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Abstract. Neuromorphic vision sensors exhibit several advantages com-
pared to conventional frame-based cameras including low latencies, high
dynamic range, and low data rates. However, how efficient visual rep-
resentations can be learned from the output of such sensors in an un-
supervised fashion is still an open problem. Here we present a spiking
neural network that learns spatio-temporal receptive fields in an unsuper-
vised way from the output of a neuromorphic event-based vision sensor.
Learning relies on the combination of spike timing-dependent plastic-
ity with different synaptic delays, the homeostatic regulations of synap-
tic weights and firing thresholds, and fast inhibition among neurons to
decorrelate their responses. Our network develops biologically plausible
spatio-temporal receptive fields when trained on real world input and is
suited for implementation on neuromorphic hardware.

Keywords: Event-Based Vision · Unsupervised Learning · Receptive
Field · Neuromorphic Engineering · Spiking Neural Network · Spike
Timing-Dependent Plasticity.

1 Introduction

Biological vision systems learn to make sense of their environments without much
external supervision. Mimicking such unsupervised learning abilities in technical
systems may pave the way for vision systems that do not require millions of man-
ually labelled training examples, but that can learn in a much more autonomous
fashion. How biological vision systems learn to see without supervision is still
poorly understood, however. While fundamental mechanisms of neuronal and
synaptic plasticity have been identified, there is still no model that could ex-
plain the development of vision in terms of these basic mechanisms. One hurdle
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to building such models is scale. Simulating detailed large-scale models of, e.g.,
the primate visual system on conventional (super-)computers is prohibitively ex-
pensive. This has led to growing interest in neuromorphic approaches that mimic
principles of neural information processing and learning in hardware and can be
vastly more energy efficient compared to conventional computing paradigms.

Event based cameras are inspired by the mammalian retina and represent
a great starting point for creating biologically inspired artificial vision systems.
They offer very high temporal resolution (in the order of µs) and low data rates.
Importantly, they operate in a fully asynchronous way, i.e., there are no clearly
defined image “frames”. This necessitates to drastically change the design of the
vision system. Spiking neural networks (SNNs) are the asynchronous analog to
conventional neural networks, which makes them ideally suited for unsupervised
learning from an event based camera.

Here, we propose a SNN model to learn spatio-temporal receptive fields
from the output of a neuromorphic event-based vision sensor in an unsupervised
fashion. The network combines three unsupervised learning mechanisms: spike
timing-dependent plasticity, a homeostatic regulation of neuronal firing thresh-
olds, and a multiplicative synaptic normalization to prevent unbounded growth
of synapses. A simple fast inhibition scheme decorrelates neural responses and
effectively prevents multiple neurons from developing identical receptive fields.
We show that our network learns motion-sensitive receptive fields in an un-
supervised fashion and that the learned receptive fields qualitatively resemble
receptive fields observed in visual cortex.

2 Related Work

There have been various previous attempts at solving classification and recog-
nition tasks using SNNs fed with event data. The works fall into two main
categories. The first are spiking convolutional neural networks inspired by their
frame-based counterparts. Most of the time these are transformations of suc-
cessful deep learning convolutional neural networks and use a form of supervised
training [12][17][14]. The second category uses spike timing-dependent plasticity
(STDP) to train an SNN in an unsupervised way [11][4][1][7][6]. For example,
Akolkar et al. [1] demonstrate the possibility to learn visual receptive fields
(RFS) in an event-driven framework. However, their attempt is limited to learn-
ing purely spatial RFs without any time dependence, i.e. they do not consider
the encoding of image motion.

The primate visual system uses specific populations of neurons tuned to dif-
ferent motion directions and velocities to estimate object motion. Some work
has been done on bio-inspired ways of sensing motion using event-driven data.
Specifically, Tschechne et al. [16] have proposed a model using filters with spatio-
temporal tuning to compute the optical flow of a scene. Haessig et al. [5] have pro-
posed a spiking neural network implemented on IBM’s TrueNorth neurosynaptic
system inspired by the Barlow & Levick method for optical flow estimation. Or-
chard et al. [9] have created a motion sensing SNN using synaptic delays. Each
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neuron is designed to detect a specific motion direction and speed. The main
limitation is that the delays and orientations for the whole population need to
be set by hand. Hopkins et al. [6] also describe motion estimation via synapses
with delays, but do not consider learning. Most recently, Paredes-Vallés et al. [10]
have proposed a framework for learning motion sensitive receptive fields from
an event-based camera via a form of STDP in an unsupervised fashion. Their
work is most closely related to ours, but there are a number of differences. First,
the depression part of their STDP rule does not require presynaptic input spikes
to arrive shortly after a postsynaptic spike, which is an important feature of
biological STDP. Second, they use a convolutional network architecture, which
enforces the development of identical receptive fields in all parts of the visual
field. This prevents the receptive fields at different locations from adapting to
systematic differences in the statistics of optical flow signals across the visual
field as is common, e.g., during ego motion. Finally, our implementation is fully
event-based, which makes it well-suited for implementation on neuromorphic
hardware.

3 Methods

3.1 Spiking Neural Network

We designed our spiking neural network to couple efficiently with an event based
camera. We use the sensor as our input layer and the second layer comprises a
set of spiking neurons, each connected to a specific region of the event based
camera via weighted synapses which define the neuron’s receptive field. If one of
the camera’s pixels records an event, the neurons connected to it will receive an
excitatory input depending on the strength of the synapse. In order to differen-
tiate ON and OFF events, neurons are connected with at least two synapses to
a pixel, one for each event polarity. Furthermore, we allow pixels to connect to
the spiking neurons with different synaptic delays (described below), to enable
the development of motion tuning.

We chose the well-known Leaky-Integrate and Fire (LIF) point neuron model.
V (t) denotes the neuron’s membrane potential at time t. Updates of V (t) are only
performed upon receiving an event. More precisely, an input event from a pixel
i creates an excitatory post-synaptic potential, which increases the membrane
potential according to the strength of the corresponding synapse wi(t). If the
neuron’s membrane potential exceeds a threshold Vθ, the neuron “spikes” and
its membrane potential returns to the resting value, which we define to be zero.
Between the arrival of successive synaptic inputs to the neuron at times t and
t + ∆t, the membrane potential exponentially decays back to its resting value
with the membrane time constant τm. Taken together, V (t) evolves according
to:

Ṽ (t+∆t) = V (t)e
−∆t
τm + wi(t) (1)

V (t+∆t) =

{
Ṽ (t+∆t) : Ṽ (t+∆t) < Vθ

0 : Ṽ (t+∆t) ≥ Vθ .
(2)
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When the neuron is inhibited (see section 3.4 below), however, its membrane
potential is not updated for the duration of the inhibition.

3.2 Synaptic Delays and Spike Timing-Dependent Plasticity

To allow for the learning of motion sensitive receptive fields, each pixel of the
event based camera can be coupled to an LIF neuron via D synapses with dif-
ferent delays. Therefore, a neuron can receive, e.g., the same on-event from the
same pixel at D different times. Similarly, it can simultaneously receive events
having occurred at different pixels at different times and therefore be sensitive
to image motion.

Synaptic weights adapt according to a simple model of Spike Timing-Dependent
Plasticity (STDP), a well-known unsupervised learning mechanism. In STDP,
the sign and magnitude of a synaptic weight change depend on the relative
timing of pre- and post-synaptic spikes. In the most common form of STDP,
presynaptic spikes arriving shortly before a postsynaptic spike will lead to a
long-term potentiation (LTP) of the synapse, while the reverse timing leads to
long-term depression (LTD). In our implementation of LTP, as soon as a neu-
ron spikes, its synaptic input connections will increase depending on the timing
of the last input they received. This is a symmetric interpretation, where each
presynaptic spike is paired with the last postsynaptic spike, and each postsy-
naptic spike is paired with the last presynaptic spike. Each synapse undergoes
an instantaneous change in weight depending on an exponential relationship be-
tween the time difference between the timestamp ti of the last input arriving at
synapse i and the time of the postsynaptic spike ts > ti:

∆wLTP
i = ALTP e

−|ti−ts|
τLTP , (3)

with ALTP and τLTP controlling, respectively, the height and duration of the
potentiation window. Any input spike arriving after a postsynaptic spike (ti > ts)
leads to depression of the synaptic weight:

∆wLTD
i = −ALTD e

−|ts−ti|
τLTD , (4)

where ALTD and τLTD control, respectively, the height and duration of the de-
pression window. Note that in this formulation, multiple presynaptic spikes can
interact with the last postsynaptic spike to induce depression. Synapses whose
weight would become negative due to LTD are set to zero. The STDP rule applies
equally to all synapses with different time delays. The relevant time difference
|ts− ti| is always the one between the arrival of the presynaptic spike (occasion-
ally delayed with respect to the time it was generated) and the moment of the
postsynaptic spike.

3.3 Threshold Adaptation and Synaptic Normalization

To avoid the necessity to fine-tune the neuron’s firing thresholds we use a home-
ostatic regulation to enforce a certain target firing rate S∗ = 0.75 spikes.s−1.



Unsupervised Learning of Spatio-Temporal Receptive Fields 5

The threshold is adapted automatically every second depending on the differ-
ence between an estimate of the recent spiking rate S(t) and the desired S∗

as:

∆Vθ = Aθ (S(t)− S∗) , (5)

where Aθ is a scalar parameter controlling the rate of change of the spike thresh-
old. To estimate the recent spiking rate S(t), we store the number of spikes
that occurred during each of the last 10 seconds in a 10-element ring buffer
Si(t), i = 1, . . . , 10. The spiking rate S(t) is estimated as S(t) = 0.1×

∑10
i=1 Si(t).

To avoid unbounded growth of synaptic weights we use a simple weight nor-
malization mechanism, which normalizes the weights projecting to a single neu-
ron in a multiplicative fashion. Different groups of synapses onto the same neu-
ron are normalized separately. Each neuron receives inputs from two channels
(for on and off events) and D synaptic delays from a pixel array of width W
and height H. This amounts to a total number of 2 × D × W × H synapses
per neuron. The synapses from the same channel and the same synaptic delay
form a synapse group, i.e., each synapse group comprises W ×H synapses and
there are 2D such groups. After every spike of the neuron, all input synapses of
all synapse groups are multiplicatively rescaled such that the L2 norms of the
weights of each group equal a parameter λ, chosen empirically. This separate
normalization of different synapse groups ensures that on- and off-channels and
the different synaptic delays all contribute equally to activating the neuron. Such
multiplicative re-scaling of the efficacies of groups of synapses could be the re-
sult of a local competition for synaptic building blocks such as neurotransmitter
receptors [15].

3.4 Lateral Inhibition

We use a simple lateral inhibition mechanism to facilitate the learning of di-
verse receptive fields tuned to different orientations and movement directions
and speeds. In the network, N neurons are connected to the same set of input
pixels as shown in Fig. 1a. Such neurons are linked by inhibitory connections.
When one neuron spikes, it immediately inhibits the other N − 1 neurons from
firing for a fixed duration TI = 8 ms. This prevents neurons which receive input
from the same region of the sensor from firing at roughly the same time, which
would imply similar synaptic weight updates and lead to similar receptive fields.

3.5 Coupling of the Event Based Camera to the Network

The input to the network comes from the DAVIS346B [3], a DVS sensor of
346 × 260 pixels. We tile the pixel array into 10 × 10 pixel squares (ignoring
the 6 rightmost columns), giving 340×260

10×10 = 884 tiles. Each input tile projects to
N = 4 neurons connected by inhibitory synapses (compare Fig. 1a and Sec. 3.4
on lateral inhibition). This implies a network size of 3536 neurons. Each neuron
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(a) (b)

Fig. 1: (a) Groups of N = 4 neurons are connected to the same patch of input
pixels providing On (green) and Off (red) events. The neurons are linked by
inhibitory connections (blue). A neuron can be connected to pixels of its recep-
tive field by D synapses with different delays to gain localised motion sensing
properties (not shown). (b) Examples of input events from the driving sequence.

receives inputs from 2×D × 100 synapses corresponding to the 2 event polari-
ties, D time delays, and W ×H = 100 input pixels. For D = 3, this amounts to
2 121 600 input synapses for the entire network. The event-based spiking neural
network simulation was implemented in C++ as a DV-software module. Running
on a standard Intel Core i5-8365U CPU @1.60GHz without particular optimiza-
tion, the network showed real-time performance when using a single synaptic
delay (D = 1) and near real-time performance when D = 3.

4 Results

To demonstrate the learning abilities of our approach we tested different network
configurations on both natural and synthetic visual input.

4.1 Development of orientation-tuned receptive fields

To test the network’s ability to develop diverse orientation-tuned receptive fields
as observed in visual cortex, we used a sequence from the DDD17: DAVIS Driving
Dataset [2]. It features a 3 minutes long driving sequence mostly on freeways and
highways at a somewhat regular speed. Figure 1b shows 4 examples of short time
slices of events. The data set features various types of visual inputs such as cars,
traffic signs, poles, trees, buildings, safety barriers, road markings, etc.

Table 1 lists the parameters used in our spiking neural network. Changes
in parameters specific to one test will be mentioned in the text. In this first
experiment we focus on the spatial structure of the learned receptive fields and
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ALTP ALTD τLTP τLTD τm Vθ Aθ S∗ TI λ
(mV) (mV) (ms) (ms) (ms) (mV) (spikes.s−1) (ms)

0.077 0.021 7 14 18 30 4 0.75 8 4

Table 1: Parameters used for the learning.

(a)

0 30 60 90 120 150 180
Phase (degree)

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

(b)

Fig. 2: (a) Selected examples of learned receptive fields (rows 1, 3 and 5) and
corresponding Gabor fits (rows 2, 4 and 6) showing tuning to different orien-
tations and scales. (b) Histogram of the network’s receptive field orientations
obtained from the fitting of Gabor functions. Horizontal and vertical orienta-
tions are strongly over-represented, showing adaptation to the scene statistics
in line with the dominance of these orientations in man-made (but also natural)
environments.

we thus consider a network without multiple synaptic delays (i.e., D = 1). The
initial synaptic weights are drawn randomly from a uniform distribution. Fig-
ure 2a shows examples of learned receptive fields after 15 minutes of training (5
repetitions of the driving sequence). Green/red pixels represent synapses trans-
mitting On/Off events, respectively. The weight strength is represented by the
color intensity. Yellow areas indicate regions where the neuron is sensitive to
both On and Off events.

The receptive fields of simple cells in primary visual cortex are well described
by Gabor functions. To test the biological plausibility of our learned receptive
fields, we fitted Gabor functions to them. 83% of receptive fields obtained a good
fit (sum of squared errors≤ 5). Example fits are shown in Fig. 2a. They exemplify
that filters of different orientation and scale are learned. Figure 2b shows the
histogram of fitted Gabor orientations. Horizontal and vertical orientations are
over-represented, resembling the oblique effect in visual perception [8].

To test the importance of the lateral inhibition mechanism, we studied the
effect of disabling it in Fig. 3. Each column in Fig. 3a represents the receptive
fields of 4 neurons connected to the same input patch after learning without
lateral inhibition. Even though the receptive field initialisation was different,
all 4 neurons have learned very similar receptive fields. In contrast, the lateral
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Fig. 3: Lateral inhibition diversifies receptive fields. Examples of 16 neurons’
receptive fields learnt without (a) and with (b) lateral inhibition. All neurons
in a column receive the exact same inputs from the event sensor, but start
with a different random initialisation of their synaptic weights. (c) Boxplot of
the squared Euclidean distances between synaptic weights of neurons receiving
similar inputs with and without lateral inhibition.

inhibition leads to more diverse receptive fields (Fig. 3b). Figure 3c quantifies this
effect by showing box plots of the distributions of all pairwise squared Euclidean
distances between the receptive fields learned at the same location. Inhibition
greatly improves the diversity of receptive fields.

4.2 Development of motion tuned receptive fields

To test the network’s ability to develop motion tuned receptive fields, we intro-
duced synapses with D = 3 different time delays of 0, 10, and 20 ms. We used a
higher starting threshold Vθ = 700mV to work with the extra synapses, as well
as a lower target spiking rate of S∗ = 0.15 spikes.s−1 which is sufficient in this
sequence of fewer events. All other parameters are still set to Table 1 values. We
first tested the motion learning capacity in a controlled setting using synthetic
stimuli. We generated a simple sequence showing 4 vertical bars moving hori-
zontally at predefined speeds of 420, 210, 140 and 105 pixels per second across
the pixel array. The video was recorded at a framerate of 1200 frames per second
and then converted to events using the Open Event Camera Simulator, ESIM
[13]. A snapshot of the events can be seen in Figure 4a.

The speed of the bars influences the number of events produced, which means
that neurons should have different threshold values to appropriately fit the input.
To accommodate this problem, we first set the neurons’ thresholds to a high
value to prevent spiking. The threshold adaptation described in Sec. 3.3 then
decreases the threshold until the neurons starts spiking and its receptive field
will adapt to the input. With the delays between the synapses being fixed at 10
ms, we expected to see a consistent shift in the receptive fields corresponding to
the different synaptic delays. For instance, for the fastest bar the expected shift
was 10 ms × 420 px.s−1 = 4.2 px. Indeed, after exposing the network to about
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(a) (b)

Fig. 4: Motion sensitive receptive fields develop from STDP with multiple synap-
tic delays. (a) On and off events recorded by the DV-software visualisation GUI
for 4 vertical bars moving at speeds of 420, 210, 140 and 105 px/s (top to bot-
tom). (b) Receptive fields of pairs of neighboring neurons receiving the 4 vertical
bars as input (arranged by decreasing speed from top left to bottom right). Each
neuron has 3 groups of input synapses with delays of 0, 10, and 20 ms (top to
bottom). The expected displacements of the 4 bars during 10 ms are 4.2, 2.1, 1.4
and 1.05 pixels, which matches the horizontal shifts of receptive field structures
for different synaptic delays.

50 repetitions of the vertical inputs, we obtained the receptive fields in Fig. 4b
matching the expected shifts, even though the expected displacement could go
down to a fraction of a pixel.

Next, we investigated the network’s ability to develop motion tuned receptive
fields for natural input by training it on the driving sequence of Fig. 1b. We were
particularly interested in systematic differences in tuning properties across the
visual field reflecting typical optic flow patterns occurring during driving. We
chose a higher starting membrane potential threshold of Vθ = 150mV. Learned
spatio-temporal receptive fields across the entire sensor array are shown in Fig. 5.
Only one out of four neurons per location (compare Fig. 3) is shown. The re-
ceptive fields of some regions of the sensor are enlarged in Fig. 5b. Overall, a
large variety of receptive fields tuned to different orientations, motion directions,
and speeds have been learned. Importantly, we observe systematic differences in
tuning properties across different parts of the visual field. In particular, the left
and right regions of the network have mostly learned vertically tuned receptive
fields, whereas the top and bottom parts have developed horizontally tuned re-
ceptive fields (compare pink, blue, and orange regions). This is coherent with the
statistics of the sensory input. The left and right regions of the data sequence
contain many poles, trees, and buildings, which due to the motion of the car will
generate vertically aligned events. In contrast, the top and bottom parts con-
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tain bridges, highway panels, and road markings, generating mostly horizontally
aligned events due to the motion of the car. Overall, the receptive fields show
an interesting adaptation to the spatial orientation statistics of the input across
the visual field.

The learned receptive fields also capture information about the optic flow
statistics of the sequence. The shifts between receptive fields of different synaptic
delays approximate the average speed of objects passing through that region of
the sensor. We find that bigger shifts occur in the outer region of the sensor,
whereas the inner regions exhibit smaller shifts (compare top and bottom part
of orange region), corresponding to large optic flow in the periphery and small
optic flow in the center. Considering the polarity of shifts across different regions
of the pixel array, we find, as expected, that they reflect the dominant optic flow
pattern of ego motion corresponding to objects moving radially outward to the
periphery.

5 Discussion

We have presented a spiking neural network that learns motion-sensitive recep-
tive fields from the input of an event based camera in an unsupervised fashion.
Motion tuning arises from spike timing-dependent plasticity (STDP) with multi-
ple synaptic delays combined with homeostatic mechanisms and a simple lateral
inhibition scheme to diversify tuning properties. The mechanisms used are all
biologically inspired, but were not intended as accurate models of biological re-
ality. Among the biggest idealizations are the instantaneous lateral inhibition to
decorrelate responses of neurons with overlapping receptive fields and the group-
wise normalization of synaptic inputs. The latter could be biologically plausible,
however, if the different groups of synapses were considered to reside on separate
dendritic branches [15]. This seems plausible for synapse groups with short vs.
long delays, which could correspond to inputs to more proximal vs. more dis-
tal dendritic branches, respectively. Similarly, On an Off channel inputs could
also be sorted to different dendritic branches during development based on their
correlations.

Our work suggests a number of avenues for future research. First, we would
like to extend our approach to active binocular vision, considering the simul-
taneous learning of disparity representations and vergence eye movements in a
fully spiking implementation. Second, scaling up our approach to more complex
spiking neural networks using neuromorphic hardware is an exciting topic for
future research.

References

1. Akolkar, H., Panzeri, S., Bartolozzi, C.: Spike time based unsupervised learning
of receptive fields for event-driven vision. In: IEEE Int. Conf. on Robotics and
Automation. IEEE (May 2015)



Unsupervised Learning of Spatio-Temporal Receptive Fields 11

2. Binas, J., Neil, D., Liu, S.C., Delbruck, T.: Ddd17: End-to-end davis driving dataset
(2017), https://arxiv.org/abs/1711.01458

3. Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240 180 130 dB 3 µs
latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State
Circuits 49(10), 2333–2341 (Oct 2014)

4. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-
timing-dependent plasticity. Frontiers in Computational Neuroscience 9 (Aug
2015)

5. Haessig, G., Cassidy, A., Alvarez, R., Benosman, R., Orchard, G.: Spiking optical
flow for event-based sensors using IBMs TrueNorth neurosynaptic system. IEEE
Transactions on Biomedical Circuits and Systems 12(4), 860–870 (Aug 2018)
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{'NEURON_WIDTH': 10, 'NEURON_HEIGHT': 10, 'NEURON_SYNAPSES': 3, 'SYNAPSE_DELAY': 10000, 'X_ANCHOR_POINT': 0, 'Y_ANCHOR_POINT': 0, 'NETWORK_WIDTH': 34, 'NETWORK_HEIGHT': 26,
'NETWORK_DEPTH': 1, 'DELTA_VP': 0.077, 'DELTA_VD': 0.021, 'DELTA_SR': 4, 'TAU_LTP': 7000, 'TAU_LTD': 14000, 'VTHRESH': 150, 'VRESET': -20, 'TAU_M': 18000, 'TAU_INHIB': 0, 'NORM_FACTOR': 4,
'NORM_THRESHOLD': 1, 'TARGET_SPIKE_RATE': 0.75}

(a) (b)

Fig. 5: Motion tuned receptive fields learned at different image locations. (a)
Receptive fields learned across the entire field of view. Each receptive field has
three sub-fields (arranged vertically) corresponding to different synaptic delays.
(b) Enlarged view of marked groups of receptive fields in (a). See text for details.
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