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Computability of the Additive Complexity of Algebraic Circuits with Root Extracting

We design an algorithm for computing the generalized (algebraic circuits with root extracting, cf. P 81], J 81], GSY 93]) additive complexity of any rational function. It is the rst computability result of this sort on the additive complexity of algebraic circuits.

Introduction

It is a well known open problem in the theory of computation, whether the additive complexity of functions is computable. Note that both multiplicative and total complexities of functions are computable. In this paper we prove, somewhat surprisingly, the computability of the generalized additive complexity for algebraic circuits with root extraction. These circuits were considered in J 81] where a lower bound on the number of root extracting operations for computing on algebraic functions has been proven. This was recently generalized in GSY 93] for the algebraic circuits which contain in addition also exponential and logarithmic functions. Our result is the rst computability result of this sort on the additive complexity of algebraic circuits.

Let us give the de nition of the generalized additive complexity. We say that a rational function f 2 Q(X 1 ; : : :; X n ) has a generalized additive complexity at most t, if there exists a sequence of algebraic functions:

u i+1 = " (i+1) X (i+1) 1 1 X (i+1) n n u (i+1) 1 1 u (i+1) i i + (i+1) X (i+1) 1 1 X (i+1) n n u (i+1) 1 1 u (i+1) 
i i for 0 i t, where (t+1) = 0, f = u t+1 and all the exponents (i+1) 1 ; : : :; (i+1) i 2 Q, 0 i t are rationals, coe cients " (i+1) ; (i+1) 2 Q are algebraic. The rationality of the exponents (rather than being integers) di ers the generalized additive complexity from the usual additive complexity.In other words we consider the algebraic circuits in which in addition to the usual arithmetic operations also extracting an arbitrary root is admitted.

If t equals to the generalized additive complexity of f then we say that computation u 1 ; : : :; u t+1 of f is generalized additive-minimal.

In the rst section we consider the computations in which the exponents (i+1) 1 ; : : :; (i+1) i , 0 i t are admitted to be algebraic and the adjusted for this situation notion of the quasi-additive complexity. The computation of the quasi-additive complexity is reduced (see lemma below) to the problem of quanti er elimination in the theory of di erentially closed elds (solved in Se 56], for its complexity see G 89]).

In the section 2 we prove (see proposition below) that any quasi-additive minimal computation of a rational function can be transformed into a generalized additive-minimal computation with the same number of additions which contains only rational exponents, thus quasi-additive and generalized additive complexities coincide. Moreover, corollary in the section 2 gives a possiblitiy to construct the rational exponents of a generalized additiveminimal computation. In the section 3 we describe an algorithm for producing a generalized additive-minimal computation. In the case of one variable (n = 1) we give an (elementary) complexity bound of the designed algorithm (see theorem below) as it uses the quanti er elimination algorithm from G 89]. In the general case (n 2) we do not give complexity bounds as the quanti er elimination method from Se 56] is invoked which relies in its turn on the e cient bounds in Hilbert's Idealbasissatz which are unknown to be elementary.

Note that a lower bound on additive complexity of f in terms of the variety of real roots of f was obtained in G 83] (see also Ri 85]) where one can nd also a survey on other lower bounds, in particular for additive complexity (see also G 82] SW 80]). The lower bound from G 83] is used (see the end of section 3) to show that there are polynomials with the generalized additive complexity equal to 3 and arbitrary large additive complexity.

2 Describing quasi-additive complexity in terms of the rstorder theory of di erentially closed elds

We start with designing an algorithm for testing, whether there exist (and if so, also to produce) algebraic exponents (i+1) 1 ; : : :; (i+1) i 2 Q in the computation u 1 ; : : :; u t+1 providing an identity u t+1 = f holds. In this case we say that f has the quasi-additive complexity at most t. For this purpose we introduce the (di erential) unknowns i for all 0 i t and the system of (partial) di erential equations (denote D i = d dXi and by D any of the operators D 1 ; : : :; D n , by (l; j) denote the Kronecker symbol):

D(~ (i+1) 1 ) = = D( ~ (i+1) i ) = 0 (1a) i+1 D j (v (i+1) l ) = ~ (i+1) l Xl v (i+1) l (l; j); D j (ṽ (i+1) l ) = ~ (i+1) l Xl ṽ(i+1) l (l; j); 1 l; j n (1b) i+1 D(w (i+1) l ) = ~ (i+1) l w (i+1) l Dul ul ; D( w(i+1) l ) = ~ (i+1) l w(i+1) l Dul ul ; 1 l i (1c) i+1 u i+1 = v (i+1) 1 v (i+1) n w (i+1) 1 w (i+1) i + ṽ(i+1) 1 : : : ṽ(i+1) n w(i+1) 1 : : : w(i+1) i ( 1d 
) i+1 for all 0 i t together with the equation u t+1 = f. The resulting system we denote by (1).

Note that the equations (1a) i+1 imply that ~ (i+1) 1 ; :

: :; ~ (i+1) i 2 Q are the constants; (1b) i+1 imply that v (i+1) l = (i+1) l X ~ (i+1) l l ; ṽ(i+1) l = ~ (i+1) l X ~ (i+1) l l
for the appropriate constants

(i+1) l ; ~ (i+1) l 2 Q; (1c) (i+1) imply that w (i+1) l = (i+1) l u ~ (i+1) l l ; w(i+1) l = ~ (i+1) l u ~ (i+1) l l
for the appropriate constants (i+1) l ; ~ (i+1) l 2 Q. Thus, the following lemma is proved.

Lemma. The solvability of system (1) (in all its di erential unknowns) is equivalent to the fact that the quasi-additive complexity of f is at most t. Now we consider the statement of solvability of the system (1) as an existentional formula of the rst-order theory of di erentially closed elds Se 56]. Applying to it a quanti er elimination algorithm Se 56] one can eliminate unknowns u i+1 ; v (i+1) 1 ; : : :; v (i+1) n ; w (i+1) 1 ; : : :; w (i+1) i ; ṽ(i+1) 1 ; : : :; ṽ(i+1) n ; w(i+1) 1 ; : : :; w(i+1) i for all 0 i t.

As a result we get an (existentional) equivalent formula containing only the unknowns ~ (i+1) 1 ; : : :; ~ (i+1) i ; 0 i t. Because of (1a) the latter formula can be considered as a formula in the language of polynomials (so, without derivatives), thus as a system of polynomial equations and inequalities with integer coe cients.

Thus, given a rational function f the algorithm tries t = 1; 2; : : :; and for each t tests (using CG 83]), whether the above constructed system of polynomial equations and inequalities has a solution (over Q). For a minimal such t we take any of these solutions (i+1) 1 ; : : :; (i+1) i 2 Q; 0 i t. In the next section we show that in this case there exists as well a rational solution of this system and moreover we show how to construct it.

To solve the system (1) of di erential equations we applied the algorithm from Se 56] for which elementary complexity bound is unknown since it relies on an e cient bound in Hilbert`s Idealbasissatz. But the complexity of quanti er elimination is elementary in the case of ordinary di erential equations for the algorithm designed in G 89], i. e. when n = 1, in another words when there is only one independent variable X. In this case the system (1) contains O(t 2 ) unknows, the order of highest occurring derivatives in the equations is at most 1, the degree of the equations is at most O(t) + deg f and the number of equations is at most O(t 2 ), the bit-size of the coe cients of the occuring equations is at most O(1) +M, where M is the bit-size of the coe cients of f. Therefore (see the bounds in G 89]), one can eliminate quanti ers and produce a system of polynomial equations and inequalities with integer coe cients (see above) in the unknowns ~ (i+1) 1 ; : : :; ~ (i+1) i ; 0 i t in time N = M O(1) (degf) 2 2 O(t 2 ) ; the degrees of the polynomials occurring in this system do not exceed N 1 = (degf) 2 2 O(t 2 ) the number of these polynomials is at most N 1 and the bit-size of (integer) coe cients occurring in this system can be bounded by N . Thereupon to solve this system of polynomial equations and inequalities we apply the algorithm from CG 83] which requires time M O(1) (degf) 2 2 O(t 2 ) . The algorithm from CG 83] nds (provided that the system is solvable) a solution (i+1) 1 ; : : :; (i+1) i 2 Q; 0 i t in the following form. The algorithm produces an irreducible over Q polynomial '(Z) 2 Q Z], also polynomials (i+1) 1 (Z); : : :; (i+1) i (Z) 2 Q Z]; 0 i t such that ) (deg f) 2 2 O(t 2 ) 0 i t and the bit-size of every coe cient occurring in the listed polynomialsdoes not exceed M O(1) (degf) 2 2 O(t 2 ) .

Rational exponents in the quasi-additive minimal computation

In this section we prove (see the proposition below) the coincidence of the generalized additive and quasi-additive complexities for rational functions. Moreover, we show (see Corollary below) how for given algebraic exponents of a quasi-additive minimal computation to produce the exponents of a certain generalized additive-minimal computation of the same rational function, thus containing only rational exponents. The similar statements were proved also for the rationality of the exponents in the minimal sparse representations of a rational function GKS 92a] and of a real algebraic function GKS 92a]. But the latter statements have di erent (from the one in the present paper) nature, also another di erence is that we prove here the existence of the rational exponents rather than the rationality as it was the case in GKS 92a], GKS 92a]. So, let

u i+1 = " (i+1) X (i+1) 1 1 X (i+1) n n u (i+1) 1 1 u (i+1) i i + (i+1) X (i+1) 1 1 X (i+1) n n u (i+1) 1 1 u (i+1) i i
where 0 i t; (t+1) = 0 and all the exponents and coe cients (i+1) 1

; : : :; (i+1) i ; " (i+1) ; (i+1) 2 Q :

Proposition. Assume that f = u (i+1) 2 Q(X 1 ; : : :; X n ) is a rational function and t is the minimal possible (so t equals to the quasi-additive complexity of f). Then there exist rational exponents a (i+1) 1 ; : : :; d (i+1) i 2 Q; 0 i t, respectively, providing also a computation of f (thus, t equals also to the generalized additive complexity).

Proof. For each 1 j n consider a Q-basis (1) j ; (2) j ; : : : 2 Q of the Q-linear hull Qf (s) j ; (s) j g 1 s t+1 . If 1 (thereby Q) is contained in the latter linear hull, then we set (1) j = 1. Denote f (1) j ; (2) j ; : : :g = f (1) j ; (2) j ; : : :g n f1g.

From the proof of the proposition we extract the Corollary. For every 1 i t; 1 2 Qf (s) i ; (s) i g i+1 s t+1 . For any Q-basis (1) j ; (2) j ; : : : of Qf (s) j ; (s) j g 1 s t+1 and any Q-basis (1) i ; (2) i ; : : : of Qf (s) i ; (s) i g i+1 s t+1 we get the rational exponents of the resulting computation of ũ1 ; : : :; ũt+1 (see (4)) from the expansions (2).

In order to show that 1 2 Qf (s) i ; (s) i g s observe that otherwise b (s) i = d (s) i = 0 for all i + 1 s t + 1 and we could diminish t by deleting ũi from the computation ũ1 ; : : :; ũt+1 and get a contradiction with a minimality of t.

Remark that the corollary together with lemma 12 GKS 92a] entail that for any i the constructible set of all the possible exponent vectors ( (i+1) i ; : : :; (t+1) i ; (i+1) i ; : : :

; (t) i ) 2 Q 2t 2i+1 is contained in a nite union of the hyperplanes of the kind X i+1 j t+1 b(j) i (j) i + X i+1 j t d (j) i (j) i = d where b(j) i ; d(j) 
i ; d 2 Z. The similar holds also for the vectors ( (1) i ; : : :;

i ) 2 Q 2t+1 . But we will not use this remark.

Note also that in the resulting computation (4) the rational exponents depend on the choice of the Q-basis (see the corollary). The following simple example demonstrates that the dependency really can happen:

u 1 = X (X + 1); u 2 = X a u a 1 + X b u b 1 = (X + 1) a + (X + 1) b
where 2 Q n Q; a; b 2 Q. Choosing a basis + z; 1 2 Qf1; g, for arbitrary z 2 Q, we get

u 1 = (X +z )X 1 z + (X +z )X z u 2 = (X +z ) a X za u a 1 + (X +z ) b X zb u b 1
and by the corollary

u 1 = wX 1 z + wX z u 2 = w a X za u a 1 + w b X zb u b 1 for arbitrary w 2 Q n f0g.
4 Constructing a generalized additive-minimal computation

The rst two sections (see lemma and corollary) give us a possibility to compute a generalized additive complexity t of a rational function f. Now we complete an algorithm which nds some generalized additive-minimal circuit computing f. Using the corollary from the section 2 the algorithm nds rational exponents (i+1) 1 ; : : :; (i+1) i 2 Q; 0 i t, it remains to nd the coe cients " (i+1) ; (i+1) 2 Q; 0 i t.

Denote by M a bound on the bit-sizes of the rational exponents (i+1) 1 ; : : :

; (i+1) i 2 Q; 0 i t.
Then by induction on i one can easily show that each u i+1 ; v (i+1) 1 ; : : :; w(i+1) i ; 0 i t is an algebraic function of the degree (i.e. the degree of a minimal polynomial to which satis es the function) at most N = (exp(M)) t O(t) . Hence the coe cients " (i+1) ; (i+1) ; 0 i t t if and only if for every 1 x 1 ; : : :; x n N 2 for which all the intermediate computations of the circuit are de nable, the equality u t+1 (x 1 ; : : :; x n ) = f(x 1 ; : : :; x n ) holds. So, for every xed 1 x 1 ; : : :; x n N 2 we introduce the variables u t+1 (x 1 ; : : :; x n ); v (i+1) 1 (x 1 ; : : :; x n ); : : :; w(i+1) i (x 1 ; : : :; x n ); 0 i t and write down a system of polynomial equations and inequalities expressing all the operations of the circuit (provided that they are all de nable) and nally the relation u t+1 (x 1 ; : : :; x n ) = f(x 1 ; : : :; x n ). Then the algorithm invoking CG 83] solves this system in N 2n + 2t + 1 variables and nds in particular " (i+1) ; (i+1) 2 Q; 0 i t. More precisely, for each subset J f1; : : :; N 2 g n we consider a system as above including in it just the points (x 1 ; : : :; x n ) 2 J (so, J plays the role of the set of points in which the computation is de ned). The algorithm solves this system and takes J with the maximal cardinality for which the system is solvable. In a more sophisticated way we can partition the cube f1; : : :; N 2 g n into N n subcubes with sides equal to N and as J take each of these subcubes, but this improvement does not change the complexity bounds below.

In the ordinary case (n = 1) we can bound the complexity of the described algorithm. First, observe that in this case M M O(1) (degf) 2 2 O(t 2 ) (see the end of the sec- tion 1). Therefore, the system of polynomial equations and inequalities constructed above contains exp(M O(1) (degf) 2 2 O(t 2 ) ) polynomials of degrees at most exp(M O(1) (degf) 2 2 O(t 2 ) )in exp(M O(1) (degf) 2 2 O(t 2 ) ) variables. Hence one can solve it using the algorithm from CG 83] in time exp(exp(M O(1) (degf) 2 2 O(t 2 ) )) and nd " (i+1) ; (i+1) 2 Q; 0 i t representing them as algebraic numbers as at the end of section 1 with the size bounded also by the latter value.

Summarizing, we formulate Theorem.

a) There is an algorithm calculating the generalized additive complexity of a rational function f 2 Q(x 1 ; : : :; x n ) and constructing a generalized additive-minimal circuit computing f; b) In the case of one-variable rational functions f the running time of the algorithm from a) can be bounded by exp(exp(M O(1) (degf) 2 2 O(t 2 ) )), where M bounds the bitsize of each (rational) coe cient of f. The absolute values of the numerators and denominators of the found rational exponents in a generalized additive-minimal circuit computing f do not exceed exp(M O(1) (degf) 2 2 O(t 2 ) ) .

At the end we demonstrate that there could be a big gap between the the additive complexity and generalized additive complexity. Consider a polynomial f n = (1 + X 1 2 ) n + (1 X 1 2 ) n 2 Z X] with the generalized additive complexity at most 3. As all its b n 2 c roots are negative reals, the additive complexity of f n is at least ((log n) 1 2 ) because of the result G 83] (see also Ri 85]) based on the method from Kh 91].

Further Research

It remains an interesting open problem on improving the complexity bounds of our algorithm. It will be also very interesting to shed some more light on the status of the problem of computing standard additive complexity of rational functions. At this point we do not know much about this problem.

  i+1) ( ); : : :; (i+1) i = (i+1) i ( ) where 2 Q is a root of '( ) = 0. From CG 83] we obtain the following bounds: deg('); deg( (i+1) 1 ); : : :; deg( (i+1) i
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Consider a di erential eld F j ; 0 j n generated over Q(X 1 ; : : :; X n ) by the elements log X 1 ; X (1) 1 1 ; X

(2) 1 1 ; : : :; log X j ; X (1) j j ; X

(2) j j ; : : :. Then in the terminology of RC 79] each F j ; 0 j n is a log-explicit extension of its eld of constants Q (one can represent X = exp( log X)).

We claim that the elements X

(1) j+1 j+1 ; X

(2) j+1 j+1 ; : : : 2 F j+1 are algebraically independent over the eld F j (log X j+1 ). Assume the contrary. Then the corollary 3. 2 RC 79] (see also

Ro 76]) implies the existence of a constant 2 Q, rational numbers l (0) 1 ; l (1) 1 ; : : :; l (0) j ; l (1) j ; : : :; l (0) j+1 ; l (1) j+1 ; : : : 2 Q such that not all l (1) j+1 ; l (2) j+1 ; : : : are zeroes and

but this leads to a contradiction since the derivative d dXj+1 of the left side is nonzero, but of the right side equals to zero.

For each 1 i t consider a Q-basis (1) i ; (2) i ; : : : 2 Q of the Q-linear hull Qf (s) i ; (s) i g i+1 s t+1 . If 1 (thereby Q) is contained in the latter linear hull, then we set (1) i = 1. Denote f (1) i ; (2) i ; : : :g = f (1) i ; (2) i ; : : :g n f1g.

Denote by E i , 0 i t a eld generated over F n by the elements

It is a log-explicit extension of its eld of constants Q. We claim that for 0 i t 1 the elements u (1) i+1 i+1 ; u (2) i+1 i+1 ; : : : 2 E i+1 are algebraically independent over the eld E i (log u i+1 ). Assume the contrary. Then again using corollary 3.2 RC 79] we conclude that there exist a constant " 2 Q, rational numbers p 1 ; p (1) 1 ; p (2) 1 ; : : :; p n ; p (1) n ; p (2) n ; : : :; z 1 ; z (1) 1 ; z (2) 1 ; : : :; z i+1 ; z (1) i+1 ; z (2) i+1 ; : : : 2 Q such that not all z (1) i+1 ; z (2) i+1 ; : : : are zeroes and

This provides an expression of u i+1 as a product of powers of X 1 ; : : :; X n ; u 1 ; : : :u i and thereby we can diminish t by one in the computation of f, this contradiction with the minimality of t proves the algebraic independency of u Consider the expansions

i ; 1 i t + 1; i < s t + 1

(2) where a (s) j ; : : :; d (s) i;k 2 Q are suitable rationals. Remark that if 1 6 2 f (1) j ;

(2) j ; : : :g then a (s) j = c (s) j = 0, also if 1 6 2 f (1) i ; (2) i ; : : :g then b (s) i = d (s) i = 0. Then the initial computation u 1 ; u 2 ; : : : we can rewrite as follows:

From the latter expression one can show by induction on i that u i+1 (and thereby each of the previous elements u 1 ; : : :; u i ) is algebraic over the eld E 0 i E i generated over Q(X 1 ; : : :; X n ) by the elements Above we have proved that the latter elements are algebraically independent over Q(X 1 ; : : :; X n ). As u t+1 = f 2 Q(X 1 ; : : :; X n ) we can substitute in the expression (3) instead of the elements respectively, with the mere requirement that in the intermediate computations of u 1 ; u 2 ; : : :; u t+1 = f there is no taking nonpositive powers of zero (each time we choose some branch of a rational power).

As a result we get a computation of ũ1 ; ũ2 ; : : :; ũt+1 = f in which only rational exponents occur, namely ũi+1 = "(i+1) X a (i+1) for some "(i+1) ; ~ (i+1) 2 Q. The proposition is proved.