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Algorithms for Computing Sparse Shifts for Multivariate Polynomials

In this paper, we investigate the problem of nding t-sparse shifts for multivariate polynomials.

Given a polynomial f 2 F x 1 ; x 2 ; : : :; x n ] of degree d, and a positive integer t, we consider the problem of representing f(x) as a K-linear combination of the power products of u i where u i = x i b i for some b i 2 K; an extension of F; for i = 1; : : :; n; i.e., f = P j f j u j ; in which at most t of the f j are non-zero. We provide su cient conditions for uniqueness of sparse shifts for multivariate polynomials, prove tight bounds on the degree of the polynomial being interpolated in terms of the sparsity bound t and a bound on the size of the coe cients of the polynomial in the standard representation, and describe two new e cient algorithms for computing sparse shifts for a multivariate polynomial.

Introduction

In this paper, we consider the problem of computing t-sparse shifts for multivariate polynomials.

Given a polynomial f 2 F x 1 ; x 2 ; : : :; x n ] of degree d (where F is a eld of characteristic 0), consider the representation of f(x) as a K-linear combination of the power products of u i where u i = x i b i for some b i 2 K; an extension of F; for i = 1; : : :; n; i.e., f = P j f j u j where j denotes the multi-index ( j1 ; j2 ; : : :; jn ); and u j indicates the power product u j1 1 u j2 2 : : :u jn n : Let t be a positive integer d+n n : We say that b = (b 1 ; b 2 ; : : :; b n ) is a t-sparse shift for f (or, f is t-sparse in the shifted basis consisting of the power products of the u i ) if at most t of the f j in the above representation are non-zero (the term \basis" refers to the fact that the power products of the u i form a F-basis for the polynomial ring F x 1 ; x 2 ; : : :; x n ]).

The main problem that we address is: given an f and t as above, can we e ciently compute a t-sparse shift for f if one exists? We are particularly interested of in the case polynomials that have rational shifts (each b i 2 F) and the case of polynomials that have nitely many t-sparse shifts.

Recently, there has been much interest in the design of e cient algorithms for computing sparse representations for various classes of functions such as polynomials, rational functions, and algebraic functions [START_REF] Grigoriev | \The matching problem for bipartite graphs with polynomially bounded permanents is in NC[END_REF][START_REF] Clausen | zero testing and interpolation of k-sparse multivariate polynomials over nite elds[END_REF], Ben-Or&Tiwari 1988[START_REF] Kaltofen | \Improved sparse multivariate polynomial interpolation algorithms[END_REF][START_REF] Borodin | the decidability of sparse univariate polynomial interpolation[END_REF][START_REF] Grigoriev | \Fast parallel algorithms for sparse multivariate polynomial interpolation over nite elds[END_REF][START_REF] Grigoriev | \The interpolation problem for k-sparse sums of eigenfunctions of operators[END_REF][START_REF] Mansour | \Randomized interpolation and approximation of sparse polynomials[END_REF], 1993, 1994[START_REF] Mansour | \Randomized interpolation and approximation of sparse polynomials[END_REF], [START_REF] Lakshman | \Sparse polynomial interpolation in non-standard bases[END_REF], 1994). The problem of nding sparsifying invertible linear tranformations for polynomials in F x 1 ; x 2 ; : : :; x n ] was rst addressed in a recent paper by Grigoriev and Karpinski [START_REF] Grigoriev | Existence of short proofs of non-divisibility of sparse polynomials under the extended Riemann hypothesis[END_REF] where they provide an algebraic criterion to be satis ed by any sparsifying linear tranformation for a polynomial in F x 1 ; x 2 ; : : :; x n ] and an algorithm based on the algebraic criterion for computing sparsifying linear transformations. However, the algorithm requires solving systems of polynomial equations and inequalities involving the parameters a i;j ; c i of the sparsifying transformations over the algebraic closure of F: While this is possible in principle, it is known to be very hard. For the important special case considered in this paper, we show that one can compute a system of polynomial equations involving the parameters of the unknown transformation which is already \solved" in a sense (the parameters are separated) in time that is polynomially bounded by t. The dependence of the algorithm on d; n is sensitive to how the polynomial f is presented. We will state the precise complexity result a little later. In this paper, we build on the results of two earlier papers, (Grigoriev-Karpinski 1993[START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF], and we make use of techniques used to deal with zero-dimensional Gr obner bases.

We assume that we are given a straight line program for computing f: Consequently, we can generate straight line programs for some low order partial derivatives of f e ciently (see [START_REF] Baur | The complexity of partial derivatives[END_REF]. Instead of a straight-line program for f, it is enough if we have black boxes for f and certain low order partial derivatives of f: It is indeed possible to use this approach even if we have just a black box for computing f: We make some remarks later on as to how to modify our approach to work in this situation. The main contributions of this paper are: su cient conditions for uniqueness of sparse shifts for multivariate polynomials; tight bounds on the degree of the polynomial being interpolated in terms of the sparsity bound t and a bound M on the size of the coe cients of the polynomial in the standard representation. two new e cient algorithms for computing sparse shifts for a multivariate polynomial.

In section 1 we discuss conditions under which a polynomial can have a unique sparse shift. In section 2, we describe our rst algorithm for computing sparse shifts. In section 3, we describe our degree bounds and the second algorithm for computing sparse shifts. The rst algorithm computes t-sparse shifts for a multivariate polynomial f with nitely many t-sparse shifts in all cases except one { it can fail when deg x i (f) < t for two or more x i and f still has nitely many sparse shifts. It performs (dt) O(n) Q-operations if randomization is not allowed and t O(n) Qoperations if randomization is allowed. When there is a unique shift, the algorithm performs (td n ) O(1) Q-operations if randomization is not allowed and (nt) O(1) We conclude with a discussion of open problems and possible applications in section 4.

Actually, the algorithms could run when F-operations are admitted, but for the complexity analysis to make the algorithms more realistic we allow just Q-operations.

Observations on the Uniqueness of Sparse Shifts

In [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF], the following were shown to be true.

Theorem 1 Let f(x) 2 F x] be of degree d and let t (d + 1)=2: If there exists an in some algebraic extension K of F such that f(x) is t-sparse in the shifted power basis 1; (x ); (x ) 2 ; : : :; then the shift is unique.
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Corollary 1 Let f(x) 2 F x] be of degree d and let t (d + 1)=2: If (in any extension K of F) is a t-sparse shift (hence the unique t-sparse shift) for f(x); then 2 F: 2

The situation is more complicated than this for the multivariate case. The following example illustrates one di culty. Consider the polynomial h(x; y) = x d y + x d with d > 4: h is 2-sparse with respect to the shift (0; c) for any c 2 F (h(x; y) = x d (y c) + (c + 1)x d ). Obvious generalizations of this example to polynomials in F x 1 ; x 2 ; : : :; x n ] lead us to the following conclusion. Let h 2 F x 1 ; x 2 ; : : :; x n ] and B = f b = (b 1 ; b 2 ; : : :; b n ) 2 F n such that b is a t-sparse shift for hg:

Note that if b is a t-sparse shift for h, then b is a common zero of at least some d+n n t partial derivatives of h: It follows that B is an algebraic set in F n and can be of any dimension from 1

to n 1 (as usually we agree that the empty set has the dimension 1).

The next two weaker uniqueness results follow from theorem 1. Let h 2 F x 1 ; x 2 ; : : :; x n ] with deg x i (h) = d i and let t < (d i + 1)=2:

Lemma 1 If b = (b 1 ; b 2 ; : : :; b n ) and c = (c 1 ; c 2 ; : : :; c n ) are two t-sparse shifts for h, then b i = c i for any 1 i n.

Proof: For a xed i consider a mapping : F x 1 ; x 2 ; : : :; x n ] 7 ! F x i ] with (x j ) = a j for i 6 = j where a j 2 F are chosen to preserve the degree in x i ; i.e., deg x i (h) = d i = deg( (h)): Both b i and c i are t-sparse shifts for (h) and using theorem 1, we conclude that b i = c i : 2

Lemma 2 Let d = min 1 i n fdeg x i (h)g: If t < (d + 1)=2; then h has at most one t-sparse shift.

Proof: Apply lemma 1 to each x i : 2

Stronger uniqueness results hold for the more general case of sparsifying linear transformations under side conditions.

Su cient conditions for Uniqueness

In this subsection, we prove two di erent su cient conditions for the uniqueness of sparsifying transformations. Let

f = t X i=1 f i x i = T X i=1 i u i ; ũ = Ax + d where ũ = 0 B B B @ u 1 u 2 : : : u n 1 C C C A ; A = (a i;j ) 1 i;j n ; x = 0 B B B @
x 1 x 2 : : :

x n 1 C C C A ; d = 0 B B B @ d 1 d 2 : : : d n 1 C C C A ;
a i;j ; d i 2 K and A non-singular. Let a 1 ; a 2 ; : : :; a n denote the columns of A with A denoting the set fa 1 ; a 2 ; : : :; a n g: Let d be the degree of f.

Theorem 2 If d is not in the span of B, for every proper subset B of A, then, t + T > d:

Proof: Let us substitute linear forms in a new variable for the x i as

x i ! k i ( + N) with k i ; N 2 K to be chosen in a certain way. Clearly, the linear forms u i become linear forms in under this substitution. Let us try to choose k i ; N is such a way that each of the u i -s becomes a scalar multiple of one and the same linear form in , di erent from + N: The u i are tranformed as follows: 0 B B B B @ a 1;1 a 1;2 : : : a 1;n a 2;1 a 2;2 : : : a 2;n . . . . . . . . . . . . a n;1 a n;2 : : :

a n;n 1 C C C C A 0 B B B B @ k 1 ( + N) k 2 ( + N) . . . k n ( + N) 1 C C C C A + 0 B B B B @ d 1 d 2 . . . d n 1 C C C C A = 0 B B B B @ r 1 r 2 . . . r n 1 C C C C A + 0 B B B B @ Nr 1 + d 1 Nr 2 + d 2 . . . Nr n + d n 1 C C C C A
where r i = P n j=1 a i;j k j : Let r = 0 B B B @ r 1 r 2 : : :

r n 1 C C C A ; k = 0 B B B @ k 1 k 2 : : : k n 1 C C C A :
We want each r i + (r i N + d i ) to be a scalar multiple of one and the same linear form in which means we want r = Nr + d for some non-zero 2 K: So, we have ( N)r = d: Recalling that r = A k; we have k = 1=( N)A 1 d: Let us choose ; N such that ; N 6 = 0 and 6 = N and nd the corresponding k i by solving the above system of equations. It follows from the hypothesis (that d is not in the span of any proper subset of A) that no k i is zero. This implies that under the substitution considered, the degree does not decrease, i.e., deg(f) = deg( ( )) where ( ) = f(x i = k i ( + N)): Now, ( ) has degree d, is t-sparse in the powers of + N and T-sparse in the powers of + .

Invoking the univariate theorem, we have t + T > d: 2

For the special case of sparse shifts, we get the following:

Corollary 2 Let f = P t j=1 f j x j = P T j=1 j u j where u i = x i + d i . If no d i = 0; then t + T > d:

Proof: Let A be the identity matrix in the above theorem. 2

The second theorem on the number of sparse shifts imposes a di erent criterion. Let B = A 1 = (b i;j ) 1 i;j n : We have x = Bũ + d0 where d0 = B d: Note that

x i @=@x i (u s 1 1 u s 2 2 : : :u sn n ) = u s 1 1 u s 2 2 : : :u sn n (a 1;i s 1 =u 1 + a 2;i s 2 =u 2 + : : : + a n;i s n =u n )( n X j=1 b i;j u j ) +

where deg u ( ) < s 1 + s 2 + : : : + s n : Let d be the degree of f:

Theorem 3 If for some i; Q n j=1 a j;i Q n j=1 b i;j 6 = 0; then tT > d=n for n 0:

Assume the contrary. We set up some notation and prove supporting claims and then present the proof of the theorem. Let D = x i @=@x i : There exist 0 ; 1 ; : : :; t 2 F such that P 0 j t j D j f = 0 (see lemma 4). Let t 0 = maxfj : j 6 = 0g t: Let S n (d) Z n denote the set of integer points of the (n 1)-dimensional simplex f(z 1 ; z 2 ; : : :; z n ) : z i 0; 1 i n; P 1 i n z i = dg: Call the set f 1 ; : : :; T g the support of f: For any two vectors s; w 2 S n (d); let var(s; w) = P 1 i n max(s i w i ; 0) = P 1 i n min(s i w i ; 0): For any vector v = (v 1 ; v 2 ; : : :; v n ) such that P 1 i n v i = 0; represent v uniquely as v = v (+) + v ( ) where v (+) i = max(v i ; 0) and v ( ) i = min(v i ; 0): We have var(v) = P 1 i n v (+) i = P 1 i n v ( ) i : Let T 0 be the number of points in the intersection of the support of f with S n (d) and denote the points in this intersection by a 1 ; a 2 ; : : :; a T 0 . Observe that for any b 2 Z n satisfying the conditions var(b) = t 0 ; a j + b 2 S n (d) (see above) the point a j + b belongs to the support of D t 0 (u a j ) (due to the assumption in the statement of the theorem) and does not belong to the support of D l (u a j ) for any l < t 0 :

For each m; 1 m n; re-order the a i in non-decreasing order on their m-th coordinates as 0 a 1;m a 2;m : : : a T 0 ;m d: Lemma 3 There is an m; 1 m n; for which either a 1;m t 0 ; or, for a certain l; 1 l T 0 1; a l+1;m a l;m 2t 0 + 1: Proof: Suppose not; then for every m we have a l;m t 0 1 + (l 1)2t 0 for each l; 1 l T 0 :

Hence, X 1 l T 0 a l;m (t 0 1)T 0 + 2t 0 T 0 (T 0 1)=2 = T 0 (t 0 T 0 1) T 0 (d=n 1); the latter inequality follows from the assumption that the theorem is wrong. On the other hand, P 1 m n P 1 l T 0 a l;m = dT 0 since a l 2 S n (d) for 1 l T 0 , we get a contradiction. Hence, the lemma is true.
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Proof: (of theorem 3): Assume that tT d=n: Fix an m; 1 m n satisfying lemma 3. First, consider the case a 1;m t 0 (see the beginning of the proof of the theorem). Consider those points among a 1 ; : : :; a T 0 that belong to the (n 2)-dimensional simplex S n (d) \ fa j;m = a 1;m g: Without loss of generality, assume that they are a 1 ; : : :; a T 1 ; T 1 T 0 : Among these points, choose the one that is largest in the lexicographic order, without loss of generality, let it be a 1 : Since a 1;m t 0 ; we have P k6 =m a 1;k d t 0 : Consider the point a 1 = (a 1;1 + t 0 ; a 1;2 ; : : :; a 1;m 1 ; a 1;m t 0 ; : : :; a 1;n ) 2 S n (d): Clearly, var(a 1 ; a 1 ) = t 0 : We will show that for any point a j ; 2 j T 0 ; var(a j ; a 1 ) > t 0 ; thereby showing that a 1 does not belong to the support of D l (u a j ) for all 0 l t 0 and 2 j T 0 and proving the theorem for the case a 1;m t 0 : Suppose that var(a j ; a 1 ) t 0 ; this means that v = a j a 1 = v (+) + v ( ) with v (+) = (0; : : :; 0; t 0 ; 0; : : :; 0) (the t 0 appearing in the m-th position) and a j 2 fa 1 ; : : :; a T 1 g. Let a j = (a j;1 ; : : :; a j;n ): Since a j;1 a 1;1 ; (as a 1 is lexicographically the largest among the a j ), v ( ) = ( t 0 ; 0; : : :; 0); but then a j = a 1 ; a contradiction! This proves that var(a j ; a 1 ) > t 0 :

Now, consider the case a l+1;m a l;m 2t 0 + 1 for a certain l; 1 l T 0 1 (according to lemma 3 we need just a trial of this and of the previous case). Among the points in fa 1 ; : : :; a T 0 g\ fa j;m = a l+1;m g; choose the largest in lexicographic order, call it a l+1 : As before, consider the point a l+1 = a l+1 + (t 0 ; 0; : : :; 0; t 0 ; 0; : : :; 0) 2 S n (d) (the t 0 is in position m) and prove that var(a j ; a l+1 ) > t 0 for every j, 1 j T 0 and j 6 = l + 1 and complete the proof as in the previous case.

2. Computing Sparse Multivariate Shifts

We assume in our discussion that f has a nite (possibly zero) number of sparse shifts. If there are in nitely many t-sparse shifts with respect to one or more x i ( when f is seen as an element of F x 1 ; : : :; x i 1 ; x i+1 ; : : :; x n ] x i ] with t > deg x i (f)) but only nitely many of them can be com- bined to t-sparse shifts for the polynomial f, then the algorithm of this section can fail. This situation is taken care of by the algorithm of next section as the \low degree case". In this section, we assume that t deg x i (f) for 1 i n: As before, let f = P t j=1 f j u j : Recall that j denotes the multi-index ( j1 ; j2 ; : : :; jn ); and u j indicates the power product u j1 1 u j2 2 : : :u jn n :

Consider the ideal I Q y 1 ; y 2 ; : : :; y n ] which is the ideal of the points f 1 ; 2 ; : : :; t g: We shall construct a reduced Gr obner basis for I under any admissible term ordering. For convenience, we choose the lexicographic term ordering with y 1 y 2 : : : y n : In fact, we can construct a triangular set decomposition of the ideal I instead of a Gr obner basis for I: For a good description of zero-dimensional Gr obner bases and triangular sets, we refer the reader to (Lazard 1992[START_REF] Kapur | Elimination methods: An introduction[END_REF]).

The Gr obner basis G for I under the chosen term ordering looks as follows: G (1) 1 (y 1 ) = y 1 1 + g (1)

1; 1 1 y 1 1 1 + : : : + g (1) 1;1 y 1 + g (1) 1;0 ; G (2) 1 (y 1 ; y 2 ); G (2) 2 (y 1 ; y 2 ); : : :; G (2) k 2 (y 1 ; y 2 ); G (3) 1 (y 1 ; y 2 ; y 3 ); G (3) 2 (y 1 ; y 2 ; y 3 ); : : :; G (3) k 3 (y 1 ; y 2 ; y 3 );

. . . G (n) 1 (y 1 ; y 2 ; : : :; y n ); G (n) 2 (y 1 ; y 2 ; : : :; y n ); : : :; G (n) kn (y 1 ; y 2 ; : : :; y n ):

We recall a few standard terms and facts from the theory of Gr obner bases. For further details, see [START_REF] Becker | \Gr obner bases { a computational approach to commutative algebra[END_REF].

the head term of a polynomial h, HeadTerm(h) is the largest term (under the term ordering ) appearing in h with a non-zero coe cient. a term s is reduced with respect to the Gr obner basis G if it is not divisible by HeadTerm(g) for any g 2 G:

The number of reduced terms with respect to the Gr obner basis G is equal to the dimension of the residue class ring Q y 1 ; : : :; y n ]=I as a Q-vector space and, in our case, is t: Suppose h 2 I and h = y 1 + h 2 y 2 + h 3 y 3 + : : : + h L y L where y i = y i;1 1 y i;2 2 : : :y i;n n and y i+1 y i for 0 i < L: Let us de ne f i for a multi-index i = ( i;1 ; i;2 ; : : :; i;n ) with i;1 ; i;2 ; : : :; i;n 0 as follows: f (0;0;:::;0) = f; f ( i;1 ; i;2 ;:::; i;n ) = (x 1 z 1 )@f ( i;1 1; i;2 ;:::; i;n ) =@x 1 if i;1 > 0; else = (x 2 z 2 )@f ( i;1 ; i;2 1;:::; i;n ) =@x 2 if i;2 > 0; else . . . = (x n z n )@f ( i;1 ; i;2 ;:::; i;n 1) =@x n otherwise. Furthermore, we extend the ordering to the set of polynomials f i as f i f j i y i y j : Let c f i = f i (z 1 = b 1 ; : : :; z n = b n ; x 1 ; x 2 ; : : :; x n ) 2 K x 1 ; : : :; x n ] where (b 1 ; b 2 ; : : :; b n ) is a t-sparse shift for f:

Lemma 4 Let h 2 I and h = y 1 +h 2 y 2 +h 3 y 3 +: : :+h L y L : Then the polynomials c f 1 ; c f 2 ; : :

:; d f L satisfy the Q-linear relation h 1 c f 1 + h 2 c f 2 + h 3 c f 3 + : : : + h L d f L = 0; with h 1 = 1: Proof: We have c f i = t X j=1 i j f j (x b) j
where i j = i;1 j;1 i;2 j;2 : : : i;n j;n ;and, (x b) j = (x 1 b 1 ) j;1 (x 2 b 2 ) j;2 : : :

(x n b n ) j;n : Therefore, L X i=1 h i c f i = L X i=1 h i ( t X j=1 i j f j (x b) j ) = t X j=1 L X i=1 h i i j f j (x b) j = t X j=1 h( j )f j (x b) j = 0;
since h 2 I: 2 For polynomials f 1 ; f 2 ; : : :; f m ; f let us de ne a generalized Wronskian matrix and the !-vector as W m (f 1 ; f 2 ; : : :

; f m ) = 0 B B B B @ f 1 f 2 : : : f m D(f 1 ) D(f 2 ) : : : D(f m ) . . . . . . . . . . . . D m 1 (f 1 ) D m 1 (f 2 ) : : : D m 1 (f m ) 1 C C C C A ; ! m (f) = 0 B B B B @ f D(f) . . . D m 1 (f) 1 C C C C A ;
where D is a generic linear combination of @=@x i ; i.e., D = P n i=1 l i @=@x i ; l i 2 F: As usual, D i denotes the operator D applied i times. Let W m (f 1 ; f 2 ; : : :; f m ) = det(W m (f 1 ; f 2 ; : : :; f m )):

Clearly, W L (f 1 ; : : :; f L ) 2 F z 1 ; : : :; z n ; x 1 ; : : :; x n ] and W L ( c f 1 ; : : :; d f L ) 2 K x 1 ; : : :; x n ]:

Lemma 5 If a set of polynomials F = f c f 1 ; c f 2 ; : : :; d f L g satis es the K-linear relation c f 1 + h 2 c f 2 + h 3 c f 3 + : :

: + h L d f L = 0;
and no proper subset of F sati es a K-linear relation, then h = (h 2 h 3 : : : h L ) Tr is the unique solution to the system of equations W L 1 ( c f 2 ; : : :; d f L ) ~ = ! L 1 ( c f 1 ):

Proof: The proof is classical and we give only a brief sketch. By rewriting the linear dependency as

c f 1 = h 2 c f 2 + h 3 c f 3 + : : : + h L d f L
and applying the operator D successively L 1 times, it follows that W L 1 ( c f 2 ; : : :; d f L ) h = ! L 1 ( c f 1 ):

If h is not the only solution, then W L 1 ( c f 2 ; : : :; d f L ) is singular, i.e., the Wronskian W L 1 ( c f 2 ; : : :; d f L )

vanishes identically. This implies that the polynomials c f 2 ; : : :; d f L are K-linearly dependent (Kaplanski 1957). But no proper subset of F is supposed to satify a K-linear relation, hence, h is the only solution.
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From lemmas 4,5, it follows that if b = (b 1 ; b 2 ; : : :; b n ) is a t-sparse shift for f; and if h = y 1 +h 2 y 2 +h 3 y 3 +: : :+h L y L 2 I; then W L (f 1 ; : : :; f L ) vanishes identically under the substitution z 1 = b 1 ; z 2 = b 2 ; : : :; z n = b n : A partial converse of lemma 4 is also true and it gives us a way to determine sparse shifts of f:

For a polynomial h = y 1 +h 2 y 2 +h 3 y 3 +: : :+h L y L ; let support(h) denote the list of polynomials f 1 ; f 2 ; : : :; f L and W(h) denote W L (support(h)) where L is the cardinality of support(h):

Lemma 6 Let G = fg 1 ; g 2 ; : : :; g r g Q y 1 ; y 2 ; : : :; y i ] be a reduced Gr obner basis for a zerodimensional ideal J with dim(Q y 1 ; y 2 ; : : :; y i ]=J) t; and bi = (b 1 ; b 2 ; : : :; b i ) 2 K i such that W(g 1 ) z j =b j ; j=1;:::;i = W(g 2 ) z j =b j ; j=1;:::;i = : : : = W(g r ) z j =b j ; j=1;:::;i = 0:

Then bi is a partial t-sparse shift for f, i.e., f = P t j=1 j (x b) j ) where (x b) j ) denotes (x 1 b 1 ) j;1 (x 2 b 2 ) j;2 : : :(x i b i ) j;i and J is the ideal of the points f 1 ; 2 ; : : :; t g.

Proof: Let f = P k j=1 j (x b) j with j 6 = 0: We will show that k t: Suppose g 1 = g 1;1 y 1 + g 1;2 y 2 +g 1;3 y 3 +: : :+g 1;L y L : Since W(g 1 ) z j =b j ; j=1;:::;i = 0; by lemma 5, g 1;1 c f 1 +g 1;2 c f 2 +g 1;3 c

f 3 + : : : + g 1;L d f L = 0; i.e., = L X p=1 g 1;p ( k X j=1 p j j (x b) j ) = k X j=1 L X p=1 g 1;p p j j (x b) j = k X j=1 g 1 ( j ) j (x b) j = 0:
Therefore, g 1 ( j ) = 0 for j = 1; : : :; k: In a similar fashion, we can show that g p ( j ) = 0 for each g p 2 G: In other words, each j is a zero of the ideal J: Since dim(Q y 1 ; y 2 ; : : :; y i ]=J) t; J can have at most t distinct zeros. Therefore, k t: 2

The Sparse Shift Algorithm { Case of Finitely Many Shifts

Our goal is to construct the Gr obner basis G. Given any term s (in y 1 ; : : :; y n ), it is either reduced with respect to G, or the head term of some polynomial in G, or a multiple of some head term in G.

A term s is called a simple multiple of the term s 0 if s = y j s 0 for some y j : Every head term in G is a simple multiple of some reduced term. The idea is to enumerate f i in the increasing order according to and decide, with the help of a Wronskian test, which of the above properties the term y i satis es. The idea of systematic enumeration is borrowed from the well-known FGLM basis conversion algorithm (Faug ere et al 1993).

The function Complete basis constructs a reduced Gr obner basis for the ideal I under the pure lexicographic term order with y 1 y 2 : : : y n : In the process, it also computes the corresponding t-sparse shifts for f. If f has several t-sparse shifts satisfying the assumptions stated earlier, Complete basis constructs reduced Gr obner bases for the ideal I corresponding to each of the sparse shifts. It returns a set of ordered pairs ( b; G) where b is a t-sparse shift for f and G is a reduced Gr obner basis for the corresponding ideal I. It uses the functions Next term and Wronskian test.

The function Next term takes four parameters: current basis, reduced terms and last shift index are passed in unmodi ed by Complete basis, and, new var is a ag that is set by Next term.

Next term returns the smallest term y ( =: s) (according to the ordering ) that is neither in reduced terms nor is a multiple of some known head term in current basis; it returns null if no such y exists. When such a term exists, if it has a new variable, i.e., the number of variables in the term is > last shift index, the ag new var is set to true, else new var is set to false.

The function Wronskian test takes ve parameters: s,reduced terms, list of bis, last shift index and new var which are all passed in unmodi ed by Complete basis and it operates in two distinct modes.

If new var = true, then Wronskian test tries to extend the partial t-sparse shift list of bis = (b 1 ; : : :; b k ) to the next variable, i.e., variable whose index is last shift index + 1 = k + 1. If it nds a possible shift, it returns the pair of values true, bis or poly ] where bis or poly contains all the zeros of the content of W L+1 (f ; f 1 ; : : :; f L ) z i =b i ; i=1;:::;k as an element of K z k+1 ] x 1 ; x 2 ; : : :; x n ] where y 1 ; : : :; y L 2 reduced terms, and L = Cardinality(reduced terms). If the content is 1, then Wronskian test returns the pair of values false, ] ] . If new var = false, then Wronskian test attempts to solve the system of linear equations W L ( c f 1 ; : :

:; d f L ) ~ = ! L ( b f )
where y 1 ; : : :; y L 2 reduced terms, and L = Cardinality(reduced terms). If there is a solution = (g 1 g 2 : : : g L ) The function Roots of Content takes 2 parameters, an index k; 0 k n 1; and a polynomial w 2 K z k+1 ] x 1 ; x 2 ; : : :; x n ]. Roots of Content returns a list of all the zeros of the content of the polynomial w:

The function Lin Sys Solve takes 2 parameters, W(2 K m m ); !(2 K m ), and attempts to solve the m m system of linear equations W ~ = !: If the system has a solution, it returns a g 2 K m such that Wg = !; else it returns a null list. In our case, the system of equations either has a unique solution or no solution. begin local shift candidates, /* used to accumulate the list of zeroes of the content of W L+1 (f ; f 1 ; : : :; f L ) z i =b i ; i=1;:::;k as an element of K z k+1 ] x 1 ; x 2 ; : : :; x n ] where y 1 ; : : :; y L 2 reduced terms, and L = Cardinality(reduced terms).

*/ list of coe s, /* used to store the list of coe cients returned by Lin Sys Solve. */ basis element, /* used to store a polynomial y + g 1 y 1 + : : : + g L y L that will become part if list of coe s 6 = ] then /* list of coe s is a list of coe cients g 1 ; g 2 ; : : :; g l ] */ basis element := y + g 1 y 1 + g 2 y 2 + : : : + g L y L ; return true, basis element ] else return false, ] ] end.

Initially, Complete basis is invoked with the following parameter values: the polynomial f, current basis set to f g , reduced terms set to f1g, list of bis set to ( ), last shift index set to 0, and term limit set to t:

Correctness of the Algorithm: The algorithm is in one of two states always, new varbeing true and new varbeing false. State 1, new var true: In this state, the algorithm is attempting to extend current basis to include a polynomial in F y 1 ; : : :; y i+1 ] (where i = last shift index). Since the Gr obner basis being constructed is a lexicographically ordered basis, and the partial basis current basis is being built from the smallest head term up, current basis is actually a reduced Gr obner basis for a zero-dimensional ideal J in F y 1 ; : : :; y i ] with dim(Q y 1 ; y 2 ; : : :; y i ]=J) t; and the elements of current basis satisfy the Wronskian tests with respect to the candidate shift list of bis. By theorem 6, list of bis is indeed a partial shift for f and a candidate for a complete shift. There are at most nitely many ways in which this partial shift can be extended to variable x i+1 (that is our assumption). Each possible way to extend the shift appears as a root of the content of an appropriate Wronskian, the algorithm tries to nd the contents of all such Wronskians by exhaustive enumeration. If the content of a Wronskian has more than one root, each root is a possible way to continue the shift list of bis and the algorithm branches into as many branches as the roots and also continues the computations along the parent branch. When the algorithm starts a new branch, it enters state 2.

State 2, new var false: In this state, the algorithm already has a candidate shift for x 1 ; : : :; x i and is attempting to extend current basis to include relevant elements of the Gr obner basis that are in F y 1 ; : : :; y i ] (where i = last shift index). If a polynomial h 2 F y 1 ; : : :; y i ] belongs to the ideal under construction, then by lemmas 4 and 5, h satis es the Wronskian test. If h is indeed an element of the target Gr obner basis, then it will be generated by the algorithm because of the particular order in which the Wronskian tests are performed (this is one of the key ideas in the FGLM algorithm; see (Faugere et al) for details). The algorithm enters state 1 when after it generates a basis element whose head term is a pure power of x i (because Next term now sets new var to true).

In every branch, in either state, after a Wronskian test, either a new reduced term is deduced or a new basis polynomial is generated. The number of basis elements is bounded by term limit and the number of reduced terms is bounded by term limit. If the cardinality of reduced terms exceeds term limit, then the ideal J has more than t zeros, i.e., the partial shift list of bis cannot be extended to x i+1 and the algorithm terminates that branch. Therefore, each branch terminates after at most (n + 1)t Wronskian tests. When a branch terminates, if the number of reduced terms is term limit; then the branch must have terminated because Next term returned the empty list; this means that every term is known to be either reduced or a head term or a multiple of a head term with respect to current basis which means that current basis is a reduced Gr obner basis in Q x 1 ; : : :; x n ]:

If there are in nitely many t-sparse shifts with respect to one or more x i ( t > deg x i (f)) but only nitely many of them can be combined to t-sparse shifts for the polynomial f, then the algorithm can encounter an identically vanishing Wronskian in state 1 and will fail. An example of a polynomial for which such a phenomenon happens is (x 1) 2 (y 1) 2 (z 1) 2 + (x 1)(y 1)(z 1) + 2: (1; 1; 1) is a 3-sparse shift for this polynomial and it is the only 3-sparse shift for the polynomial. However, with respect to any single variable, there are in nitely many 3-sparse shifts. This situation is taken care of by the algorithm of the next section as the \low degree case".

The function Complete basis returns a set of ordered pairs ( b; G) where b is a t-sparse shift for f and G is a reduced Gr obner basis for the corresponding ideal I. From these, it is quite straightforward to compute the shifted sparse representation f = P t i=1 f i u i corresponding to the pair ( b; G).

Find the zeros of the ideal (G): We know that the zeros are the multi-indices i in the above representation. Since we already have a reduced, lexicographically ordered Gr obner basis and know that all the roots are n-tuples of integers, this can be done fast. See (Lazard 1992). Once we know the shift b and the multi-indices i ; we can nd the coe cients of f from its values at t selected points by solving a t t system of linear equations.

Complexity Analysis: In the following analysis, our main goal is to get an upper bound on the number of Q-operations performed by the sparse shift algorithm. Our emphasis is not so much on getting the sharpest possible bounds (as that would depend on the intricate details of how each step is implemented) as on nding the coarse dependence (polynomial or exponential) of the running time (number of Q-operations) on n; t; d. We choose the primitive element methos for computing with algebraic numbers for convenience and the other models that one nds in the literature are polynomially related to this (polynomial in the degree of the extension under consideration).

The polynomial f is assumed to have rational number coe cients. In fact, the algorithm could run over any eld of characteristic zero, but in the complexity analysis we assume that the coe cients of f are rationals. The t-sparse shifts may be algebraic over Q as we have seen. We assume that the algebraic numbers that arise in a particular branch of the algorithm are expressed as Q-linear combinations of 1; ; 2 ; : : : where is a primitive element of the smallest degree algebraic extension over Q that contains all the algebraic numbers that arise in that branch.

The main operation in the algorithm is the Wronskian test in Complete basis. We know that in each branch generated by Complete basis, there are at most n(t + 1) Wronskian tests. How many distinct branches can there be? Notice that branching can take place only when Complete basis is in state 1. Branching corresponds to nding more than one root for the content of a Wronskian.

Consider a Wronskian test in state 1 with last shift index = i: The Wronskians are determinants of matrices of size no more than (t + 1) (t + 1) and the degree of each entry in z i+1 is no more than t, therefore, the content of the Wronskian, which is a polynomial in z i+1 , has degree O(t 2 ) in z i+1 . Hence a worst case bound on the number of branches at a time is O(t 2 ): The main branch in state 1 can branch at most t times and the main branches are the only ones that can branch. The branching stops when last shift index becomes equal to n: Therefore, the number of branches is bounded by O(t 3n ): Conclude that there are O(nt 3n+1 ) Wronskian tests in all.

Consider any branch generated by Complete basis at a time when last shift index = i. The entries of the Wronskian are polynomials in z i+1 and x 1 ; : : :; x n with coe cients from an algebraic extension of the rationals of degree O(t 2i ) (the contents of the previous Wronskians whose roots form the partial shift along the chosen branch are of degree O(t 2 ) in z j , j < i + 1, and if each of the contents is irreducible over the earlier extensions, the current extension will have degree O(t 2i ) over Q). Each arithmetic operation in such an extension costs O(t 4i ) Q-operations.

To compute the content of a Wronskian, we have to compute the Wronskian (a (t + 1) (t + 1) determinant at most). The Wronskian is a polynomial of degree O(dt) in the x i and O(t 2 ) in z i+1 :

Computing the Wronskian and then its content costs O(t 3 (dt) 2n t 4n ) = O(d 2n t 6n+3 ) Q-operations if we are to do it deterministically. If we are allowed to use randomization, we can substitute two di erent sets of random rational numbers for the x i in the matrix corresponding to the Wronskian and compute the univariate gcd of the determinants of the matrix under the two specializations. With high probability, the gcd will be the content of the Wronskian. The cost of doing this is O(t 3 :t 4 :t 4n ) = O(t 4n+7 ) Q-operations.

The last two steps in the sparse shift algorithm are much simpler. Finding the integer roots of a zero-dimensional lexicographic Gr obner basis with at most t zeros can be done by nding all the integer roots of a univariate polynomial of degree at most t and evaluating n 1 other univariate polynomials of degree < t at the roots this polynomial and solving an n n linear system (see [START_REF] Lakshman | On the Complexity of Computing Gr obner Bases for Zero Dimensional Polynomial Ideals[END_REF])). The total cost is bounded by O(t 3 + nt 2 + n 3 ) Q-operations. This has to be done at most O(nt 3n+1 ) times (once for each branch of Complete basis).

Setting up and solving a t t linear system to compute the coe cients in the shifted sparse representation costs O(t 3 ) Q-operations and this too has to be done at most O(nt 3n+1 ) times, once for each branch of Complete basis. Adding up the costs of all the steps, we have:

Theorem 4 The algorithm of this section computes all shifted t-sparse representations for f provided deg x i (f) t for each x i : If randomization is not allowed, the algorithm performs (n(dt) n ) O(1) Q-operations. If randomization is allowed, the algorithm performs (nt n ) O(1) Q-operations.

2

For the special case of t (deg x i (f) + 1)=2 for each x i , the polynomial f has at most one t-sparse shift by lemma 2, the algorithm runs much faster. In this case, there is essentially no branching and all individual shifts are rational. For this case, we have:

Theorem 5 If t (deg x i (f) + 1)=2 for each x i , the algorithm of this section computes a shifted t-sparse representations for f (if it has one) in time polynomial in t: More speci cally, if random-dlog 2 (p+1)e+dlog 2 (q+1)e and for the polynomial f 2 F x] as above, de ne size(f) = maxfsize(f i )g: Let size(f) M for an integer M: Lemma 7 For any > 0 there exists c such that if f has two sparse representations as above where b 6 2 f0; 1; 1g; then d c(M + t 2 ) 1+ .

Proof: If d 3t; the lemma is obvious. If d > 3t; then b is unique and rational [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF] and we have f = P d i=0 f i x i = P t j=1 f j (x b) j with d = t > t 1 > : : : > 1 : Rewrite this as fB t CD d+1 = f where f = (f 1 f 2 : : :f t ); B t is the t t diagonal matrix with B t (j; j) = b j ; C is a t (d + 1) matrix with C(i; j) = i d+1 j ; D d+1 the (d + 1) (d + 1) diagonal matrix with B t (j; j) = b d+j 1 ; and, f = (f d f d 1 : : : f 0 ): Let ũ = (u 1 u 2 : : : u t ) = fB t : Let C t be the t t submatrix of C consisting of the last t columns of C:

We know that C t is non-singular (see [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF]) and hence, ũ = (f t 1 f t 2 : : : for some constant c 0 : It follows that d=logd c 0 (M + t 2 ) and d = O((M + t 2 ) 1+ ) for any > 0: 2 Lemma 8 Let g 2 F x 1 ; x 2 ; : : :; x n ] be a non-zero polynomial that is shifted t-sparse and S = fa 1 < a 2 < : : : < a 2t g R: Then g cannot vanish everywhere on S n :

Proof: The lemma follows from successive applications of Descartes' rule to each variable x 1 ; x 2 ; : : :; x n : 2

Choose a constant b c and an arbitrarily small > 0 such that deg x i (f) < b c(M + t 2 ) 1+ for 1 i n in lemma 7. Denote this degree bound b c(M + t 2 ) 1+ by D.

Let 1 i n: Fix b to be one of 0; 1; 1 and let X i = x i b: For each W = (w 1 ; w 2 ; : : :; w n ) 2

S n 1 ; consider the univariate polynomial f W (X i ) = f(w 1 ; : : :; w i 1 ; x i ; w i+1 ; : : :; w n ): By lemma 8, it follows that there is a W such that deg(f W (X i )) = deg x i (f): Fix such a W:

From lemmas 9, 10, it follows that for every i 2 I B only the powers of x i and for every j 2 I C ;

only the powers of x j b j appear in any t-sparse representation of f. Moreover, any two shifted t-sparse representations of f contain the same power products of x i and x j b j : The last statement follows from lemma 8 by considering suitable f W 's. Consider the representation of f as f = X 1 i t f i X i I B (x b) i I C

where f i 2 F fx k g]; k 2 f1; 2; : : :; ngn(I B I C ); X i I B denotes a power product of X i ; i 2 I B ; and (x b) i I C : Note that the degrees of the f i in any x k are less than 2t: Therefore, the dense representations of f i as F-linear combinations of power products of x k for k 2 f1; 2; : : :; ng n (I B I C ) have O(t n ) terms. We explicitly compute the f i by dense interpolation from their values at O(t n ) points. The values of the f i for a particular specialization S taking x k to v k 2 F for k 2 f1; 2; : : :; ngn(I B I C ) are obtained by constructing S(f) 2 F I B I C ] (S(f) denotes the image of f under the substitution S). For any S, S(f) is obtained by sparse interpolation using the Ben-Or and Tiwari algorithm (since we know the non-zero shifts b i , this can be achieved by direct application of the Ben-Or and Tiwari algorithm). The cost of constructing the f i this way is ((log d)t n ) O(1) F-operations. Once we have the f i ; the problem is to nd shifts b k for the x k for k 2 f1; 2; : : :; ng n (I B I C ) such that the total number of terms in all the f i represented in the power products of x k b k is at most t: This is done by nding a shifted t-sparse representation for the polynomial (x k ; z) = f 1 z 2t + f 2 z 2t 1 + : : : + f t z t+1 where z is a new unknown. In any t-sparse shift of the above polynomial, the shift with respect to z has to be 0 since its degree in z is greater than 2t 1: To nd a t-sparse shift for ; we apply the algorithm from (Grigoriev-Karpinski 1993) which nds the variety V of all t-sparse shifts of f, i.e., set of r-tuples (b k 1 ; b k 2 ; : : :; b kr ) (r = n cardinality(I B I C ) and fk 1 ; : : :; k r g = f1; : : :; ng n (I B I C )) such that the total number of terms in all the f i represented in the power products of x k b k is at most t: The algorithm from (Grigoriev-Karpinski 1993) returns the variety V as a union of its irreducible components l V l and for each V l and i; the algorithm returns a set of exponent vectors e 1 ; : : :; e s and a set of rational functions g 1 (b k jk 2 f1; : : :; ng n (I B I C )); : : :; g s (b k jk 2 f1; : : :; ng n (I B I C )) such that f i = P s l=1 g l x e l for any (b k 1 ; b k 2 ; : : :; b kr ) 2 V l : For this input, the number of operations performed by the algorithm of Grigoriev and Karpinski is bounded by O((nt) O(n 2 ) ) since deg(f i ) 2tn: We now collect the main steps of the algorithm together and summarize its asymptotic time complexity in theorem 6:

Algorithm to nd all multivariate sparse shifts Compute the index set I B of variables of high degree in f: If the Ben-Or and Tiwari algorithm fails to produce t-sparse g 1 ; g 2 ; g 3 ; g 4 satisfying lemma 9 for a variable X i = x i b; for every b 2 f0; 1; 1g; then that variable has degree D:

For each variable x j whose index j is not in I B , construct f W (x j ) for all possible W by dense interpolation assuming that deg(f W (x j )) D. Denote the interpolant by g W (x j ) and perform the sparse shift algorithm of Lakshman-Saunders on g W (x j ) whenever deg(g W (x j )) > 2t: If each time, we discover the same shift, note that j 2 I C :

Consider the representation of f as f = X 1 i t f i X i I B (x b) i I C :

(1)

  of the Gr obner basis being constructed. */ k; k := last shift index; if new var then shift candidates := Roots of Content(last shift index + 1, W L+1 (f ; f 1 ; : : :; f L ) z i =b i ; i=1;:::;k ); if shift candidates 6 = ] then return true, shift candidates ] else return false, ] ] else list of coe s := Lin Sys Solve(W L ( c f 1 ; : : :; d f L ); ! L ( b f ));

  (u 1 ) < M + tsize(b) + ct 2 log d for some constant c; the ct 2 log d term coming from C 1 t : Since f d = u 1 b d ; we get size(u 1 ) > size(b d ) M > d(size(b) 2) M Since b 6 2 f0; 1; 1g; we have size(b) 3 and therefore, d 3t (d 3t)(size(b) 2) c 0 (M+t 2 log d)

  Q-operations if randomization is allowed. The second algorithm computes t-sparse shifts for a multivariate polynomial f without any niteness restrictions on the number of t-sparse shifts. It has running time bounded by (nt) O(n 2 ) :

  Tr ; then Wronskian test returns the pair of values true, y + g 1 y 1 + : : : + g L y L ] where y = s: If there is no solution, then Wronskian test returns the pair of values false, ] ] . set of GBs /* new var is false, and the ag Wr agis set to trueby Wronskian test , therefore, a Q-linear combination of the term s and all the lower terms known to be reduced with respect to current basis was found to belong to I; update the described earlier, the function Wronskian test returns a pair of values consisting of a ag (to denote what was computed) and either a list of possible shifts or a new element of the Gr obner basis being constructed. It uses two functions, Roots of Content and Lin Sys Solve.

	Complete basis( f; current basis, /* set containing a partially constructed Gr obner basis; */ reduced terms, /* set containing terms known to be reduced with respect to current basis; */ list of bis, /* list containing partial shifts; if list of bis = (b 1 ; : : :; b k ), term limit ) representation of f; */ /* bound on the number of terms (t) in the shifted sparse puted; last shift index = Cardinality(list of bis) always; */ last shift index /* index of the last variable for which a shift has been com-then the b i are possible t-sparse shifts for x i ; i = 1; : : :; k; */ for each b 2 bis or poly do set of GBs := set of GBs Complete basis(reduced terms, current basis, list of bis, b], last shift index+1, term limit); od ; if Wr ag then else current basisand continue.*/ rent basis belongs to I; classify s as reduced with respect to the lower terms known to be reduced with respect to cur-th variable; no Q-linear combination of the term s and all return set of GBs; /* No possible shift was found for the last shift index+1-current basis, list of bis, last shift index, term limit) set of GBs := Complete basis(reduced terms s, else in search of other shifts. */ complete each of the shifts; continue the original branch also found for the last shift index+1-th variable; branch out to Wronskian test ; therefore, one or more possible shifts were return set of GBs /* new var is true, and the ag Wr ag is set to trueby current basis, list of bis, last shift index, term limit); set of GBs := set of GBs Complete basis(reduced terms s, return f g ; /* The basis being built has more than t reduced terms which means that the shift being computed can not be completed to a t-sparse shift. */ end.
	begin local set of GBs, new var,Wr ag, bis or poly; else set of GBs := Complete basis(reduced terms s, /* ( b; G) are accumulated in this; */ current basis and continue. */ current basis, list of bis, last shift index, term limit) return set of GBs; ; /* no Q-linear combination of the term s and all the lower terms known to be reduced with respect to current basis belongs to I; classify s as reduced with respect to cur-rent basisand continue.*/ /* ags and place-holders for return values and return status of Next term, Wronskian test; */ set of GBs := f g; if Cardinality(reduced terms) term limit then if s := Next term( reduced terms, current basis, last shift index, new var) then Wr ag, bis or poly ] := Wronskian test( s, reduced terms, else return f (list of bis, current basis) g /* Next term failed to return a new term; so, every term is either known to be reduced with respect to current basis, or is a multiple of some head term in current basis. This means that current basis is a zero-dimensional Gr obner basis; return the basis and the corresponding shift. */ list of bis, last shift index, new var); if new var then if Wr ag then else

set of GBs := Complete basis(reduced terms, current basis bis or poly, list of bis, last shift index, term limit) return As
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ization is not allowed, the algorithm performs (ntd n ) O(1) Q-operations. If randomization is allowed, the algorithm performs (nt) O(1) Q-operations.

2 Remark: If we do not have the derivarives of f available, but only a black box that evaluates f, we can still use ideas close to the ones describes in this section to construct a Gr obner basis for the ideal of points p 1 ; p 2 ; : : :; p t with p j j denoting the power product p j;1 1 p j;2 2 : : :p j;t t where the p i are distinct prime integers. In place of f ; one can use f(p 1 1 + z 1 ; p 2 2 + z 2 ; : : :; p n n + z n ):

Sparse Shift Algorithm { The General Case

In this section, we deal with the case of nding t-sparse shifts for a polynomial f 2 F x 1 ; : : :;

x n ] (we suppose that F R) for which deg x i (f) < 2t for one or more x i and consequently, there might be several (possibly in nitely many) t-sparse shifts with respect to x i alone. This covers the case that causes the algorithm in the previous section to fail. We assume that the polynomial f is given to us as a black box or a straight line program. Assuming that we are given a bound M on the sizes of the coe cients of f in the standard representation (and without knowing anything about the degree of f), we identify three kinds of variables in f:

variables that have very high degree ( ((M + t 2 ) 1+ )), these appear with a unique t-sparse shift that is either 0, or 1 or -1. We make repeated use of the Ben-Or and Tiwari algorithm (Ben-Or, Tiwari 1988) in conjunction with some bounds proved in this section to identify the high degree variables and to nd the corresponding shifts.

variables that have moderate degree (2t < degree < c(M +t 2 ) 1+ for some constant c), these appear with a unique, rational shift in any t-sparse representation of f. We make repeated use of the sparse-shift algorithm in [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF] to identify the moderate degree variables.

variables that have low degree (degree < 2t), these may appear with di erent, algebraic shifts in di erent t-sparse representation of f. We make use of the algorithm in (Grigoriev-Karpinski 1993) to identify the low degree variables and nd their sparse shifts.

The algorithm used to nd sparse shifts for the low degree variables (Grigoriev-Karpinski 1993) is very general and in fact solves the problem of computing sparse shifts completely without making such distinctions as listed here. However, we apply it selectively, to polynomials of low degree (d 2tn), and as a result, the complexity of the algorithm comes down from O(d O(n 4 ) ) to O((nt) O(n 2 ) ) operations.

Degree Bounds on Shifted Sparse Polynomials

We establish some bounds on the degrees of f in each x i in terms of t; n; M: These bounds are used in the main algorithm which unfolds in the rest of the section. The main steps of the algorithm are collected together at the end of the section.

Let f = P d i=0 f i x i = P t j=1 f j (x b) j : For a rational number p=q 2 F; de ne size(p=q) =

Let A 1 = f 2; ( 2) 2 ; ( 2) 3 ; : : :; ( 2) 2t g; A 2 = f 3; ( 3) 2 ; ( 3) 3 ; : : :; ( 3) 2t g; A 3 = f 5; ( 5) 2 ; ( 5) 3 ; : : :; ( 5) 2t g; and, A 4 = f 7; ( 7) 2 ; ( 7) 3 ; : : :; ( 7) 2t g: Apply the Ben-Or and Tiwari interpolation algorithm (Ben-Or, Tiwari 1988) to f W (X i ) at the four sets of points A 1 ; A 2 ; A 3 ; A 4 respectively. If the algorithm succeeds, it returns a t-sparse polynomial in F X i ] for each set of evaluation points A 1 ; A 2 ; A 3 ; A 4 : Let us denote the polynomials returned by the Ben-Or and Tiwari algorithm by g 1 ; g 2 ; g 3 ; g 4 2 F X i ] respectively.

Lemma 9 deg x i (f) > D if and only if g 1 = g 2 = g 3 = g 4 and deg(g 1 ) > D:

Proof: (=)) : Since deg x i (f) > D; then by lemma 7, we have b i 2 f 1; 0; 1g in any t-sparse shift (b 1 ; b 2 ; : : :; b n ) for f: Therefore, f W (X i ) is t-sparse for any W 2 S n 1 and since the interpolating polynomial produced by the Ben-Or and Tiwari algorithm (Ben-Or, Tiwari 1988) is unique, we have g 1 = g 2 = g 3 = g 4 = f W (X i ): Since we choose a W such that deg(f W (X i )) = deg x i (f); it follows that deg(g 1 ) > D:

((=) : Assume that for a certain W 0 , the Ben-Or and Tiwari algorithm returns four t-sparse polynomials in X i such that g 1 = g 2 = g 3 = g 4 and deg(g 1 ) > D: The polynomial f W 0 (X i ) is shifted t-sparse and coincides with the t-sparse polynomial g 1 at 4t positive points and 4t negative points. Therefore, by theorem 5 in [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF], we have f W 0 (X i ) = g 1 (X i ): 2

If the Ben-Or, Tiwari algorithm fails to return, for each b = 0; 1; 1; and for each W four t-sparse polynomials in X i g 1 = g 2 = g 3 = g 4 with deg X i (g 1 ) > D; then f W (x i ) has a non-zero t-sparse shift and deg x i (f) < D: Denote the set of all indices i such that deg x i (f) > D by I B : The set I B can be determined by performing ((log d)t n ) O(1) arithmetic operations (for each i; for each b; and for each W 2 S n 1 ; we have to perform the Ben-Or and Tiwari algorithm 4 times).

Let j 2 f1; 2; : : :; ng nI B : For each W 2 S n 1 , interpolate f W (x j ) as a dense univariate polynomial. If for some W 0 ; deg(f W 0 (x j ) > 2t; then we can use the sparse-shift algorithm from [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF] to nd the unique b j 2 F such that f W 0 (X j ) is t-sparse relative to x j b j :

Lemma 10 Let j 2 f1; 2; : : :; ngnI B : Then deg x j (f) > 2t i for a certain W 0 2 S n 1 ; deg(f W 0 (x j )) > 2t: If the latter is true, then there is unique b j 2 F such that f W 0 (x j ) is t-sparse relative to x j b j :

Moreover,in any t-sparse shift (b 0 1 ; b 0 2 ; : : :; b 0 n ) of f, we have b 0 j = b j :

Proof: The existence of W 0 follows from lemma 8. Since f W 0 (x j ) is shifted t-sparse, and its degree > 2t; the shift is unique (theorem 1, [START_REF] Lakshman | computing sparse shifts for univariate polynomials[END_REF]. If (b 0 1 ; b 0 2 ; : : :; b 0 n ) is a t-sparse shift for f, then f W 0 (x j ) is t-sparse with respect to x j b 0 j : From the uniqueness of the shift, it follows that b 0 j = b j : 2

Denote the set of all indices j 2 f1; 2; : : :; ng n I B such that deg x j (f) > 2t by I C : The set I C can be determined by performing (Mt n ) O(1) arithmetic operations (for each j and for each W 2 S n 1 ; we have to perform a dense univariate interpolation and the sparse-shift algorithm of Lakshman-Saunders once; since the degree with respect to x j is bounded by D, we have the above bound.)

Determine the f i by dense interpolation as outlined in the text and compute sparse shifts for (x k ; z) = f 1 z 2t +f 2 z 2t 1 +: : :+f t z t+1 by the algorithm of Grigoriev and Karpinski. For each such shift of the f i , return the corresponding t-sparse representation f obtained by substituting the shifted sparse representations of the f i into the representation (1) above.

Theorem 6 The algorithm of this section computes all shifted t-sparse representations for f. The algorithm performs O(M O(1) (nt) O(n 2 ) ) operations. 2

Discussion

In this paper, we have investigated the problem of nding t-sparse shifts for multivariate polynomials. The rst algorithm has the advantage that the unknown shifts are obtained as zeros of univariate polynomials over algebraic extensions of Q (as opposed to having to solve general systems of polynomial equations). The algorithm uses Gr obner basis techniques. However, this algorithm cannot handle all polynomials with t-sparse shifts. The second algorithm is a complete algorithm slower than the rst, but improves signi cantly over previously known algorithms. Several interesting issues remain unresolved at this time:

nd a necessary and su cient condition for the uniqueness of t-sparse shifts and sparsifying linear transformations for multivariate polynomials. nd an algorithm that handles the low degree case more e ciently than our algorithm. It is intriguing to see what might happen if we try to construct Gr obner bases as in the rst algorithm, but with respect to other term orderings to handle the low degree case. nd e cient algorithms for nding sparsifying linear tranformations (see Grigoriev and Karpinski, 1993). The Gr obner basis techniques can be extended to nd sparsifying linear transformations for bivariate polynomials e ciently (polynomial in t; d).

It is also interesting to consider more general transformations such as ones leading to sparse decompositions of polynomials.