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On Computing Algebraic Functions using Logarithms and Exponentials

Let be a set of algebraic expressions constructed with radicals and arithmetic operations, and which generate the splitting eld F of some polynomial. Let N ( ) be the minimum total number of root-takings and exponentiations used in any straightline program for computing the functions in by taking roots, exponentials, logarithms, and performing arithmetic operations. In this paper it is proved that N ( ) = (G), where (G) is the minimum length of any cyclic Jordan-H older tower for the Galois group G of F. This generalizes a result of Ja'Ja' 1], and shows that the inclusion of certain new primitives, such as taking exponentials and logarithms, does not improve the cost of computing such expressions as compared with programs which use only root-takings.

Introduction

The question of how e ciently one can evaluate expressions such as P 1 i<j n q (x i x j ) 2 + (y i y j ) 2 = n 2 , the mean distance among n points in the plane, was raised in Shamos and Yuval 8]. A systematic study of this question was given in Pippenger 6,[START_REF] Pippenger | \Computational complexity of algebraic functions[END_REF]. Let be a family of algebraic expressions constructed from indeterminates using radicals and arithmetic operations. De ne the cost of a program to be the number of root-takings used, with arithmetic operations given for free. Let F be the extension eld generated by the members of over the eld of rational functions with complex coe cients. It was shown [START_REF] Lang | Algebra[END_REF][START_REF] Pippenger | \Computational complexity of algebraic functions[END_REF] that, when the members of are rational functions of the roots of rational functions, the mimimum cost is equal to the number of the torsion orders 4 for the Galois group of F (an Abelian group in this case). An extension was given in Ja'Ja' 1], who showed that the minimum cost is equal to the minimum length of any cyclic Jordan-H older tower for the Galois group of F, provided that F is a nite Galois extension over the eld of rational functions. It is known 1,7] that the former result is a special case of the latter.

These results can be used to determine the minimum cost for computing in many cases. For example, for the mean distance problem, the Galois group can be shown 6] to be isomorphic to (Z 2 ) ( n 2 ) , which clearly has n 2 torsion orders.

As taking a root y 1=d can be simulated by taking the logarithm log y followed by an exponentiation exp((log y)=d), a natural question is whether the availability of the lograrithm and exponential operations can substantially reduce the cost of evaluating algebraic expressions. In particular, can one evaluate the expression P 1 i n p x i using o(n) exponentiations and logarithm-takings? (Clearly, the expression can be evaluated with n root-takings.) The possible use of logarithms and exponentials, as well as other primitives, was mentioned in 8], but was not studied in later papers 1, [START_REF] Lang | Algebra[END_REF][START_REF] Pippenger | \Computational complexity of algebraic functions[END_REF].

In this paper, we show that under the same assumption as in 1] (i.e. F being a nite Galois extension), the availability of taking logarithms and exponentials does not reduce the cost. In particular, we prove that n or more operations are needed to evaluate P 1 i n p x i , with arithmetic operations given for free. In the next section, we give a precise statement of the main result (Theorem 1), after introducing the needed notations and background. The result is then proved in Section 3; some additional concepts and results from Di erential Algebra (see 2-4]) are used in the proof. 4 Any nite Abelian group G can be uniquely decomposed into a direct sum of cyclic groups Z d 1 Z d 2 Z d t , such that dt > 1 and di is divisible by di+1 for 1 i < t. The integers di are called the torsion orders of G; t is the number of torsion orders for G.

We remark that the complexity question under other cost measures, in which the cost of taking a d-th root may depend on d, were discussed in 1,6,7]. We will not pursue it here.

The Main Result

We use the standard teminology in Algebra (as in Lang 3]). In what follows, let Z + be the set of all positive integers. An -program A is a sequence of instructions of the form z 1 I 1 , z 2 I 2 ; ; z m I m , where I i are of the form (r i (x 1 ; x 2 ; ; x n ; z 1 ; ; z i 1 )) 1=d i with r i is a rational function in x 1 ; ; x n ; z 1 ; ; z i 1 with complex coe cients and d i 2 Z + . We call m the cost of A. For 1 i m, let g i (x 1 ; x 2 ; ; x n ) be the functions de ned inductively by g i (x 1 ; x 2 ; ; x n ) = (r i (x 1 ; x 2 ; ; x n ; g 1 (x 1 ; ; x n ); ; g i 1 (x 1 ; ; x n ))) 1=d i . We shall always assume that the r i have been chosen so that the denominators of these functions do not vanish identically. Informally, g i (x 1 ; x 2 ; ; x n ) are the values assumed by the variables z i for input (x 1 ; x 2 ; ; x n ). Let E A denote the set of all functions of the form r(x 1 ; x 2 ; ; x n ; g 1 (x 1 ; ; x n ); ; g m (x 1 ; ; x n )) where r is a rational function with complex coe cients whose denominator does not vanish identically when the substitution is made. We note that each element of E A de nes a function algebraic over the eld F 0 = C(x 1 ; ; x n ) of rational functions in n variables with coe cients in the complex numbers C.

A solvable algebraic expression is any element of E A for any -program A. Let = (f 1 ; f 2 ; ; f s ) be a nite set of solvable algebraic expressions. We say that is computed by A, if each f i 2 E A . Let N ( ) be the minimum cost of any -program computing .

Clearly, N ( ) is nite. For any such , we can form the eld F 0 ( ) which is the algebraic extension of F 0 formed by adjoining the functions corredponding to the elements f 1 ; ; f s of .

Following 1], is said to be normal, if F 0 ( ) is a nite Galois extension of F 0 . In other words, is normal if generates the splitting eld of some polynomial over F 0 .

For any solvable group G, a cyclic Jordan-H older tower is a normal tower of groups

G = G 0 . G 1 . . G m 1 . G m = 1;
where G i 1 =G i is cyclic for each 1 i m. Let (G) be the length m of the shortest cyclic Jordan-H older tower for G.

The next result is from Ja'Ja' 1] which we state as a lemma: Lemma 1 1] If is normal, then N ( ) = (G), where G is the Galois group for F 0 ( ) over F 0 .

A -program B is a sequence of instructions of the form z 1 I 1 , z 2 I 2 ; ; z m I m , where I i are of the form a 1=d i i , exp(a i ), or log(a i ), where a i = r i (x 1 ; x 2 ; ; x n ; z 1 ; ; z i 1 ) with r i is a rational function in x 1 ; ; x n ; z 1 ; ; z i 1 with complex coe cients and d i 2 Z + . We shall again always assume that the r i have been chosen so that the denominators of these functions do not vanish identically. Let (B) be the number of instructions which either take roots or exponentials. Let g i (x 1 ; x 2 ; ; x n ) be the functions associated with variables z i , de ned exactly as in the case for -programs. Let E B denote the set of all functions of the form r(x 1 ; x 2 ; x n ; g 1 (x 1 ; ; x n ); ; g m (x 1 ; ; x n )) where r is a rational function with complex coe cients whose denomincators do not vanish identically when the substituion is made. Let = (f 1 ; f 2 ; ; f s ) be a nite set of solvable algebraic expressions. We say that is computed by B, if each element f i of equals a function in E B . Let N ( ) be the minimum (B) of any -program B computing .

Our main result is the following theorem:

Theorem 1 If is normal, then N ( ) = (G), where G is the Galois group for F 0 ( ) over F 0 .

Corollary 1 If is normal, then N ( ) = N ( ).

Corollary 2 Let = f f g, where f = P 1 i n p x i . Then N ( ) = n.

Remark It is an interesting open question whether N ( ) is equal to N ( ) when is not required to be normal.

Proof of Theorem 1

Before proving the theorem, we introduce some terms in Di erential Algebra (see 2],

3], 4]). A di erential eld is a eld k together with a set = f i g of mappings i : k!k, called derivations, such that each i satis es the conditions i (a + b) = i (a) + i (b), i (ab) = i (a)b + a i (b), and i ( j (a)) = j ( i (a)) for all i ; j 2 ; a; b 2 k. For example, F 0 can be considered a di erential eld when we use the derivations = f 1 ; ; n g where i (f) = @f=@x i . In this paper we are concerned only with di erential elds that come from elds of di erentiable functions a and that are extensions of this di erential eld. These extensions will be gotten by adjoining elements that can be interpreted as functions on some suitable region in complex n-space C n . We will use K 0 to denote the di erential eld obtained from the eld F 0 equipped with these standard derivations . Note that if K is a di erential eld containing K 0 and if a 2 K, then the eld obtained by adjoining exp(a) to K gives a di erential eld. The element exp(a) will satisfy the di erential equations i (exp(a)) = i (a) exp(a) for i = 1; ; n. Similarly, the adjoining of log(a) gives a di erential eld and the element log(a) satis es i (log(a)) = i (a)=afor i = 1; ; n. We also note that if = (f 1 ; ; f s ) is a set of solvable algebraic expressions (or, more generally, any set of algebraic functions), the derivations can be extended uniquely to derivations on F 0 ( ) ( 4], Lemma 1, p.90).

The classical Galois theory for eld theory can be extended to a di erential Galois theory for di erential elds (See 3] and 4] for de nitions and discussions of these concepts; 2] contains an excellent exposition of the theory in the case of only one derivation and the essential results extend, mutatis mutandi to the case of several derivations). This galois theory can be used to study the structure of the solutions of a system of partial linear di erential equations, provided that the equations generate a di erential ideal of nite linear dimension or, equivalently (see 4], Chapter IV.5), the solution space is a nite dimensional vector space (i.e., the system is holonomic). This is the case for the equations de ning exponentials and logarithms (see 3] and 4]). To avoid possible confusions, we will reserve the term Galois group for the classical Galois group, and use the term di erential Galois group when di erential elds are being discussed. It should be noted, though, that if k 1 is an algebraic extension of k 0 , a di erential eld of characteristic zero, then since all derivations on k 0 can be extended uniquely to derivations on k 1 , we can identify the Galois group of k 1 over k 0 with the di erential galois group of k 1 over k 0 (with respect to these derivations). To see this note that any di erential automorphism is by de nition a usual automorphism. Conversely, for any automorphism of k 1 over k 0 and any derivation of k 1 that leaves k 0 invariant, we have that 1 is a derivation of k 1 agreeing with on k 0 . Uniqueness implies that they must be equal on all of k 1 and so must be a di erential automorphism. This remark allows us to apply results concerning di erential galois theory to the galois theory of algebraic extensions of di erential elds.

To prove Theorem 1, we rst show that if F 0 ( ) is contained in a certain tower of di erential elds, then there is a tower of algebraic extension elds of no greater length containing F 0 ( ). This result (Lemma 2 below) is at the heart of the proof for Theorem 1.

Let K 0 K 1 K 2 : : : K m be a tower of di erential elds, where each K i is obtained from K i 1 by adjoining an element u i ; u i is either exp(a i ) or log(a i ) with a i 2 K i 1 . Let I be the set of 1 i m such that u i is exp(a i ). We recall from differential Galois theory that in this case each K i is a Picard-Vessiot extension of K i 1 . Furthermore, it is known (see 3, Section 4], or 4, Chapter VI.6]; 2, Lemmas 3.9 and 3.10] contains simillar results for the case of one derivation) that, if i 2 I, the di erential Galois group of K i over K i 1 is an algebraic subgroup of C , the multiplicative group of non-zero complex numbers, and if i = 2 I, then the di erential Galois group of K i over K i 1 is an algebraic subgroup of C + , the additive group of complex numbers. Finally, we note that the proper algebraic subgroups of C are precisely the nite cyclic groups and the only proper algebraic subgroup of C + is the trivial group. This can be seen by noting that a proper Zariski closed subset of either of these two groups must be nite and that in the rst case, we will have a nite multiplicative subgroup of a eld and in the second case we will have a nite subgroup of a torsion free group.

Lemma 2 If F 0 ( ) K m then (G) j I j.

Proof Let F i = F 0 ( )\K i for 1 i m. Then F m = F 0 ( ). Note that F 0 = F 0 ( )\K 0 . Let H i be the di erential Galois group of K i over K i 1 . We claim that the following statement is true for 1 i m : Fact 1 F i is a Galois extension of F i 1 .

To prove this fact, let E i be the sub eld of elements of K i algebraic over K i 1 . E i is a di erential eld and is left invariant by all elements of H i . Therefore the di erential Galois group of K i over E i is a normal subgroup of H i and so E i is a Galois extension of K i 1 . Note that F i = E i \ F 0 ( ). Let p(x) be a polynomial with coe cients in F i 1 . If p(x) = 0 has a root in F i , it must split in both E i and F 0 ( ) (since F 0 ( ) is a fortiori normal over F i 1 ). Therefore p(x) = 0 splits in F i and so F i is a Galois extension of F i 1 . Now let J i be the Galois group of F i over F i 1 . We claim that the following statement is true: Fact 2 For 1 i m; J i is the trivial group if i = 2 I, and a cyclic group if i 2 I.

To prove this fact, consider the eld K i 1 F i . This is a sub eld of K i . Since H i is an abelian group, all of its subgroups are normal, so K i 1 F i is a normal extension of K i 1 whose di erential Galois group L i is the quotient of H i by a closed subgroup of H i . Furthermore, since K i 1 F i is a nite extension of K i 1 , L i is nite and thus coincides with the Galois group of this extension. If i = 2 I, then H i is either C + or the trivial group. The only nite quotient of either of these groups by a closed subgroup is trivial.

If i 2 I, then H i is either C or a nite cyclic group. The only possible nite quotients of these groups by closed subgroups are cyclic. To nish the proof of Fact 2, we note that K i 1 \ F i = F i 1 and so the Galois group J i of F i over F i 1 is isomorphic to L i (see 5, Corollary, p. 400] or 4, Chapter VII, Theorem 1.12]; 2, Lemma 5.10] is a related result but deals only with the case of one derivation.)

We can now nish the proof of Lemma 2. Let G i denote the group of automorphisms of F 0 ( ) leaving F i xed. By Facts 1 and 2, one concludes from the Galois theory that the series G = G 0 ; G 1 ; G 2 ; : : :; G m = 1 forms a cyclic Jordan-H older tower, with G i 1 =G i being isomorphic to J i . Deleting all i = 2 I, we have a tower of length j I j. Hence (G) j I j : 2

We now turn to the proof of Theorem 1. Observe that N ( ) N ( ), which is no greater than (G) by Lemma 1. Thus, we only need to prove that N ( ) (G).

Let B be any -program for computing . Without loss of generality, we may assume that no root-taking operations are used in B, as we can replace any instruction z r 1=d by two instructions y (log r)=d, z exp(y) without changing the value of (B). Let the instructions be z 1 I 1 , z 2 I 2 ; ; z m I m . Let g i (x 1 ; x 2 ; ; x n ) be the functions associated with variables z i .

For 1 i m, let K i be the di erential eld obatained by adjoining g i to K i 1 . By de nition, the functions of E B correspond to elements of K m and F 0 ( ) K m . By Lemma 2, this implies (G) (B). This proves (G) N ( ), and completes the proof of Theorem 1. Corollary 1 follows immediately from the theorem and Lemma 1.

To prove Corollary 2, we note that is normal and the Galois group G of F 0 ( ) over F 0 is isomorphic to Z 2 n . >From the result in 1, 7] (see 7, p. 399, Lemma 3.2]), (G) is equal to the number of torsion orders of G which is cleary n. Corollary 2 follows from the theorem immediately.
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