Felipe Cucker
email: cucker@upf.es

Dima Grigoriev

On the power of real Turing machines over binary inputs

In recent years the study of the complexity of computational problems involving real numbers has been an increasing research area. A foundational paper has been 4] where a computational model |the real Turing machine| for dealing with the above problems was developed.

One research direction that has been studied intensively during the last two years is the computational power of real Turing machines over binary inputs. The general problem can be roughly stated in the following way. Let us consider a class C of real Turing machines that work under some resource bound (for instance polynomial time, branching only on equality, etc.). If we restrict these machines to work on binary inputs (i.e. nite words over f0; 1g) they de ne a class of binary languages D. The question is, what can we say about D depending on C? More formally, let us denote by IR 1 the direct sum of countably many copies of IR and let P(I R 1) be the set of its subsets. Also, let us denote by the subset f0; 1g of IR and |as usual| by the subset of IR 1 consisting Partially supported by DGICyT PB 920498, the ESPRIT BRA Program of the EC under contracts no. 7141 and 8556, projects ALCOM II and NeuroCOLT. y Partially supported by Volkswagen{Stiftung. 1 of those vectors whose components are in . Given any complexity class C P(IR 1), we de ne its Boolean part to be the class of binary languages BP(C) = fX \ : X 2 Cg Our problem now can be stated as: given a complexity class of real sets C characterize BP(C).

A possible origin of the problem is the recent interest in the computational power of neural networks. The rst results characterized the power of nets with rational weights working within polynomial time by showing that they compute exactly the sets in P (cf. 26]). The same problem was then considered for neural networks with real weights and it was shown that the power of these nets working within polynomial time is exactly P/poly (cf. 27], 28] and 21]).

This latter problem considers in a natural way a setting in which an algebraic model having real constants operates over binary inputs. A next step was then taken by P. Koiran who passed from a structured model | the neural net| to a general one |the real Turing machine. However, he did not deal with the real Turing machine as it was introduced in 4] but with a restricted version of it that can do only a moderate use of multiplication, namely all rational functions intermediately computed (in the input variables as well as in the machine's constants) must have degree and coe cient size bounded by the running time. For this weak model he considered the class P W of sets accepted in polynomial time and he proved that BP(P W) = P/poly (see 19]).

Subsequently, several papers exhibited new results on Boolean parts. In 12] it was shown that BP(PAR W) = PSPACE/poly where PAR W is the class of subsets of IR 1 decided in weak parallel polynomial time. Also, for additive machines (i.e. real Turing machines that do not perform multiplications at all), it was shown in 18] that BP(P add) = P/poly and that BP(NP add) = NP/poly. Here P add and NP add denote the obvious classes but we recall that the nondeterministic guesses in this model are real numbers. Moreover, if the machines are order-free, i.e. they are required to branch only on equality tests, we now have that BP(P = add) = P and that BP(NP = add) = NP (18]). These results were subsequently generalized in 10] to all the levels of the polynomial hierarchy constructed upon NP add (or NP = add). None of the mentioned results was done for the (unrestricted) real Turing machine. In fact, for this case, it was even asked whether it existed a subset of not belonging to the BP(P IR) (cf. 13]). First steps in this direction

were done in 20] where it is shown that if we consider order-free machines then we have the inclusion BP(P = IR) BPP (the class of sets decided by randomized machines in polynomial time with bounded probability error, see 1] ch. 6) as well as a positive answer to the question above. In fact if PH IR is the polynomial hierarchy constructed upon NP IR , the existence of binary languages not belonging to BP(PH IR) (and a fortiori nor to BP(P IR)) was also proved in 20].

The aim of this paper is to prove that BP(PAR IR) = PSPACE/poly where PAR IR is the class of sets computed in parallel polynomial time by (ordinary) real Turing machines. As a consequence we obtain the existence of binary sets that do not belong to the Boolean part of PAR IR (an extension of the result in 20] since PH IR PAR IR) and a separation of complexity classes in the real setting.

1 Some geometrical background

In the rest of the paper IN; ZZ; 0 Q; I R and C denote the sets of natural, integer, rational, real and complex numbers respectively. By IR alg we denote the real closure of 0 Q, i.e. the eld of all real algebraic numbers. Also, for any polynomial f with integer coe cients, we shall denote by jcoe (f)j the maximal absolute value of its coe cients. The aim of this section is to show how to nd real algebraic points in the connected components of non-empty open sets. We closelly follow 15]. Thus, let g 1 ; : : :; g N 2 ZZ X 1 ; : : :; X k] and let V = fx 2 IR k : g 1 (x) > 0& : : :&g N (x) > 0g be an open non-empty semialgebraic set. For the rest of this section we consider d a bound on the degree of each g i and L be a bound for all jcoe (g i)j.

Lemma 1 [START_REF] Yu | Complexity of deciding Tarski algebra[END_REF] Lemma 10) Let g = Q N i=1 g i . Let also d 1 be the degree of g and L = jcoe (g)j. Then there exists a positive integer 1 such that any connected component of V has a non-empty intersection with the ball B(R)

where

R = L d 1 k 1
Let us recall now (see 5] section 9.5) that a point a 2 IR k is a critical point for a function f : IR k ! IR when it satis es @f @X 1 (a) = = @f @X k (a) = 0

In this case the value b = f(a) is said to be a critical value of f. In the case when f is a polynomial function Sard's lemma [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines[END_REF] th eor eme 9.5.2 or 22]) implies that there are only a nite number of critical values of f.

This last fact was used in 15] (and in several subsequent papers) to reduce the dimension of non-empty semialgebraic sets to zero (avoiding thus cascading of projections) in the algorithm for deciding emptiness of semialgebraic sets.

Let us now consider the polynomials

g 0 = R 2 k X i=1 X 2 i and G = g 0 N Y i=1 g i We have that deg G = d 2 < Nd + 2 and L 2 = jcoe (G)j L d 2 O(k) (Ld k) O(N)
due to lemma 1.

The following result gives a bound on the small critical values of G.

Lemma 2 There exists a positive integer 2 such that for every non-zero critical value a of G we have jaj > C 1 where

C = L d 2 k 2 2
Proof. Let us consider the system of equations in the variables X 1 ; : : :

; X k ; Z G Z = @G @X 1 = = @G @X k = 0
as well as its set of solutions S IR k+1

W 0 = fx 2 IR k : G(x) = C 1 g
is a non-singular, closed, hypersurface with the property that each connected component of V \ B(R) contains at least one (bounded) connected component of W 0 (cf. 22]). Note that W 0 do not intersect the boundary of B(R). Now, lemma 5 of 15] asserts the existence of integers 0 v 2 ; : : :; v n (2d 2) k such that the system

G C 1 = @G @X 2 2 v 2 (2d 2) k k = = @G @X k 2 v k (2d 2) k k = 0 where = P k i=1 (@G @X i) 2
, has a nite number of solutions in IR k . Moreover, each of these solutions is an absolutely irreducible 0{dimensional component of the variety in C k given by this system of equations. Due to Bezout's inequality the number of real solutions is bounded by (2d 2) k . Besides, (cf. lemma 4 in 15]), each bounded connected component of W 0 contains a point satisfying the system.

We can summarize the preceding results in the following theorem, that will be our main technical tool in the next section.

Theorem 1 Let g 1 ; : : :; g N 2 ZZ X 1 ; : : :; X k] satisfy for every i N the bounds deg(g i) d and jcoe (g i)j L. Then, with the notations introduced above, there are integers 0 v 2 ; : : :; v k (2d 2) k such that the set W IR k de ned by G C 1 = @G @X 2 is nite. Moreover, the number of its points does not exceed (2d 2) k and every connected component of V = fx 2 IR k : g 1 (x) > 0 & : : :& g N (x) > 0g contains at least one point of W.

Computing with binary inputs

In this section we shall deal with real Turing machines (RTM for short) as they were introduced in 4]. The reader is referred to this paper for the de nition and main properties of the above quoted computational model. We just recall that we denote IR 1 the direct sum L i2IN IR and by P IR the class of subsets of IR 1 that can be decided by a RTM in polynomial time.

The goal of this section is to prove that the Boolean part of P IR is included in PSPACE/poly, i.e. that any subset of that can be decided in polynomial time by a real Turing machine can be decided by a (classical) Turing machine in polynomial space using a polynomial advice. In the next section we will prove a more general result namely, a similar inclusion for parallel real Turing machines. Because of clarity of exposition we will however rst show the inclusion for the Boolean part of P IR .

We begin by recalling the de nition of non-uniform classes as given in 17], that we extend to complexity classes over the reals.

De nition 1 Let C (resp. C IR 1) be a class of sets and F be any class of functions from IN to Sigma (resp. from IN to IR 1). The class C=F is de ned to be the class of all subsets B (resp. B IR 1) for which there exists a set A 2 C and a function f 2 F such that B = fx : hx; f(jxj)i 2 Ag.

We will be mainly interested in the case F = poly, the class of functions f such that for some polynomial p we have jf(n)j p(n) for each n 2 IN.

For the boolean case, one can nd the main properties and characterizations of classes like P/poly or PSPACE/poly (as well as of some other non uniform complexity classes) in chapter 5 of 1].

Theorem 2 The inclusion BP(P IR) PSPACE/poly holds.

Proof. Let M be a RTM working in polynomial time, say n q , and let 1 ; : : :; k be its real constants. For any n 2 IN the machine M has an associated algebraic computation tree T M;n having depth n q and size bounded by 2 n q . To each branching node i of this tree corresponds a rational function g i 2 0

Q(1 ; : : :; k)(X 1 ; : : :; X n) such that the branching is done according to whether the actual input x 2 IR n satis es g i (x) 0 or g i (x) < 0.

The idea of the proof is to nd 1 ; : : :; p 2 IR alg such that, for every x 2 n the path followed by x in the tree e T M;n obtained by replacing the constants j by the j is the same as the one followed in T M;n . This ensures that the tree e T M;n accepts the same subset of n than T M;n . On the other hand, we will require some codi cation of the 's that allows us to perform the operations in e T M;n in PSPACE together with a short way of writing this codi cation |that make possible to give it as a polynomial advice.

Before obtaining a description of the 's let us do a last modi cation on T M;n that was rst used in 19]. Let I be the set of branching nodes of T M;n . For every i 2 I and every x 2 n we consider the rational functions g i;x 2 0 Q(Z 1 ; : : :; Z k) obtained by replacing the real constants 1 ; : : :; k by indeterminates Z 1 ; : : :; Z k and the indeterminates X 1 ; : : :; X n by the binary values x 1 ; : : :; x n . We obviously have for every x 2 n that g i (x) = g i;x (1 ; : : :; k).

Let i;x be these values. The accepted subset of n can be characterized by the set of signs i;x = sign(i;x)

where sign(z) = 1 if z 0 and 0 otherwise. Now, for some i; x the element i;x can be zero. However, since the set of values f i;x : i 2 I; x 2 n g is nite, there exist an " > 0 such that all the negative values in the above set are strictly smaller than " and for this " the following equivalences hold g i;x (1 ; : : :; k) 0 i g i;x (1 ; : : :; k) + " > 0 g i;x (1 ; : : :; k) < 0 i g i;x (1 ; : : :; k) + " < 0 Thus, replacing the tests g i (X) 0 by g i (X) + " 0 we have that the new computation tree (having real constants 1 ; : : :; k ; ") satis es the following property: for every x 2 n all the test values are di erent from zero.

Assuming that the rational functions g i;x (Z 1 ; : : :; Z k) are polynomials (something that we can do by just replacing it by the product of its numerator and denominator), we can resume the above remarks in the following way: the elements 1 ; : : :; k ; " satisfy a system of polynomial inequations of the form g i;x > 0 : i 2 I; x 2 n

(1) (we changed the sign of some g i;x in order to have all the inequalities in the same form) and any other real numbers 1 ; : : :; k ; satisfying this system will produce, when used as constants in the tree T M;n , the same outcome for every x 2 n .

We can now describe how to obtain such numbers.

First we construct the g 0 and the G of the preceding section for the set of polynomials fg i;x 2 ZZ Z 1 ; : : :; Z k ; Y] : i 2 I; x 2 n g. Then, applying theorem 1 we deduce the existence of integer vectors ṽ = (v 2 ; : : :; v k ; v k+1) such that the set W described there is nite and non empty. Let ṽ be the rst such vector for the lexicographical ordering in IN k and let W be its corresponding set of solutions. We then have that any connected component of the semialgebraic set V given by the system (1) contains a point of W . Thus, we take 1 ; : : :; k ; be any point of W belonging to V , and we distinguish it among the other points of W by its position p for the lexicographical ordering in IR k+1 . Note that, from the equations de ning W and this p we can code (cf. 16] or 23]) each coordinate of this point (see complexity analysis below).

The following non-uniform parallel algorithm decides then the same language as M when restricted to binary inputs. input(a 1 ; : : :; a n) get the advice p corresponding to n for all x 2 n in parallel do Let us estimate the complexity of the algorithm above. As we have seen, the number of nodes of the tree T M;n is bounded by 2 n q . Therefore, the number of polynomials g i;x is bounded by the same quantity. Each of these polynomials is computed by a straight-line program of length n q and thus, we get again a bound of 2 n q for their degrees and of 2 2 n q for the absolute value of their coe cients. The degree d 2 of G is then bounded by 2 n q :2 n q = 2 O(1)n q and the absolute value of its coe cients L 2 by (2 2 n q) 2 n q = 2 2 2n q (and thus, by 2 n 2q in bit length). We can then |according to theorem 1| bound by (2d 2) k+1 = 2 O(1)n q the integers v 2 ; : : :; v k ; v k+1 and by (2d 2) k+1 = 2 O(1)n q the number of points in W . A rst consequence of these two last upper bounds is the fact that the advice above has polynomial size. Concerning the running time, it is clear that step (s1) can be done in polynomial time using an exponential number of processors because, given an x 2 n and a path the |at most| n q polynomials that appear in that path have exponential degree in a constant number (k + 1 in fact) of variables and therefore, an exponential number of monomials. Any arithmetical operation between two such polynomials can be done within these resources and we have a polynomial number of such operations.

The product G is computed with a binary tree of products having polynomial depth. Since each product can be done in parallel polynomial time the same applies for the whole tree and then for step (s2). A similar remark holds for the constant C and thus for step (s3).

The determination of ṽ can be done in parallel polynomial time since we check for all possible vectors Ṽ whether the dimension of the resulting W is zero, and then we select the rst ṽ that gives a positive answer. Note that the determination of the dimension of each W can be done in PSPACE just combining the main idea of 14] section 6 with the parallel algorithms given in 16] or 23].

For step (s5) one can apply the algorithms given in 16] or 24]. However, we remark here that a cylindrical algebraic decomposition together with the coding a la Thom (see 7] for the algorithms, and 25], 11] for complexity analysis) su ces because the double exponential behaviour of this algorithm is only in the number of variables |which is constant in our case| being NC in the rest of the parameters. This results on a procedure for (s5) working in parallel polynomial time.

Finally, note that each arithmetical operation of M is translated in step (s6) into an operation of elements in ZZ Z 1 ; : : :; Z k] and it is done then also in parallel polynomial time. On the other hand, at each test of the form g(Z 1 ; : : :; Z k) 0 we use the same algorithm of step (s5) for determining the sign of g(Z 1 ; : : :; Z k) + Y on the point coded in (s5).

The above considerations show that the described algorithm runs in parallel polynomial time. Since this is equivalent to polynomial space [START_REF] Bochnak | G eom etrie alg ebrique r eelle[END_REF], 2] ch.4) we have shown that the set decided by the algorithm above belongs to PSPACE/poly. 2 3 Binary inputs for parallel real Turing machines Our next goal is to extend our previous result to the class PAR IR of sets decided in parallel polynomial time. We recall from 9] the de nition of a computational model for parallelism in the real Turing machine setting together with the complexity class it de nes when restricted to polynomial time.

De nition 2 An algebraic circuit C over IR is a directed acyclic graph where each node has indegree 0,1 or 2. Nodes with indegree 0 are either labeled as inputs or with elements of IR (we shall call the last ones constant nodes). Nodes with indegree 2 are labeled with \+",\ ",\ ", or \/". Finally, nodes with indegree 1 are of a unique kind and are called sign nodes. There is one node with outdegree 0 called output node. In the sequel the nodes of a circuit will be called gates.

To each gate we inductively associate a function of the input variables in the usual way. In particular, we shall refer to the function associated to the output gate as the function computed by the circuit. Note that sign gates return 1 if their input is greater or equal to 0, and 0 otherwise.

De nition 3 For an algebraic circuit C, we de ne its size to be the number of gates in C and its depth to be the length of the longest path from some input or constant gate to the output gate.

De nition 4 Given an algebraic circuit C, the canonical encoding of C is a sequence of 4-tuples of the form (g; op; g l ; g r) 2 IR 4 where g represents the gate label, op is the operation performed by the gate, g l is the gate which provides the left input to g and g r its right input. By convention g l and g r are 0 if gate g is an input gate, and g r is 0 if gate g is a sign gate (whose input is then given by g l) or a constant one (the associated constant being then stored in g l). Also, we shall suppose that the rst n gates are the input ones and the last one the output gate.

De nition 5 Let fC n g n2IN be a family of algebraic circuits. We shall say that the family is P{uniform if there exists a real Turing machine M that generates the encoding of the i th gate of C n with input (i; n) in time polynomial in n.

De nition 6

We shall say that a set S can be decided in parallel polynomial time (S 2 PAR IR for short) when there is a P{uniform family of circuits fC n g having depth polynomial in n and such that C n computes the characteristic function of S restricted to inputs of size n.

Remark 2 It is possible to de ne [START_REF] Cucker | P IR 6 = NC IR[END_REF]) parallel polynomial time in a di erent way, namely, by putting an exponential number of RTM to work together in polynomial time. One can prove however, that this model de nes the same class PAR IR we just introduced.

Before going into the next theorem we will recall a result concerning the number of satis able sign conditions of a polynomial system. Lemma 3 (Lemma 1 of 14]) Let f 1 ; : : :; f s 2 IR X 1 ; : : :; X k] be a nite family of polynomials and D = s P i=1 degree(f i). Then the number of satis able systems of the form f 1 (X 1 ; : : :; X k) 1 & : : :& f s (X 1 ; : : :; X k) s where i belongs to f 0; > 0g for i = 1; : : :; s is bounded by D O(k) . Theorem 3 The equality BP(PAR IR) = PSPACE/poly holds.

Proof. Let S be a set in PAR IR and fC n g be the family of circuits deciding S. Let also M be the RTM that generates these circuits and 1 ; : : :; k be its real constants.

Given any n 2 IN we consider for any sign gate i of C n and any binary string x 2 n the rational function g i;x; 2 0 Q(1 ; : : :; k)(X 1 ; : : :; X n) that the gate receives as input. Note that the coe cients of g i;x; depend on x and since they depend on the output of previous sign gates. Since the number of possible answers to previous sign gates is doubly exponential we obtain a doubly exponential number of rational functions and therefore we can not apply directly the construction of theorem 2. However, we can use lemma 3 to reduce this number.

Let us x x 2 n and plug x in the input gates of C n . This will make us to consider rational functions in 0 Q(Z 1 ; : : :; Z k). Let also n q be a bound on the depth of C n . At depth 1, there are at most 2 n q sign gates whose input functions have degree bounded by 1. By lemma 3, the number of possible outputs of these sign gates is bounded by

(2 n q) O(k) = 2 O(k)n q
For each set of outputs ! at depth 1, we consider the sign gates at depth 2.

There are at most 2 n q 1 of them and their associated functions have degree bounded by 2. Thus, again by lemma 3, we bound by (2 n q) O(k) = 2 O(k)n q the number of possible outputs for !. Multiplying both expresions we deduce that the total number of possible outputs at depths 1 and 2 is bounded by 2 2O(k)n q Inductively, we prove that the number of possible outputs over all the sign gates is bounded by 2 O(k)n q n q = 2 O(k)n 2q a number which is singly exponential in n.

Let us then consider for any x 2 n the set of all rational functions g i;x;! (Z 1 ; : : :; Z k) obtained by varying i over all sign gates of C n and ! over all possible outputs of the set of sign gates. If we now consider this set for any x 2 n we will have that the set decided by the circuit C n is determined by the signs that the functions in this set take when evaluated at 1 ; : : :; k .

As in theorem 2, we can assume the functions g i;x;! to be polynomials and we can also assume that they do not vanish on 1 ; : : :; k by adding a new real number ".

Since the number of polynomials g i;x;! is singly exponential in n we can apply the same method of theorem 2. Note however that the corresponding step (s1) will now be required to select for any x 2 n and any depth l the possible sign conditions for the test gates at depth l. This is done sequentially in l in order to avoid dealing with a doubly exponential number of sign conditions. Once these possible sign consitions are known, the rest of the algorithm works like the one in theorem 2 simulating the circuit C n instead of the tree. This shows that the binary elements of S are a language in PSPACE/poly. On the other hand, the inclusion of PSPACE/poly in BP(PAR IR) is trivial. 2

An immediate corollary of the theorem above is the following separation left open in 12]. Recall that EXP W is the class of subsets of IR 1 accepted by RTM in weak exponential time, i.e. in exponential time but such that for all intermediately computed rational function g deg(g) and the bit length of jcoe (g)j are exponentialy bounded (see 19] or 12] for a formal de nition of the weak model).

Corollary 1 The inclusion PAR IR EXP W is strict.

Proof. The Boolean part of EXP W is the class of all subsets of . Therefore, it strictly contains PSPACE/poly. 2 Remark 3 The corollary above improves the separation PAR IR 6 = EXP IR shown in 8]. In this latter case, the fact that a real Turing machine working in exponential time can produce polynomials of doubly exponential degree (while a circuit of polynomial depth can not) togheter with an irreducibility argument su ced to show the separation. The arguments used now are much more delicate and, somehow surprisingly, pass throught the boolean part of these classes.

One can still improve a bit theorem 3 by allowing the real machine to take advice. Theorem 4 The equality BP(PAR IR =poly) = PSPACE/poly holds.

Proof. The polynomial advice in PAR IR /poly introduces a polynomial number of real constants, let's say n h , for each input size n. One can now simply check that replacing the constant value k in the proof of theorem 3 by n h does not afect the exponential character of the bounds there and thus, the same arguments apply. The only limitation is that in steps (s5) and (s6) one can not use cylindrical algebraic decomposition (because of the exponential dependence it has in the number of variables for its parallel running time) and it is restricted to use the \faster" algorithms given in 16] and 23]. 2 Remark 4 Theorems 3 and 4 are rather surprising since they show that multiplication or non-uniformity (under the form of a polynomial advice function) do not help in the presence of parallelism to decide binary sets. Note that results weaker than theorem 3 namely, that the Boolean part of PAR add (where no multiplications are allowed) or of PAR W (where few of them are allowed) coincide both with PSPACE/poly were proved in 10] and 12].

On the other hand a main question that remains open is whether BP(P IR) = PSPACE/poly. We know that this Boolean part contains P/poly but its exact power is still to be determined. Note that for the integer RAM's it is known that the computational power of this model in polynomial time is exactly PSPACE for several sets of primitive operations. However, in all these cases, there is a primitive operation that can not be e ciently simulated by a real Turing machine. Thus, for instance, it is shown in 3] that integer RAM's with operations (+; ; ;) have the power of PSPACE.

However, the simulation of the integer division by a real Turing machine over integers of exponential length take exponential time and therefore the arguments of 3] can not be used to show the inclusion PSPACE/poly BP(P IR).

Ackowledgement Thanks are due to Pascal Koiran for pointing to us the possibility of allowing advice in the real complexity classes that lead from theorem 3 to theoerem 4.

 of the p th point of (s5) the set W given by ṽ; C and G simulate the computation of M over a 1 ; : : :; a n (s6) replacing the 1 ; : : : k ; " by the point coded in (s5)

 . On any connected component of S the coordinate Z, being the critical value of G, is constant since G

	given in 16] or 23] along X 1 ; : : :; X k onto Z we get a nite set of points in IR (just the critical values) such that each non zero one has absolute value greater than 2 L d 2 k 2 1
	2
	Remark 1 In the preceding proof the use of quanti er elimination is not
	is continuous and due to Sard's lemma. Now, since the degrees and the coe cients of the polynomials appearing in this system are bounded by d 2 and O(L 2 d 2) respectively, if we apply the quanti er elimination algorithm

strictly necessary. One can use instead the bounds for the representative points from the connected components of S given in the main theorem of 15].

Because of the preceding lemma we have that the algebraic set

v 2 (2d 2) k k = = @G @X k 2 v k (2d 2) k k = 0