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By a Pfa an sigmoid with a depth d we mean a circuit with d layers in which rational operations are admitted at each layer, and to jump to the next layer one solves an ordinary di erential equation of the type v 0 = p(v) where p is a polynomial with the coe cients being the functions computed at the previous layers of the sigmoid. Thus, Pfa an sigmoid computes Pfa an functions (in the sense of A. Khovanskii). The deviation theorem is proved which states that for a real function 0 6 f computed by a Pfa an sigmoid with a depth (or parallel complexity) d there exists an integer n such that the inequalities (exp ( ( exp (jxj n ) ) 1 jf(x)j exp ( ( exp (jxj n ) ) hold for all jxj x 0 for a certain x 0 , where the iteration of the exponential function is taken d times. One can treat the deviation theorem as an analogue of the Liouvillean theorem (on algebraic numbers) for Pfa an functions.

Introduction

Under Pfa an sigmoid (cf. MSS], G] ) with a depth d we understand a computational circuit having d layers such that at each layer the rational operations are admitted and for a jump to (i + 1)-th layer, computing a function w i+1 : R ! R at (i + 1)-th layer is admitted, being a solution of a di erential equation of the rst order w 0 i+1 = p(w i+1 ) (cf. Kh] ) where p is a polynomial with the coe cients computed at the previous layers of the sigmoid (see (1) and the section 1 for the exact de nitions). In particular, a jump could be made by taking exp or log of a function computed at previous layers, this kind of Pfa an sigmoids are called elementary and were considered in G], where more generally the sigmoids were introduced in which for a jump to the next layer one can substitute a function from a previous layer into a solution of a linear ordinary di erential equation with the polynomial coe cients, thus, into exp or log, in particular. Another particular case of elementary sigmoids are \standard" sigmoids (see MSS] ) where the jump is made by applying the function (1 + exp( x)) 1 . So, a function computed at (i + 1)-th layer of a sigmoid introduced in G], satis es a linear ordinary di erential equation with the coecients from the previous layers 1; : : : ; i. In the present paper the corresponding di erential equation could be non-linear, but of the special form (see (1) below), providing that the computed functions are Pfa an (see Kh] ).

The main result (see the theorem in the section 1) states that two di erent functions f 1 ; f 2 : R ! R computed by a Pfa an sigmoids with a depth (or parallel complexity) d cannot be too close to each other, namely (exp( (exp p(x) ))) 1 j(f 1 f 2 )(x)j exp( (exp p(x))) for a suitable polynomial p 2 R x] and for all x x 0 for some x 0 2 R, where the number of iterations of the exponential function equals to d. This type of the results was called in G] the deviation theorem where they were proved for the sigmoids introduced in G] (cf. above). Also the deviation theorem could be treated as an analogue of Liouvillean theorem on the bound on the di erence of two (di erent) algebraic numbers, for the functions computed by Pfa an sigmoids. In particular, it gives a lower bound on the approximation of a function computed by a Pfa an sigmoid by means of a rational function (see the corollary in the section 1). On the other hand, one could interpret the theorem and the corollary as lower bounds on the depth (so, parallel complexity) of a Pfa an sigmoid, computing a function, provided that it has a rather good approximation by a \simple" (for example, rational) function.

The proof of the theorem is conducted by induction on the depth of a sigmoid. In the section 2 an upper bound on a function computed by a Pfa an sigmoid is ascertained (see the lemma), in the section 3 a lower bound and thus the inductive step are proved.

1. Pfa an sigmoids and di erential elds.

Denote the eld P 0 = R(X ), then by induction on i the eld P i+1 is generated over P i by all the functions w (j) i+1 : R ! R (maybe having a nite number of singularities) satisfying rst-order nonlinear di erential equations of the form w (j) i+1 0 = q w (j) i+1

(1) where a polynomial q(Z) 2 P i Z].

According to Kh] any function f 2 P i , being Pfa an, has a nite number of singularities and roots (for i = 1 see also B] ). Hence for every two functions f 1 ; f 2 2 P i ; f 1 6 = f 2 the di erence (f 1 f 2 )(x) is either positive or negative everywhere on an interval x 2 x 0 ; 1) for a certain x 0 2 R, we write f 1 f 2 or f 1 f 2 respectively. By p 1 ; p 2 ; 2 R X] we'll denote the polynomials with the positive leading coe cients. By exp (i) = exp( (exp) ) we denote the iteration of the exponential function i times.

Obviously exp (i) (p 1 ); (exp (i) (p 1 )) 1 2 P i . Now we are able to formulate the main result of the paper (cf. G] ).

Theorem. For any function 0 6 f 2 P i there exists a polynomial p 1 such that (exp (i) p 1 ) 1 jfj exp (i) p 1 :

The theorem will be proved in the next two sections, now we indicate the connections with the sigmoids (cf. MSS]). Under a Pfa an sigmoid with the depth d we understand a computations consisting of d layers such that a function w (j) i+1 at (i+1)-th layer satis es an equation ( 1) where the coe cients q `; 0 ` n of the polynomial q(Z) = P 0 ` n q `Z`a re the rational functions in the functions of the form w (j 1 ) i computed at the previous (1; : : : ; i) layers of the sigmoid (cf. G] ). Thus, at each layer of the Pfa an sigmoid the rational operations are admitted and the jump from the previous layer to the next one is done by solving an equation (1). Thus, inducion on i shows that a function w (j) i+1 computed at (i + 1)-th layer of a Pfa an sigmoid belongs to P i+1 .

In G] the elementary sigmoids were considered where the function w (j) i+1 was obtained as either w (j) i+1 = exp(f 1 =f 2 ) or w (j) i+1 = log(f 1 =f 2 ) where f 1 ; f 2 were the polynomials in the functions of the form w (j 1 ) i computed at the previous (1; : : : ; i) layers of the elementary sigmoid. Evidently, an elementary sigmoid is a particular case of Pfa an sigmoids. In its turn, so-called \standard" sigmoid where the jump from the previous layers to the next one is ful lled by applying the gate function (1 + exp( x)) 1 ( MSS] ) is a particular case of the elementary sigmoids.

An important question, how good one can approximate a function computed by a Pfa an sigmoid by means of a rational function (cf. G] ).

Corollary. If a function w d 2 P d is computed by a Pfa an sigmoid with a depth d then for any rational function r 2 P 0 holds jw d rj (exp (d) (p 2 )) 1 for a suitable polynomial p 2 , unless w d = r.

Upper bound on Pfa an function.

We start proving the theorem by induction on i. The base of induction for P 0 is obvious, let us proceed to the inductive step. In the present section we'll prove the required upper bound on the function w (j) i+1 (see ( 1)).

Assume by inductive hypothesis the coe cients q `2 P i ; q n 6 = 0 of the polynomial q satisfy the following inequalities (exp (i) (p 2 )) 1 jq `j exp (i) (p 2 ); 0 ` n for an appropriate polynomial p 2 .

If jw (j) i+1 j 4(exp (i) (p 2 )) 2 is valid, the required upper bound is proved. Suppose the contrary. Then 1 2 (exp (i) (p 2 )) 1 q n + q n 1 w (j) i+1 + + q 0 (w (j) i+1 ) n = (w (j) i+1 ) 0 (w (j) i+1 ) n exp (i) (p 2 ) + 1

If n = 0 then jw (j) i+1 (x)j C 0 +

x R x 0 (exp (i) (p 2 ) + 1) exp (i) (p 3 (x)) for su ciently large

x x 0 and suitable polynomial p 3 and C 0 2 R. If n 2 then j(w (j) i+1 (x)) n+1 j

(n 1) 1 R x 1 2 (exp (i) (p 2 )) 1 (exp (i) (p 4 (x)
)) 1 for su ciently large x and a suitable polynomial p 4 , therefore jw (j) i+1 j (exp (i) (p 4 )). Finally, if n = 1 then log jw (j) i+1 (x)j C 1 +

x R x 0 (exp (i) (p 2 ) + 1) exp (i) (p 5 (x)) for su ciently large x x 0 and suitable polynomial p 5 and C 1 2 R, therefore jw (j) i+1 j exp (i+1) (p 6 ) for a suitable polynomial p 6 .

We summarize the proved upper bound in the following lemma (for i = 0 one can nd its proof in B] ).

Lemma. Assume the statement of the theorem is proved for P i and w (j) i+1 satis es (1) where deg(q) = n. Then a) if n = 0 or n 2 then jw (j) i+1 j exp (i) (p 7 ) b) if n = 1 then jw (j) i+1 j exp (i+1) (p 7 )

for an appropriate polynomial p 7 .

Remark. For any polynomial h 2 P i Y 1 ; : : : ; Y m ] the similar upper bound as in the lemma jh(w (j 1 ) i+1 ; : : : ; w (j m ) i+1 )j exp (i+1) (p 8 ) is valid where the functions w (j 1 ) i+1 ; : : : ; w (j m ) i+1 satisfy similar to (1) equations, namely (w (j s ) i+1 ) 0 = q (s) (w (j s ) i+1 ) where q (s) 2 P i Z]; 1 s m. This is an upper bound on a function h(w (j 1 ) i+1 ; : : : ; w (j m ) i+1 ) 2 P i+1 required in the theorem.

3. Lower bound on Pfa an function.

Now we proceed to proving a lower bound on jh(w (j 1 ) i+1 ; : : : ; w (j m ) i+1 )j required in the theorem. Firstly, we consider the case when w (j 1 ) i+1 ; ; w (j m ) i+1 are algebraically independent over P i . Assume that the required lower bound is wrong, so jh(w (j 1 ) i+1 ; : : : ; w (j m ) i+1 )j (exp (i+1) (p `)) 1 for all the polynomials p `. Then we say that the function h(w (j 1 ) i+1 ; ; w (j m ) i+1 ) is small. Also we assume that m is the least possible with this property. Finally, without loss of generality one can assume that the polynomial h is irreducible over P i .

As the derivative (h(w (j 1 ) i+1 ; ; w (j m ) i+1 )) 0 2 P i+1 is a Pfa an function Kh], it should be also small. One can represent (h(w (j 1 ) i+1 ; ; w (j m ) i+1 )) 0 = P 1 s m @h @w (j s ) i+1 q (s) (w (j s ) i+1 ) = g(w (j 1 ) i+1 ; ; w (j m ) i+1 ) for a certain polynomial g 2 P i Y 1 ; ; Y m ]. If hg in the ring P i Y 1 ; ; Y m ] then there exist polynomials h 1 ; g 1 2 P i Y 1 ; ; Y m ] such that 0 6 h h 1 + gg 1 2 P i Y 1 ; ; Y m 1 ] since h is irreducible. But then the function (hh 1 + gg 1 )(w (j 1 ) i+1 ; ; w (j m 1 ) i+1 ) is small, applying the remark at the end of the section 2 to the polynomials h 1 ; g 1 , that contradicts to the minimality of the choice of m. Now suppose that g = hg 0 where g 0 2 P i Y 1 ; ; Y m ]. Consider any 1 s m for which deg Z (q (s) ) 1, then deg w (j s ) i+1 @h @w (j s ) i+1 q (s) (w (j s ) i+1 ) deg w (j s ) i+1 (h(w (j 1 ) i+1 ; ; w (j m ) i+1 ))

and as deg w (j s ) i+1 @h @w (j `) i+1 q (`) (w (j `) i+1 ) deg w (j s ) i+1 (h(w (j 1 ) i+1 ; ; w (j m ) i+1 )) for every `6 = s, hence w (j s ) i+1 does not occur in the polynomial g 0 (w (j 1 ) i+1 ; ; w (j m ) i+1 ). If for some 1 s m deg Z (q (s) )

2 then lemma implies that jw (j s ) i+1 j exp (i) (p 9 ) for an appropriate polynomial p 9 . Therefore jg 0 (w (j 1 ) i+1 ; ; w (j m ) i+1 )j exp (i) (p 10 ) for a certain p 10 . Thus, j (h(w (j 1 ) i+1 ; ;w (j m ) i+1 )) 0 h(w (j 1 ) i+1 ; ;w (j m ) i+1 ) j exp (i) (p 10 ), hence j log jh(w (j 1 ) i+1 ); ; w (j m ) i+1 j j exp (i) (p 11 ) and jh(w (j 1 ) i+1 ; ; w (j m ) i+1 )j (exp (i+1) (p 11 )) 1 . This contradicts to the assumption that h(w (j 1 ) i+1 ; ; w (j m ) i+1 ) is small and proves the required in the theorem lower bound in the case when w (j 1 ) i+1 ; ; w (j m ) i+1 are algebraically independent over P i .

In the general case choose some transcendental over P i basis (let it be w (j 1 ) i+1 ; ; w (j s ) i+1 without loss of generality) among w (j 1 ) i+1 ; ; w (j m ) i+1 . Then there exists a polynomial t(Z) = P 0 ` K t (`) Z `2 P i w (j 1 ) i+1 ; ; w (j s ) i+1 ] Z] where the coe cients t (`) 2 P i w (j 1 ) i+1 ; ; w (j s ) i+1 ]; 0 ` K and t (0) 6 0, such that t(h(w (j 1 ) i+1 ; ; w (j m ) i+1 )) 0. Since we have proved that jt (0) j (exp (i+1) (p 12 )) 1 and by lemma and remark after it jt (`) j (exp (i+1) (p 12 )); 0 ` K for a certain p 12 , we obtain that jh(w (j 1 ) i+1 ; : : : ; w (j m ) i+1 )j 1 2 (exp (i+1) (p 12 )) 2 . This completes the proof of the inductive step in the proof of the theorem (see the beginning of the section 2) because any element in P i+1 can be represented as a quotient h (1) (w (j 1 ) i+1 ; ; w (j m ) i+1 ) h (2) (w (j 1 ) i+1 ; ; w (j m ) i+1 ) for some elements w (j 1 ) i+1 ; ; w (j m ) i+1 2 P i+1 satisfying the equations of the kind (1) (w (j s ) i+1 ) 0 = q (s) (w (j s ) i+1 ); 1 s m and for some polynomials h (1) ; h (2) 2 P i Y 1 ; ; Y m ]. The theorem is proved.
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