

Characterization of a distributed antenna array microwave plasma used for low-temperature/large-area nanocrystalline diamond film

D. Dekkar¹, F. Bénédic¹, X, Aubert¹, S. Béchu², A. Bès²

¹LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France ²Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France

W.PLATHINIUM.COM

Outline

- Statements
- Experimental plasma diagnostics through :
- ✤ Langmuir probe
- Optical Emission Spectroscopy
- Plasma modelling
- Conclusion

Diamond properties and applications

Among various forms of synthetic diamond, nanocrystalline diamond (NCD) films possess nanometric grain size and thickness-independent low surface roughness (< 20 nm)

High pressure/high temperature MPACVD process

Development of new applications requires low temperature/large area deposition process

Distributed antenna array microwave plasma reactor

The Plasmodie reactor*

16 coaxial plasma sources arranged in 4x4 2D matrix

- low substrate temperature: 130 < T < 400°C
- large area deposition: 4 inches

*Latrasse et al., Plasma Sources. Sci. Technol. (2007)

Characteristics of NCD films grown in Plasmodie reactor

Preliminary study of plasma

Dissociation coefficient of gaseous precursors

8

of NCD at low T_s

High K_{D} which shows that the system is effective in terms of dissociation

Absorption measurements : species density

Species density as a function of P_{mw} at 0.55 mbar:

¹Nave *et al* PSST 2017, Part 2

• No high P dependency for all species

CO and H are the main species and significant amount of CH₃

Absorption measurements : species density

Species density as a function of pressure at 3 kW:

¹ Nave *et al* PSST 2017, Part 2

No significant pressure dependency for all species

OES measurements : species temperatures

Gas temperature T_{gas} estimation*:

Fulcher-a system of H₂ was used to T_{rot} calculation

Is T_{rot} (H₂) really representative of gas temperature?

* Nave *et al* PSST 2017, Part 1

**M.Rayar et al., Plasma Sources Sci. Technol. (2009)

OES measurements : species temperatures

Temperature estimation via other species (OH, CH)

- T_{rot} (CH) < T_{vib} (CH) → non thermal equilibrium
- $T_{rot} (H_2) < T_{rot} (OH) < T_{rot} (CH)$

The rotational temperature depends on probed species

Absorption measurements : species temperatures

Hydrogen and carbon containing species* :

Nave *et al* PSST 2017, Part 1

Gas temperature determined via Doppler broadening

T_{gas} (CO) ∧ when P ∧ (from 400 to 650 K)

• No obvious dependence of T_{gas} (CH₄) \approx 350±50K

T_{gas} (CH₄) and T_{gas} (CO) are much lower than T_{gas} (H₂)

UNIVERSITÉ **PAR**

Summary

Species	Temperature [K]
$H_2(d^3\Pi_u^-)$	T _{rot} = 1030 (±100)
CO , _V = 0	T _{rot} = 360 (±30), T _{kin} = 345 (±30)
CO , v = 1	T _{rot} = 525 (±50), T _{kin} = <mark>480</mark> (±50)
CO , v = 2	T _{rot} = 630 (±50), T _{kin} = <mark>635</mark> (±100)
CO , v = 3	T _{rot} = 900 (±200), T _{kin} = <mark>685</mark> (±200)
CH ₄	T _{kin} = 350 (±50)
CH ₃	T _{rot} = 640 (±180)

Moderate pressure (0.35 mbar), intermediate position (95 mm), 3 kW

• The gas temperature depends strongly on probed zone and species

Gas temperature estimated at 600 ± 100 K in the plasma

Low gas temperature \longrightarrow Electrons play a key role in the plasma chemistry the electron parameters should be investigated !

Langmuir probe characteristics and EEDF

Tools

The measuring device "QUË ĐO" provided By Reseau des Plasmas Froids

Theory

✤ Druyvestein (1931) : d²I_e/dV² ∞ EEDF

$$g_e(V_s) = \frac{2m_e}{q^2A_s} \sqrt{\frac{2qV_s}{m_e}} \frac{d^2I_e}{dV_s^2}; n_e = \int_0^{+\infty} g_e(\varepsilon)d\varepsilon$$

$$T_{eff} = \frac{2}{3} \frac{1}{n_e} \int_0^{+\infty} \varepsilon g_e(\varepsilon) d\varepsilon \; ; \; with \; \varepsilon = \frac{1}{2} m_e w^2$$
Schematic

The profiles were performed at 4 cm on the diagonal of 4x4 plasma sources matrix

Plasma features : Langmuir probe measurements

• T_e and n_e are roughly constant along the diagonal (plasma between 0 and 8 cm)

• T_e \searrow when P \nearrow from 1.7 to 1 eV and n_e \searrow when P \nearrow from 2x10¹¹ to 1x10¹¹ cm⁻³

At higher pressure, the electrons lost more energy

Plasma features : Langmuir probe measurements

- T_e [▶] when P [▶] from 1.2 to 1.7 eV
- n_e
 when P
 from 2 x10¹⁰ to 2x10¹¹ cm⁻³
- The results at 1.2 kW and 0.25 mbar are consistent with those of Rayar* obtained at 2 cm away from

the sources plane (T_e=1.2 eV, n_e =2.5x10¹¹ cm⁻³)

Homogeneous plasma even close to the MW sources

*M.Rayar et al., Plasma Sources Sci. Technol. (2009)

Excitation temperature determination at 4 cm from the sources*:

- The 4 Balmer lines of hydrogen atom (H_{α}, H_{β}, H_{γ}, H_{δ}) were used

 T_{exc} was determined with Boltzmann plot

$$ln\left(\frac{I_{ij}\lambda_{ij}}{g_iA_{ij}}\right) = -\frac{E_i}{kT_{exc}} + C$$

*U. Fantz., Plasma Sources Sci. Technol. (2006)

Electron temperature determination:

- The corona model was applied on **Balmer** lines of atomic hydrogen (H_{α} , H_{β} , H_{γ} , H_{δ})
- Several databases have been adopted based on the chosen number lines used (LXCAT, LAVROV, JANEV):

3 used lines $(H_{\alpha}, H_{\beta}, H_{\gamma})$ **LXCAT-3** 4 used lines $(H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta})$ **LXCAT and JANEV (LXCAT-4)** 2 used lines (H_{α}, H_{β}) **LAVROV-1 (case 1) and LAVROV-2 (case2)**

- Rate coefficients calculated :
- From cross section obtained from LXCAT and JANEV* databases
- By Lavrov**

Case 1: when redistribution of populations can be neglected, **Case 2:** Boltzmann distribution of the population over the fine structure sublevels

* R.K. Janev et al, Springer. (1987) ***B. P. Lavrov and A. V. Pipa, Optics and Spectroscopy. (*2002)

Electron temperature at 4 cm from the sources

0.25 mbar

- T_{exc} constant when P / (T_{exc} ≈ 0.3 eV)
- No tendency is observed for T_e-LXCAT as function of P

The electron temperature depends strongly on the choice of the database

Case 2 of Lavrov is generally used for plasmas with sufficiently high particle concentrations and electric and electromagnetic (RF and microwave discharges) fields

OES and Probe measurements

Electron temperature at 4 cm from the sources

- T_e -OES and T_e -probe \nearrow when P \nearrow
- T_e-OES and T_e-probe ↘ when pressure ↗ (At 2 kW, T_e-OES ↘ from 1.2 to 0.7 eV)
- T_{e} -OES is close to T_{e} measured by the probe:

At 0.25 mbar and 2 kW, $T_{\rm e}\text{-}{\rm OES}$ =1.2 eV and $T_{\rm e}\text{-}{\rm probe}\text{=}$ 1.5 eV

 T_e -OES is in well accordance with T_e - probe only if case 2 of Lavrov is used as database

Plasma modelling

Two-dimensional self-consistent plasma model for hydrogen*

Electromagnetic module

Time-averaged absorbed microwave power

*Hagelaar et al., J. Appl. Phys. (2004)

UNIVERSITÉ **PAR**

Plasma modelling

<u>Plasma module</u>

- Species continuity equations

- $\nabla \cdot (D_s N \nabla x_s) = S_s$ Diffusion Plasma chemistry - Electron energy equation $\nabla \cdot (\Gamma_e \frac{5}{2} k_B T_e - \lambda_e \nabla T_e) = P - Q$ Electron flux Electron conductivity - Heavy species energy equation $\nabla \cdot (\sum_s \Gamma_s (C_s T + H_{0,s}) - \lambda \nabla T) = Q - Q_{rad}$ Particle flux Conductivity Radiative loss

- Offline Boltzmann solver \rightarrow Reaction rate coefficients $k_m(T_e)$
- Simple chemistry : 8 species (H₂, H, H^{*}, H^{**}, H⁺, H₂⁺, H₃⁺, e) linked by 34 reactions

Conclusions

- ✓ Temperatures depend strongly on the probed species
- ✓ Gas temperature of the plasma estimated at 600 ± 100 K → low gas temperature which permits to grow NCD films at T_s below 400 °C
- ✓ Since low temperature plasmas as a rule are non-Maxwellian, the determination of electron parameters from EEDF measurement is recommended
- ✓ plasma is homogeneous close to the microwaves sources
- T_e can be determined by OES and have values close to those measured with the probe only if The coronal approximation is adopted and case 2 of Lavrov is used as database
- ✓ Both the experimental and modelling values of electrons parameters are in well accordance

Work in progress:

- Determination of T_e by using argon lines
- Atomic hydrogen estimation by actinometry

Acknowledgements

LPSC-CNRS-IN2P3, Grenoble

A. Lacoste, J. Pelletier

• INP, Greisfwald

J. Röpcke, B. Baudrillart, A. Nave, S. Hamman, J.H. van Helden

Financial supports:

ANR-11-LABX-086, ANR-11- IDEX-0005-02, BQR Université Paris 13, ADAM Labex project, French-Germany Procope Project

