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Abstract: Background & Aims: The tumour microenvironment shapes tumour growth through
cellular communications that include both direct interactions and secreted factors. The
aim of this study was to characterize the impact of the secreted glycoprotein
ADAMTSL5, whose role in cancer has not been previously investigated, on
hepatocellular carcinoma (HCC).
Methods: ADAMTSL5 methylation status was evaluated through bisulfite sequencing,
and publicly available data analysis. ADAMTSL5 RNA and protein expression were
assessed in mouse models and HCC patient samples and compared to data from
published datasets. Functional studies, including association of ADAMTSL5 depletion
with responsiveness to clinically relevant drugs, were performed in cellular and in vivo
models. Molecular alterations associated with ADAMTSL5 targeting were determined
using proteomics, biochemistry, and RT-qPCR.
Results: Methylome analysis revealed hypermethylated gene body CpG islands at the
ADAMTSL5 locus in both mouse and human HCC, correlating with higher ADAMTSL5
expression.  ADAMTSL5 targeting interfered with tumorigenic properties of HCC cells
in vitro and in vivo, whereas ADAMTSL5 overexpression conferred tumorigenicity to
pre-tumoral hepatocytes sensitized to transformation by a modest level of MET
receptor expression. Mechanistically, ADAMTSL5 abrogation led to reduction of
several oncogenic inputs relevant to HCC, including reduced expression and/or
phosphorylation levels of receptor tyrosine kinases MET, EGFR, PDGFRβ, IGF1Rβ, or

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



FGFR4. This phenotype was associated with significantly increased sensitivity of HCC
cells to clinically relevant drugs, namely Sorafenib, Lenvatinib, Regorafenib. Moreover,
ADAMTSL5 depletion drastically increased expression of AXL, accompanied by a
sensitization to Bemcentinib.
Conclusions: Our results point to a role for ADAMTSL5 in maintaining the function of
key oncogenic signalling pathways, suggesting that it may act as a master regulator of
tumorigenicity and drug resistance in HCC.
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Abstract 

Background & Aims: The tumour microenvironment shapes tumour growth through cellular 

communications that include both direct interactions and secreted factors. The aim of this study 

was to characterize the impact of the secreted glycoprotein ADAMTSL5, whose role in cancer 

has not been previously investigated, on hepatocellular carcinoma (HCC). 

Methods: ADAMTSL5 methylation status was evaluated through bisulfite sequencing, and 

publicly available data analysis. ADAMTSL5 RNA and protein expression were assessed in 

mouse models and HCC patient samples and compared to data from published datasets. 

Functional studies, including association of ADAMTSL5 depletion with responsiveness to 

clinically relevant drugs, were performed in cellular and in vivo models. Molecular alterations 

associated with ADAMTSL5 targeting were determined using proteomics, biochemistry, and 

RT-qPCR.  

Results: Methylome analysis revealed hypermethylated gene body CpG islands at the 

ADAMTSL5 locus in both mouse and human HCC, correlating with higher ADAMTSL5 

expression.  ADAMTSL5 targeting interfered with tumorigenic properties of HCC cells in vitro 

and in vivo, whereas ADAMTSL5 overexpression conferred tumorigenicity to pre-tumoral 

hepatocytes sensitized to transformation by a modest level of MET receptor expression. 

Mechanistically, ADAMTSL5 abrogation led to reduction of several oncogenic inputs relevant 

to HCC, including reduced expression and/or phosphorylation levels of receptor tyrosine 

kinases MET, EGFR, PDGFRβ, IGF1Rβ, or FGFR4. This phenotype was associated with 

significantly increased sensitivity of HCC cells to clinically relevant drugs, namely Sorafenib, 

Lenvatinib, Regorafenib. Moreover, ADAMTSL5 depletion drastically increased expression of 

AXL, accompanied by a sensitization to Bemcentinib. 
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Conclusions: Our results point to a role for ADAMTSL5 in maintaining the function of key 

oncogenic signalling pathways, suggesting that it may act as a master regulator of 

tumorigenicity and drug resistance in HCC.   

 

Lay Summary  

The environment of cancer cells has profound effects on establishment, progression, and 

response of a tumour to treatment. Herein, we show that ADAMTSL5, a protein secreted by 

liver cancer cells and overlooked in cancer so far, is increased in this tumour type, is necessary 

for tumour formation and supports drug resistance. Adamtsl5 removal conferred sensitivity of 

liver cancer cells to drugs used in current treatment. This suggests ADAMTSL5 as a potential 

marker in liver cancer as well as a possible drug target.  

 

Highlights 

 ADAMTSL5 overexpression in HCC is associated with gene body CGI hypermethylation 

 ADAMTSL5 is strongly expressed in a large fraction of human HCC 

 Targeting ADAMTSL5 diminishes RTK inputs and interferes with tumorigenicity  

 ADAMTSL5 confers tumorigenicity to sensitized, non-transformed liver cells 

 Targeting ADAMTSL5 sensitizes HCC cells to drugs currently used in the clinic 
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Introduction 

Hepatocellular carcinoma (HCC) is the fourth-most common cause of cancer-related mortality 

worldwide and is growing in incidence.[1-3] It is characterized by a remarkable molecular 

heterogeneity among patients, with distinct (epi)genetic modifications and gene expression 

profile alterations.[4-6] Globally, 78 percent of liver cancer cases are secondary to chronic 

hepatitis B or C infections, most frequently associated with cirrhosis, a chronic disease in which 

fibrosis distorts liver architecture and predisposes to HCC.[6] In addition, HCC can be a sequel 

of alcoholic liver disease or non-alcoholic fatty liver disease (NAFLD), which are predisposing 

conditions whose incidence is also growing. While the knowledge of risk factors will improve 

likelihood of early diagnosis, current diagnostic methods show limited sensitivity and 

specificity, and most patients diagnosed with HCC are already at an advanced stage.[7] The 

perils of late diagnosis are compounded by the limited efficacy of current HCC therapies in 

patients with advanced-stage disease.[4, 8, 9] Sorafenib and Lenvatinib, which are first-line 

drugs, and second-line drugs Regorafenib, Cabozantinib, and Ramucirumab are the only 

approved drugs,[10] and they only marginally improve median survival . Moreover, there exist 

no a priori indicators of expected patient response to these treatments. Thus, there is a clear 

unmet need for identification of new pathways that could be targeted for therapy and for reliable 

biomarkers that might enable detection of early stage HCC. As in most cancers, the tumour 

microenvironment has a key role in HCC establishment, progression, and response to 

therapy.[6] Several microenvironment components affect composition and assembly of 

extracellular matrix (ECM), cancer cell interactions with ECM, components of the immune 

system, and activity of tumour-associated fibroblasts. Among these are secreted and cell-

surface proteases, and several secreted molecules that associate with and modify the ECM, 

called matricellular proteins.[11] 
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A variety of systems (-omics) approaches have been employed for identifying new disease-

causing pathways and biomarkers. For example, -omics outcomes were used to stratify patients 

for their potential response to the available therapeutic options.[8] We recently applied a 

systems strategy to identify new regulators of tumorigenesis using a clinically relevant HCC 

model, the Alb-R26Met mouse,[12, 13] where we also used in vivo longitudinal imaging to 

follow tumour evolution.[14] Among highly-ranked genes emerging from methylome analysis, 

we were intrigued by Adamtsl5, a gene not previously linked to cancer. It encodes a secreted 

glycoprotein having a bipartite structure, with an N-terminal domain similar to members of the 

ADAMTS (A disintegrin-like and metalloprotease domain containing thrombospondin type 1 

motif) protease family, and a C-terminal netrin domain. Since it lacks the metalloprotease and 

disintegrin-like domains of ADAMTS proteases, it lacks catalytic activity.[15] In this regard, it 

is a unique component of the proteome and could be regarded as a variant netrin, since like the 

members of that family, its netrin domain is located C-terminally. Little is known about 

ADAMTSL5, other than that it associates with fibrillin microfibrils formed in cell culture and 

binds heparin through the netrin domain.[15] Hence, it could participate in matrix assembly, 

tissue mechanics, and regulation of fibrillin-bound growth factors, as well as bind to 

proteoglycans located at the cell surface or in the matrix. 

Here, we identify a major disease and mechanistic context for this unique molecule, showing 

that it is an epigenetically regulated oncogene in HCC, strongly associated with a subset of 

human HCC, and more importantly, affecting the efficacy of drugs used to treat HCC. Thus, 

the outcomes of this study have potential therapeutic value in HCC and highlight ADAMTSL5 

as both a potential HCC biomarker and target.  
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Materials and Methods 

Data and materials availability. The mass spectrometry proteomics data have been deposited 

to the ProteomeXchange Consortium (www.proteomexchange.org) via the PRIDE partner 

repository with the dataset identifier PXD016634. 

Alb-R26Met mice. The generation of the R26stopMet mice (international nomenclature 

Gt(ROSA)26Sortm1(Actb-Met)Fmai) carrying a conditional mouse-human chimeric Met transgene 

into the Rosa26 locus, and the genotyping procedures were previously reported.[16-18]  

Human samples. After Institutional Review Board approval, a search in a clinical database 

was performed for human HCC cases from 2002 to 2007 (Cleveland Clinic, USA; human cohort 

#5). A total of 43 HCC cases were included. Haematoxylin and eosin stained slides from 10% 

formalin-fixed paraffin-embedded blocks of these cases were reviewed by a liver pathologist 

(D.S.A.). A representative block from the tumour was identified and unstained slides on 

positively charged glass slides were generated for additional stains and RNAscope in situ 

hybridization. For RT-qPCR analyses, 18 HCC samples from Navarra University (Spain; 

human cohort #3) and 16 from Montpellier University (France; human cohort #4) were used. 

Detailed methods can be found in the Supplementary Information  
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Results  

Adamtsl5 is hypermethylated in its gene body CGI and overexpressed in clinically relevant 

HCC mouse models.  

Mouse Adamtsl5 has two CpG islands (CGIs), one in the promoter and the other in the gene 

body region (Fig. 1A). DNA methylation analyses revealed that Adamtsl5 was consistently 

hypermethylated in the gene body CGI in Alb-R26Met HCC compared to control livers, without 

a change in the DNA methylation content of the promoter CGI (Fig. 1B). This alteration was 

accompanied by an upregulation of Adamtsl5 mRNA, as shown by RNA-seq analyses (Fig. 

1C). Remarkably, treatment of Alb-R26Met mice with a DNA-demethylating agent (Decitabine) 

significantly decreased Adamtsl5 expression in tumours, accompanied by a consistent reduction 

in the methylation levels of most CpGs within its gene body (Fig. 1D, S3A, Table S1). Adamtsl5 

expression was upregulated in Alb-R26Met tumours both at early stages of liver tumorigenesis 

and in advanced HCC compared to controls (wild-type or Alb-R26Met healthy livers), correlating 

with increased expression of Afp and Gpc3 (two well-characterized HCC markers), and MKi67 

(a proliferation marker; Fig. 1E). The low levels of Adamtsl5 we found in the healthy mouse 

livers was supported by single cell RNA-seq data from the https://tabula-muris.ds.czbiohub.org/ 

website,[19] in which Adamtsl5 mRNA expression was virtually absent in liver cells, similar to 

Afp and Gpc3, whereas Met was expressed in a high proportion of hepatocytes (Fig. S1). Low 

ADAMTSL5 levels in human liver were also observed (Fig. S2). 

We analysed ADAMTSL5 mRNA and protein levels in Alb-R26Met tumours compared with 

control livers. In situ hybridization analysis by RNAScope revealed a consistent Adamtsl5 

mRNA upregulation in Alb-R26Met HCC in contrast with adjacent liver tissue, where Adamtsl5 

mRNA was not detected (Fig. 1F). Furthermore, immunohistochemical analysis of proximate 

sections showed strong ADAMTSL5 staining in all analysed Alb-R26Met HCC, whereas 
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ADAMTSL5 was not detected in non-tumoral tissue (Fig. 1F). Upregulation of Adamtsl5 

mRNA levels was also found in another mouse model of liver tumorigenesis, in which tumours 

are generated by hydrodynamic gene transfer of N-RasG12D and Crispr/Cas9 targeting of p53 

(N-RasG12D:p53null; Fig. 1G). These results indicate that Adamtsl5 overexpression is not solely 

a characteristic of the Alb-R26Met HCC model. However, Adamtsl5 gene body CGI was not 

hypermethylated in the RasG12D:p53null model (Fig. S3B), suggesting the existence of alternative 

mechanisms of Adamtsl5 upregulation, which are presently unknown. Thus, upregulation of 

Adamtsl5 mRNA and subsequent protein production consistently discriminates HCC from 

adjacent liver tissue by the early tumorigenic state in at least these two mouse HCC models. 

ADAMTSL5 is hypermethylated in the gene body CGI and overexpressed in a large 

proportion of HCC patients.  

Whereas mouse Adamtsl5 has two CGIs (Fig. 1A), human ADAMTSL5 has four CGIs: one in 

the promoter and three in the gene body (Fig. 2A). Analyses using HCC expression data from 

The Cancer Genome Atlas (TCGA) database (human cohort #1) revealed that ADAMTSL5 

mRNA levels were upregulated in 52% of HCC cases (193/371; Log2 fold change>1; Fig. 2B). 

We also examined the methylation status of ADAMTSL5 in the subgroup of HCC patients for 

which both methylation and expression data were available (41/371 patients). Strikingly, 86% 

(18/21) of patients with ADAMTSL5 overexpression displayed hypermethylation in one of the 

gene body CGIs (Fig. 2C, Table S2). The incidence of ADAMTSL5 CGI gene body methylation 

in HCC patients was further explored in a second cohort of 214 human samples (human cohort 

#2: GSE56588[20]). 55% (112/204) of these patients shared hypermethylated ADAMTSL5 gene 

body CGIs (Fig. S4A, Table S3). Importantly, HCC patients with high ADAMTSL5 levels were 

characterised by a shorter overall survival and of disease-free interval (Fig. 2D-E). 

We found that upregulation of ADAMTSL5 mRNA levels correlated with alcohol intake rather 

than with other risk factors such as hepatitis C, hepatitis B, or NAFLD (Fig. 2F, S4B).  
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Intriguingly, we found Adamtsl5 upregulation also in mice following alcohol consumption (Fig. 

S4C), strengthening a possible correlation between ADAMTSL5 expression and alcohol intake 

observed in human patients. Interestingly, by searching correlations between ADAMTSL5 

expression levels and genetic alterations in HCC patients, we observed an inverse correlation 

between ADAMTSL5 expression and the number of mutated genes or deletions/amplifications 

(Fig. 2G-H). Additionally, we found a significant difference in altered genes in the group of 

patients with ADAMTSL5 overexpression compared to the other two groups (Fig. 2I-J, S5, Table 

S4-5). Intriguingly, Dchs1 is a gene predominantly mutated in ADAMTSL5 overexpressing 

patients (Fig. 2I, S5). No correlations were found with a series of clinical parameters that were 

analysed (Fig. S6-8). We also examined whether high ADAMTSL5 expression correlated with 

changes of specific markers generally used to classify HCC patients[5], which were previously 

used to characterise the Alb-R26Met HCC model.[12] No significant differences were found 

among the three HCC subgroups (Fig. S9A, Table S6). Although Adamtsl5 mRNA was 

upregulated in the Alb-R26Met HCC model, which is characterized by slightly enhanced MET 

levels, we did not find a correlation between ADAMTSL5 and MET levels in the cohort of HCC 

patients (Fig. S9B). Collectively, these results indicate that high ADAMTSL5 levels distinguish 

patients with specific mutations and with a predominant genetic stability, and may thus 

independently identify a distinct HCC patient subgroup not already classified by other HCC 

markers.  

Next, we experimentally assessed ADAMTSL5 mRNA levels in human HCC and control 

specimens using samples from two independent cohorts (human cohort #3 and #4). RT-qPCR 

analysis revealed upregulation of ADAMTSL5 mRNA in 50% (9/18) and 44% (7/16) HCCs 

compared to adjacent non-tumorous livers (Fig. 3A-B, Table S7), similar to the HCC cohort 

from TCGA. Collectively, these findings show that ADAMTSL5 is overexpressed in a large 

proportion of HCC patients from independent human cohorts. Immunohistochemical analysis 
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revealed ADAMTSL5 protein staining at moderate to high levels in sections from 30/43 

analysed HCC patients, compared to adjacent non-tumour tissue (human cohort #5; Fig. 3C, 

Table S8). In HCC and adjacent livers, staining for ADAMTSL5 and fibrillin-1 (Fig. S10A-C), 

a protein previously associated with liver fibrosis, were mutually exclusive.[21] Although non-

tumour regions of the liver were consistently ADAMTSL5-negative (Fig. 3C), weak staining 

was observed in some cirrhotic areas. The diverse staining patterns observed in ADAMTSL5-

positive tumours included weak, moderate, or intense staining of tumour cells, intense staining 

of macrophages bordering necrotic areas and of capillary plexuses in some tumours, and weak 

staining in vascular smooth muscle cells (Fig. 3D, S10D). RNAscope in situ hybridization 

revealed ADAMTSL5 mRNA expression by tumour cells but not by macrophages, contrasting 

with the immunostaining data (Fig. 3D). These observations suggest that ADAMTSL5 protein 

is secreted by tumour cells in a significant proportion of analysed HCC tumours, and undergoes 

subsequent uptake by macrophages. 

ADAMTSL5 is required for tumorigenic properties of HCC cells.  

We generated Alb-R26Met HCC cell lines from distinct tumours[12] (Fig. 4A), which 

reproducibly showed high mRNA and protein levels of ADAMTSL5 (Fig. 4B, S11A). 

Consistent with reported secretion by cells,[15] ADAMTSL5 was detected in the conditioned 

medium of Alb-R26Met HCC cells (Fig. 4B). The consistent expression in Alb-R26Met HCC cells 

prompted us to explore whether ADAMTSL5 influences HCC cell tumorigenic properties. 

Adamtsl5 expression was reduced by shRNA targeting sequences in Alb-R26Met HCC cells (Fig. 

4C, S11B-E), which led to a striking switch in cell morphology from epithelial-like to 

fibroblast-like, and loss of ZO-1 and E-Cadherin expression (Fig. 4D; S11F-H). 

We assessed whether the fibroblast-like shape acquired by HCC cells following Adamtsl5 

targeting corresponded to an epithelial-mesenchymal transition (EMT) or to the acquisition of 

a “fibroblast-like” identity, by following the expression levels of specific markers through RT-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

qPCR. HCCshAdamtsl5 cells, while losing Cdh1 (E-cadherin) expression, gained only the 

expression of one mesenchymal marker, Snai1, but not of Cdh2 (N-Cadherin), Vim (Vimentin), 

Slug, Zeb1, Zeb2, and Twist1 (Fig. 5A, S12A-S13). Concerning the TGFβ pathway, beside a 

slight increase in the expression of Tgfb1 and Tgif2 (and Snai1), we observed similar levels of 

Smad2 and Mtss1 (beside Twist1, Vim, CD44; Fig. 5B, S12B-S13) and a similar response to 

TGFβ1 stimulation in HCCshAdamtsl5 and control cells (Fig. S12G). Interestingly, HCCshAdamtsl5 

cells acquired expression of fibroblast markers, such as α-Sma, Fsp1 and Fbn1 (Fibrillin-1; Fig. 

5C, S12C-S13). We further explored the fibroblast-like identity and found that HCCshAdamtsl5 

cells acquired expression of Col3a1, Col1a1, Pcolce, which are markers of scar-associated 

mesenchymal cells (SAMes), while losing Krt19 expression (Fig. 5E, S12E-S13). Furthermore, 

HCCshAdamtsl5 cells lost expression of Afp (HCC marker) as well as of Prom1, Epcam, and Cdh1 

(considered as cancer stem cell markers; Fig. 5D-F, S12D-F-S13). Collectively, these results 

indicate that loss of Adamtsl5 expression in HCC cells confers molecular/morphological 

fibroblast-like characteristics rather than triggering a bona fide EMT. 

Functionally, we found that Adamtsl5 downregulation interfered with the ability of Alb-R26Met 

HCC cells to form colonies in anchorage-independent assays (Fig. 6A-B, S14A) and tumour 

spheroids upon growth in self-renewal conditions (Fig. 6C), yet without major changes in cell 

viability (Fig. S14B). HCCshAdamtsl5 cells migrated to a greater degree (Fig. S14C-E), consistent 

with the acquired fibroblast-like morphology (Fig. 4D), although they were not as invasive as 

controls (Fig. S14F-G). Interestingly, the ability of HCCshAdamtsl5 cells to form colonies and 

tumour spheroids, but not their morphological change, was significantly restored when they 

were exposed to conditioned medium from HCC cells overexpressing human ADAMTSL5 (Fig. 

6D, S15). 

Next, we assessed ADAMTSL5 expression and requirement in human HCC cell lines. Analysis 

of RNA-seq data from a panel of human HCC cells[22] revealed consistently high ADAMTSL5 
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levels in all cell lines (Fig. 6E). RT-qPCR and western blot studies performed on a subset of 

these human HCC cells showed consistent ADAMTSL5 expression, although at variable levels 

(Fig. 6F, S16A). We assessed the ADAMTSL5 requirement of human HCC cells by silencing 

it by shRNA in three HCC cell lines, SNU449, MHCC97H, and HLF. ADAMTSL5 

downregulation hampered the ability of these cell lines to form colonies in anchorage-

dependent or -independent growth assays (Fig. 6G-I, S16B-E). Collectively, these findings 

demonstrate that ADAMTSL5 expression is necessary for HCC cells to achieve their full 

tumorigenic properties in vitro. 

ADAMTSL5 is required for tumorigenic properties of HCC cells in vivo and its 

overexpression is sufficient to transform sensitized hepatocytes. 

Next, we investigated whether ADAMTSL5 expression is a requirement for HCC cells 

tumorigenicity in vivo using xenografts. Alb-R26Met HCC and Alb-R26Met HCCshAdamtsl5 cells 

were injected subcutaneously into the flank of nude mice and tumour formation was followed 

over time. Compared to controls, HCCshAdamtsl5 cells showed a striking reduction in tumour size 

and the percentage of animals that developed tumours (Fig. 7A-C). Additionally, we assessed 

the requirement for ADAMTSL5 in an experimental setting that recapitulated the liver tumour 

environment by performing orthotopic injections of Alb-R26Met HCCshControl and HCCshAdamtsl5 

cells intra-hepatically in mice. Remarkably, in contrast to controls, HCCshAdamtsl5 cells did not 

form tumours (Fig. 7D, E), consistent with reduced in vitro tumorigenicity, loss of Afp and 

cancer stem cell marker expression (Fig. 5-6). 

Next, we asked whether ADAMTSL5 overexpression would confer tumorigenicity to cells 

otherwise incapable of forming tumours. For this purpose, we chose a cellular context in which 

enhanced wild-type MET RTK levels, although not sufficient on their own, provide a sensitized 

genetic background for testing cooperativity with another pro-tumorigenic hit (Fig. 7F).[23] 

Whereas immorto-R26Met hepatocytes did not form tumours in immuno-compromised mice, 
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human ADAMTSL5 overexpression conferred in vivo tumorigenicity to these cells (Fig. 7G-I). 

Collectively, these in vivo studies underline the oncogenic properties of ADAMTSL5 in HCC. 

ADAMTSL5 expression correlates with high dosage of several oncogenes relevant to 

HCC. 

We performed mass spectrometry for unbiased comparison of the secretome of HCCshControl and 

HCCshAdamtsl5 cells. Excluding ribosome-related proteins frequently detected in such analyses, 

we found 614 proteins with differential abundance in the two secretomes: 348 upregulated and 

266 downregulated in HCCshAdamtsl5 cells compared to controls (Fig. 8A-B, Table S9). 

According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, several 

cancer-related pathways were significantly enriched, such as axon guidance (frequently 

overrepresented in cancer), ECM-receptor interaction and adhesion components, proteoglycans 

and glycans (Fig. 8C, Table S9). These pathways appear to be consistent with ADAMTSL5 

effects on cell morphology and tumorigenicity, and indicated that loss of tumorigenicity 

following Adamtsl5 knock-down was accompanied by depletion of several oncogenic signals. 

We selected some proteins for biochemical assessment in the secretomes and cell lysates of 

HCCshControl and HCCshAdamtsl5 cells (Fig. 8D, S17A). We found a striking reduction of the RTK 

MET extracellular domain in the medium and of full-length MET in HCCshAdamtsl5 cell lysates 

(Fig. 7D-E, S17E). Protein levels of EPHA2 and EPHA4, two other RTKs also implicated in 

HCC,[24, 25] were reduced (although levels of a smaller band detected with an EPHA4 

antibody in cell lysates were increased; Fig. 8D-E, S17E). Additionally, UNC5B (a netrin-

receptor, which is a prognostic marker of HCC; Fig. S17B) and LPHN3 (Latrophilin3, which 

interacts with UNC5B and regulates cell adhesion[26]), each a trans-membrane protein, were 

less abundant in the secretome of HCCshAdamtsl5 cells, but remained unchanged in cell lysates 

(Fig. 8D-E). Furthermore, we found a reduction of cleaved products of FAT1 (which acts as an 

oncogene in HCC[27]) in the medium, likely resulting from extracellular shedding [28] (Fig. 
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S17C-D). We also detected an upregulation of biglycan (a small leucine-rich repeat 

proteoglycan) and Sulf-2 (an extracellular modulator of heparan sulfate that modifies binding 

sites for signalling molecules) in HCCshAdamtsl5 cells (Fig. 8D-E, S17E). Remarkably, in 

HCCshAdamtsl5 cells we found a striking upregulation of AXL (Fig. 8D-E, S17E), a RTK whose 

upregulation is frequently associated with drug resistance in several tumour types,[29] 

including HCC response to Sorafenib.[30] Next, we asked whether the changes in protein levels 

observed occurred at a transcriptional level. RT-qPCR analyses revealed no transcriptional 

alteration in Met, EphA2, Unc5B, and Lphn,, whereas Bgn, Sulf2, and Axl were upregulated and 

EphA4 was downregulated (Fig. 8F). Intrigued by the remarkable reduction of levels of RTKs 

relevant to HCC, we analysed the expression and phosphorylation levels of other RTKs with 

essential roles in HCC tumorigenicity and resistance to treatment. Besides a strong 

downregulation of MET expression and phosphorylation in HCCshAdamtsl5 cells, we found 

reduced phosphorylation of EGFR, PDGFRβ, and IGF1Rβ (Fig. 8G, Fig. S17E). Moreover, 

while the protein levels of EGFR and IGF1Rβ were unchanged, PDGFRβ protein levels were 

increased (Fig. 8G, Fig. S17E), similarly to its mRNA (Fig. 8H). Consistent with the loss of 

MET and EGFR phosphorylation, two main upstream regulators of GAB1, we observed 

downregulation of GAB1 phosphorylation (Fig. 8G, Fig. S17E). Additionally, we found 

depletion of FGFR4 (Fig. 8G-H), another key RTK in HCC.[31] Collectively, these findings 

suggest that ADAMTSL5 may act as a master regulator of tumorigenicity by affecting 

oncogenic signalling. 

ADAMTSL5 depletion sensitizes HCC cells to drugs used for HCC treatment in the clinic. 

The severe depletion of several RTKs relevant to tumorigenicity and resistance of HCC cells to 

drugs used for HCC treatment in the clinic prompted us to explore whether ADAMTSL5 

downregulation influenced HCC cell sensitivity to these drugs. The Alb-R26Met HCC cellular 

system was particularly appropriate for addressing this question because of its resistance to 
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Sorafenib, which was previously reported.[12] We compared the sensitivity of HCCshAdamtsl5 

and control cells to several multi-kinase inhibitors: Crizotinib, Lenvatinib, Regorafenib, and 

Sorafenib. Because of the striking upregulation of AXL observed in Adamtsl5-downregulated 

cells, we also assessed the effects of Bemcentinib, an inhibitor of AXL (Table S10). HCCshControl 

cells were either totally resistant (Lenvatinib) or displayed limited sensitivity when drugs were 

used at high dosage (Fig. 8I). In contrast, HCCshAdamtsl5 cell viability was significantly decreased 

when cells were exposed to Crizotinib, Lenvatinib, Regorafenib, and to a lesser extent, to 

Sorafenib (Fig. 8I). Remarkably, Bemcentinib treatment drastically interfered with 

HCCshAdamtsl5 cell viability whereas no effect was observed in control cells (Fig. 8I). Overall, 

our results illustrate that ADAMTSL5 targeting in HCC cells leads to a profound alteration of 

several oncogenic inputs such as those linked to RTKs, and confers sensitivity to clinically 

relevant drugs.  
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Discussion 

Lack of efficient therapies for HCC provides a strong incentive for seeking new disease 

pathways and more reliable biomarkers, notably those that can be used for diagnosis of early 

stages of HCC. Biomarkers for early detection and patient stratification will be even more 

important in the future, when additional first- and second-line therapies for liver cancer may 

become available. Here, we identified ADAMTSL5 upregulation in a large percentage of HCC 

patients from several independent cohorts: according to RNA-seq data or our RT-qPCR 

analyses, ranging from 44 to 52% of human HCC patients; according to immunohistochemistry 

analysis, 70% of HCC patients.  Adamtsl5 upregulation was reproduced in the Alb-R26Met HCC 

model and importantly, its increased expression was already evident during early liver 

tumorigenesis. Adamtsl5 upregulation was similarly detected in N-RasG12D:p53null mouse liver 

tumours, indicating that its overexpression is not restricted to a single genetic trigger during 

mouse tumorigenesis. We have shown, both in mouse and human tumours, that augmented 

ADAMTSL5 expression correlates with hypermethylation of its gene body CGI, an epigenetic 

mechanism that we recently reported to be involved in the regulation of oncogene 

expression.[13] Thus, our data suggest that hypermethylation of gene body CGI is predictive, 

although not exclusively, of high ADAMTSL5 expression in HCC. While these data require 

further validation in large patient cohorts, they imply a potential clinical significance of 

ADAMTSL5 upregulation in a subgroup of patients and might qualify ADAMTSL5 as a 

potential HCC biomarker. Interestingly, in situ analysis indicated that ADAMTSL5 was 

produced by HCC cells in the Alb-R26Met HCC model, as well as in roughly half of human HCC 

cases. In agreement with the described heterogeneity of HCCs and with mRNA expression 

observed  in about half of the cases annotated by TCGA, we found that a significant proportion 

of human HCC samples stained negative for ADAMTSL5. However, one caveat of analysing 

biopsies, either for RNA content or by staining, is that of sampling variability, i.e. samples may 
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come from ADAMTSL5-negative areas of heterogeneous, often multifocal tumours that may 

contain expressing cells elsewhere. Therefore, it is noteworthy that as a secreted protein, 

ADAMTSL5 is a potential candidate biomarker that is accessible through liquid biopsy. Indeed, 

liquid biopsy can overcome limitations of tissue biopsy, since it is expected to represent the 

entire molecular picture of a patient’s malignancy. Future studies will determine if measuring 

plasma ADAMTSL5 levels and/or hypermethylation of the gene body ADAMTSL5 CGI in 

circulating cell-free DNA could be useful as a HCC biomarker. It will also be important to 

ascertain if human HCC can be stratified by ADAMTSL5 status to uncover histological, 

precancerous or risk associations, which may contribute to a better-informed choice of 

therapeutic options. 

We illustrated by a series of in vitro and in vivo assays that increased levels of ADAMTSL5 

are associated with tumorigenic properties of HCC cells. Indeed, ADAMTSL5 targeting 

interfered with HCC cell anchorage-dependent and -independent growth, tumour spheroid 

formation and with orthotopic and subcutaneous xenograft growth. The oncogenic function of 

ADAMTSL5 is further supported by our data showing that its overexpression conferred 

tumorigenicity to sensitized, non-transformed liver cells. Collectively, these results indicate that 

ADAMTSL5, which is produced by HCC cells, may be a key factor determining their 

tumorigenicity. Of note, the secreted ADAMTSL5 acts in a non-cell autonomous fashion, as 

demonstrated by the partial restoration of the phenotype of HCCshAdamtsl5 cells by the 

conditioned medium of cells over-expressing ADAMTSL5. Importantly, since the secretome 

of ADAMTSL5-expressing cells is profoundly altered, it is thus possible that some of its 

oncogenic effects are indirect. 

Interestingly, increased ADAMTSL5 methylation was recently reported in chemotherapy-

resistant acute lymphoblastic leukaemia patients.[32] However, neither the genomic location of 

such hypermethylation nor the consequences for ADAMTSL5 expression in acute lymphoblastic 
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leukaemia patients have been investigated. In addition, recent studies implicated ADAMTSL5 

in pathologies other than cancer.[33]  

In summary, we have shown that ADAMTSL5,  which is overexpressed in a significant 

proportion of HCC patients, has an essential role in HCC pathogenesis. Our results suggest that 

ADAMTSL5 is a potential master regulator of HCC, acting upstream of several key oncogenic 

pathways, including RTKs, such as MET, EGFR, GAB1, PDGFRβ, IGF1Rβ, and FGFR4. 

Intriguingly, ADAMTSL5 targeting results in decreased activation of several RTK signals, 

irrespectively on changes of their protein levels. Strikingly, ADAMTSL5 depletion gives rise 

to a dramatic increase of AXL.  It is tempting to speculate that upregulation of AXL may occur 

in response to loss of several other RTK inputs. This interpretation is supported by the acquired 

vulnerability of HCCshADAMTSL5 to AXL inhibition, suggesting a novel therapeutic strategy for 

a defined subset of HCCs.  From a general perspective, a number of RTK-targeting drugs are 

now available and our results suggest that some could be repurposed for treating ADAMTSL5-

overexpressing HCC, especially when used in combination with agents targeting ADAMTSL5, 

which remain to be developed.  
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Figure Legends 

Fig. 1. Adamtsl5 is hypermethylated in the gene body CGI and overexpressed in Alb-R26Met 

tumours compared with control livers. (A) Schematic representation of the mouse Adamtsl5 

locus (blue: exons; CGIs: green). (B) Methylation levels of the Adamtsl5 gene body and 

promoter CGIs in control livers and Alb-R26Met tumours. Note significantly higher Adamtsl5 

methylation levels in gene body CGI in Alb-R26Met tumours, with no change in the promoter 

CGI. (C) Adamtsl5 mRNA levels in Alb-R26Met tumours versus controls. (D) Methylation levels 

of CpGs within the Adamtsl5 gene body CGI (left) and Adamtsl5 expression levels (right) in 

tumours dissected from Alb-R26Met mice untreated (red) or treated with decitabine (green). (E) 

mRNA expression levels of Adamtsl5, Afp, Gpc3 (two HCC markers), and Mki67 (proliferative 

marker). Note Adamtsl5 upregulation in Alb-R26Met early tumours (smaller than 3mm) and 

HCC. (F) Adamtsl5 mRNA (left) and protein (right) in Alb-R26Met tumours versus adjacent 

control livers. (G) Increased Adamtsl5 mRNA levels in N-RasG12D:p53null mouse tumours 

versus adjacent livers. n.s.:not significant; *:P<0.05; **:P<0.01; ***:P<0.001 (Mann-Whitney: 

B,C,E,G,H; Kruskall-Wallis: D). 

Fig. 2. ADAMTSL5 expression correlates with hypermethylated gene body CGIs and with 

a worse prognosis in human HCC. (A) Scheme of the human ADAMTSL5 locus (blue: exons; 

CGIs: green). (B) ADAMTSL5 mRNA levels in HCC patients (cohort #1). (C) ADAMTSL5 

mRNA (middle) and methylation (bottom) levels in HCC patients. Bottom: Hypermethylated 

CGI (black line) in the ADAMTSL5 promoter and gene body in the corresponding patients. Note 

hypermethylated gene body CGIs in most HCC patients with ADAMTSL5 overexpression 

(86%, 18/21). (D-E) Kaplan-Meier curves reporting the probability of the overall survival (D) 

and disease-free interval (E) according to ADAMTSL5 levels. (F) Diagram reporting the 

presence (blue line) of major HCC risk factors. HCC patients with higher ADAMTSL5 mRNA 

levels showed a significant, although not exclusive, association with alcohol consumption. (G-
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H) Number of mutated genes (G) or deletions/amplifications (H) according to ADAMTSL5 

levels (cohort #1). (I) Heatmap reporting genes mutated only in one or two groups 

corresponding to ADAMTSL5 levels, taking into consideration the top 10 ranked positions 

determined by the percentage of patients carrying mutations in the indicated genes. Red and 

green: upper and lower gene ranking (corresponding to high and low percentage of patients), 

respectively. White: absence of mutations in patients. On the right, TP53 and CTNNB1 (among 

the most frequently mutated genes) are also reported. (J) Heatmap reporting genes with copy 

number alterations in the HCC patient subgroups corresponding to ADAMTSL5 levels, taking 

into consideration the top 10 ranked positions determined by the percentage of patients carrying 

genetic alterations of the indicated genes. Detailed information about altered genes in the three 

groups are reported in Figure S5 and Table S4-5. Two-way ANOVA followed by Tukey 

multiple comparison: statistical significance between UP versus DOWN groups, DOWN versus 

NO CHANGE (I); between UP versus DOWN groups, UP versus NO CHANGE, DOWN 

versus NO CHANGE (J). P<0.0001. 

Fig. 3. ADAMTSL5 upregulation and ADAMTSL5 localization in human HCC patient 

cohorts. (A-B) ADAMTSL5 mRNA upregulation in HCC samples versus adjacent non-

tumorous liver (cohort #3: 50%; cohort #4: 44%). (C) Immunohistochemical analysis revealed 

strong ADAMTSL5 levels in HCC regions, but not adjacent non-tumorous liver. ADAMTSL5 

staining was localized to HCC cells and to macrophages in necrotic areas. (D) ADAMTSL5 

protein and mRNA in proximate HCC sections. Note ADAMTSL5 RNA expression in HCC 

cells (arrowheads), but not in macrophages (arrows). ADAMTSL5 protein in macrophages 

indicates its possible uptake by these cells during clearance of necrotic areas. 

Fig. 4. ADAMTSL5 is expressed in Alb-R26Met HCC cells and its downregulation leads to 

a switch from epithelial- to fibroblast-like characteristics. (A) Scheme of Alb-R26Met 
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HCCshAdamtsl5 cell generation. (B) ADAMTSL5 protein levels in cell lysates and in conditioned 

medium (CM) of HCC3, HCC13, and HCC14. CM from untransfected HEK cells or HEK cells 

transfected with a human ADAMTSL5 (hA) was used as the control. (C) Down-regulation of 

ADAMTSL5 protein levels in Alb-R26Met HCC13shControl (cntr) and HCC13shAdamtsl5 cells (four 

clones). Two different Adamtsl5 shRNAs were used (sh3 and sh1). Equal loading is shown 

(Ponceau). (D) Immunofluorescence showing loss of ADAMTSL5, ZO1, and E-Cadherin in 

Alb-R26Met HCC13shAdamtsl5 cells versus controls. HCC13shAdamtsl5 cells acquired a fibroblast-

like phenotype.  

Fig. 5. ADAMTSL5 downregulation in HCC cells leads to a switch in the expression of 

several cellular markers. mRNA levels of the indicated genes in Alb-R26Met HCCshControl (cntr) 

and HCCshAdamtsl5_clone3.7 (sh3.7) cells. Genes correspond to markers of epithelial/mesenchymal 

cells (A), TGFβ pathway (B), fibroblasts (C), HCC (D), fibroblast subtypes (E), cancer stem 

cells (F). *:P<0.05; **:P<0.01; ***:P<0.001 (Student t-test). Heatmaps report downregulated 

(green), upregulated (red) and unchanged (black) mRNAs, or no expression (grey). Values are 

reported as Log2 fold change of expression levels in HCCshAdamtsl5_clone3.7 compared to controls 

(complementary data: Figure S12-S13). 

Fig. 6. ADAMTSL5 is required for in vitro tumorigenic properties of mouse and human 

HCC cells. (A-B) Reduced colony formation by Alb-R26Met HCCshAdamtsl5 cells in anchorage-

independent growth assays. Note significant restoration of tumorigenic properties after 

exposing HCCshAdamtsl5 cells to the HCC secretome with overexpressed hADAMTSL5 

(CM+hA). (C) Numbers of tumour spheroids formed by HCC13shAdamtsl5 cells and controls. (D) 

Rescue of tumour spheroid formation upon exposing HCC13shAdamtsl5 cells to a HCC secretome 

with hADAMTSL5 overexpression (CM+hA). (E) ADAMTSL5 mRNA levels in a panel of 

human HCC cells, based on data from [22]. (F) ADAMTSL5 protein levels in conditioned 
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medium and cell lysates (HCC13 cells used as controls). (G-I) ADAMTSL5 downregulation in 

SNU449 cells and its effects on cell tumorigenicity. (G) Protein levels in conditioned medium 

of SNU449 cells carrying a shRNA targeting sequence (sh1 or sh2) versus controls. Equal 

loading is shown (Ponceau). (H) Numbers of colonies formed by SNU449shAdamtsl5 cells in 

anchorage-dependent growth assays. (I) Photographs and graphs reporting colony numbers and 

colony size formed by SNU449shAdamtsl5 cells in anchorage-independent growth assays. 

*:P<0.05; **:P<0.01; ***:P<0.001 (Student-t test: A; one-way ANOVA: B,C,D; Mann-

Whitney: H,I). 

Fig. 7. ADAMTSL5 expression confers tumorigenic properties to cells in vivo. (A-C) 

Images of dissected tumours (A) and quantification of mean tumour volume over time (B) and 

at 8 weeks (C) in mice injected subcutaneously with Alb-R26Met HCC13 and HCCshAdamtsl5 cells. 

In (C), grey dots correspond to tumours dissected earlier than 8 weeks for ethical reasons. (D-

E) Images of dissected livers (arrows indicate tumours) and quantification of tumour volume at 

5 weeks following orthotopic injection with Alb-R26Met HCC13shControl and HCCshAdamtsl5 cells. 

(F) Scheme reporting the establishment of immorto-R26Met sensitized hepatocytes without and 

with human ADAMTSL5 (h-ADAMTSL5) expression (immorto-R26Met hepaoverADAMTSL5). (G-

I) Images of mice (G), quantification of mean tumour volume over time (H) and at 11 weeks 

(I) in mice injected subcutaneously with immorto-R26Met control hepatocytes (hepa) and 

immorto-R26Met hepatocytesoverADAMTSL5 (hepaoverADAMTSL5). Arrows indicate tumours. 

*:P<0.05; **:P<0.01; ***:P<0.001 (Mann-Whitney test). 

Fig. 8. ADAMTSL5 downregulation leads to suppression of several oncogenic signals in 

HCC cells. (A-B) Volcano plot (A) and heatmap (B), reporting proteins found significantly 

downregulated or upregulated in the secretome of Alb-R26Met HCCshAdamtsl5_clone3.7 compared 

with HCCshControl cells. Orange dots in (A) correspond to proteins biochemically validated by 
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western blots. (C) Enrichment KEGG pathway for differentially abundant proteins in the 

secretome of  HCCshAdamtsl5_clone3.7 and HCCshControl cells. (D) Graphs reporting the values from 

mass spectrometry analysis for the biochemically validated proteins (shown in E). 5 

independent biological replicates each with 3 experimental replicates were used. Some of the 

proteins were undetectable because of low levels. (E) Protein levels in the secretome and cell 

lysates of HCCshControl (cntr) and HCCshAdamtsl5_clone3.7 (sh3.7) cells. For secretome analysis, 

samples were normalized to protein in cell lysates. (F) mRNA levels of the indicated genes. (G) 

Protein expression and phosphorylation levels. E and G: quantifications in Table S10D. (H) 

mRNA levels of the indicated genes. (I) Cell viability in the absence (NT) or in the presence of 

the indicated drugs. ns.: not significant; *:P<0.05; **:P<0.01; ***:P<0.001 (student t-test: 

D,F,H; two-way ANOVA: I). 
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Highlights 

 ADAMTSL5 overexpression in HCC is associated with gene body CGI hypermethylation 

 ADAMTSL5 is strongly expressed in a large fraction of human HCC 

 Targeting ADAMTSL5 diminishes RTK inputs and interferes with tumorigenicity  

 ADAMTSL5 confers tumorigenicity to sensitized, non-transformed liver cells 

 Targeting ADAMTSL5 sensitizes HCC cells to drugs currently used in the clinic 
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