (β, θn , γn )/∂β exists and is continuous in a neighborhood of β 0 (condition i).

Now, we show that n -1 ˘ n (β 0 , θn , γn ) = o P (1) (condition ii). To see this, decompose n -1 ˘ n (β 0 , θn , γn ) as:

First, we consider the term Q

(1)

We have:

n,1, and Q i, denote the -th component of the vectors

n,1 and Q i respectively (for = 1, . . . , p), we have:

Conditions C1 and C6 ensure that there exists a finite positive constant c 3 such that

and the condition C7 implies that

Finally, the convergence of γn to γ * implies that Q

(1)

n,1, ( = 1, . . . , p), and thus

n,1 , converge to 0 as n → ∞. Similarly, under conditions C1 and C6, there exists a finite positive constant c 4 such that

and condition C4 implies

n,3, ( = 1, . . . , p), and thus Q

(1) n,3 , converge to 0 as n → ∞. Finally, by the law of large numbers,

With obvious notations, we have Q

(2)

n (θ 0 ). By the law of large numbers, Q

(2)

which is equal to 0 (see proof of Theorem 3.1). We also have

and using similar arguments as for Q

(1)

n,3 , we can show that this converges to 0 if model m(W i , θ) is correctly specified. Finally, Q

(2) n ( θn ) = o P (1), which concludes the proof of condition ii. Now, we prove that n

, some easy calculations yield:

Using similar arguments as for Q

(1) n,3 (respectively Q

(1)

n and Q

(1) n,2 ), we can show that T

(1)

n (respectively T

(2)

It follows that n -1 ∂ ˘ n (β, θn , γn )/∂β converges in probability to -Σ 1 (β). Uniformity of the convergence follows by the same arguments as in the proof of Theorem 3.1. Finally, having proved conditions i, ii and iii, we apply the inverse function theorem of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF] and conclude that βn converges in probability to β 0 if m(W i , θ) is correctly specified. The consistency proof of βn when model π(W i , γ) is correctly specified proceeds along the same lines and is omitted.