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U v \ ff v = 0g, U v \ ff v < 0g, respectively. We assume that f v is de ned on a certain domain (see the de nition A2) containing U v . To any leaf of T an output either \yes" or \no" is assigned and we say that T tests the membership problem to the set of all points (x 1 ; : : : ; x n ) 2 R n for which the outputs of the corresponding leaves of T are \yes" (see 1]).

Note that a more general notion of a Pfa an sigmoid was introduced in 10] and a method for obtaining lower bound on the (parallel) complexity was developed.

If we take only arithmetic operations as the gate Pfa an functions f v in T then we come to the algebraic computation trees (see e.g. 1]). As examples of gate Pfa an functions f v one could take exp (f v q ), log(f v q ), where log is de ned on the positive half-line, p f v q , where square root is de ned on the positive half-line, sin(f v q ), where sin is de ned on the interval ( ; ), tan(f v q ), where tan is de ned on the interval ( =2; =2), 0 q `. Other examples one can nd in section A1 of the Appendix. Trees T restricted to some special classes of Pfa an functions (for instance, the mentioned above) can be of a particular interest, but since we are interested in the complexity lower bounds we shall consider arbitrary Pfa an functions.

Suppose that the degrees deg g v;j of the polynomials occurring in the de nition of the gate functions f v in T , are less than d.

Now we are able to formulate the main result of the paper. This result was annownced in 15].

Theorem. Let a Pfa an computation tree T test a membership problem to a closed convex polyhedron P R n , having N facets of all the dimensions. Then the depth K of T is greater than ( p log N), provided that N (dn) (n 4 log d) .

In 11] a particular case of the theorem for n = 2, so when P is a polygon, was proved.

Several methods based on topological characteristics are known for obtaining complexity lower bounds for algebraic computation trees testing membership to a semialgebraic set S R n . In 1], the bound (log C) was proved, where C is the number of connected components of S or its complement, in [START_REF] Bj Orner | Subspace arrangements[END_REF][START_REF] Bj Orner | Linear decision trees: volume estimates and topological bounds[END_REF][START_REF] Yao | Algebraic decision trees and Euler characteristics[END_REF] the bound (log ) was proved, where is the Euler characteristics. The most general (among the listed) bound (log B) was proved in [START_REF] Bj Orner | Subspace arrangements[END_REF][START_REF] Yao | Proc. ACM Symp. on Theory of Computing[END_REF], where B is the sum of Betti numbers of S.

Actually one could directly extend these results to Pfa an computation trees, replacing in the proofs the references to Milnor's bound 23] on the sum of Betti numbers of a semialgebraic set by the references to Khovanskii's bound 20] for the sum of Betti numbers of a semi-Pfa an set. This leads to the following proposition 11]. If a Pfa an computation tree tests the membership problem to a semi-Pfa an set W with the sum of Betti numbers B, then the depth of the tree is greater than ( p log B) 11].

There is a conjecture that the bound in 20] could be improved (see the section A1 in the Appendix). This conjecture implies the lower bounds (log N) in the theorem and (log B) in the proposition from 11] respectively.

Observe that as the sum of Betti numbers of a convex polyhedron equals to 1, the theorem does not follow, apparently, from the proposition. Note that in 12] the complexity lower bound (log N) was proved for testing membership to a polyhedron with N facets by an algebraic decision tree (for large enough N, cf. the theorem). In 30] a similar bound was shown for a weaker model of linear decision trees. The method from 12] cannot be directly generalized to Pfa an computation trees, since in 12] the e cient quanti er elimination procedure for the rst-order theory of reals (see [START_REF] Grigoriev | Complexity of deciding Tarski algebra[END_REF][START_REF] Grigoriev | Solving systems of polynomial inequalitites in subexponential time[END_REF][START_REF] Heintz | Sur la complexit e du principe de Tarski-Seidenberg[END_REF][START_REF] Renegar | On the computational complexity and the rst order theory of the reals. Parts I{III[END_REF]), was essentially used whereas for the theories involving Pfa an functions (in particular, elementary transcendental), the quanti er elimination does not exist.

We remark that the computations involving other functions, rather than arithmetic, were considered in several papers: in 18] for the computations involving root extractions a lower bound for computing an algebraic function was obtained, in 13] this result was extended for the computations involving exp and log.

We mention that for testing membership to a polyhedron an upper bound O(log N)n O (1) was shown in 22] even for linear decision trees. Now we proceed to the proof of the theorem which will continue up to the end of section III.

We start with introducing some necessary concepts and notations. In section II we introduce the notion of i-angle points and prove that the set of i-angle points has the dimension at most i. This notion di ers from the concept of sharp points introduced and used in 12], the latter does not work for Pfa an computation trees. In section III we introduce and study another important technical concept, at points. All necessary information about Pfa an functions and sub-Pfa an sets we included in the Appendix (in which the numbering of all the statements, de nitions and sections begins with A).

For an m-plane Q R n and a point x 2 R n denote by Q(x) the m-plane, collinear to Q and containing x. For a facet of the polyhedron P denote by the dim( )-plane, containing (we assume a facet to be open, i.e. without its boundary).

Two planes Q 1 , Q 2 or arbitrary dimensions are called transversal if

dim(Q 1 (0) \ Q 2 (0)) = maxf0; dim(Q 1 (0)) + dim(Q 2 (0)) ng
The proofs of the following two easy lemmas one can nd in 12] (lemma 1 is also proved in 5]). Lemma 1. For each j with 1 j n there exists a family A j consisting of j(n j) + 1 j-subspaces in R n such that for any i-subspace Q R n , 1 i n there is a j-subspace R 2 A j which is transversal to Q. Lemma 2. There exists a rotation of coordinates X 1 ; : : : ; X n such that after this rotation for every j, every Q 2 A j and for every facet of P, the subspace Q and the plane become transversal.

In what follows we suppose that the coordinate system meets the requirements of lemma 2. Now we reduce consideration to the case when the polyhedron P is bounded. The next construction follows the beginning of the proof of lemma 5 12].

Let t be the minimal dimension of facets of P. Fix a certain t-facet P t of P, then t-plane P t is contained in P. On each facet of P choose a point x 2 . Take an arbitrary hyperplane transversal to P t and such that the points x for all facets of P lie in the same of two open half-spaces of R n r (denote this half-space by

). Consider the polyhedron P \ ( ), it contains a facet of a dimension less than t. Continuing this process while t 1, we come eventually to the case t = 0, i.e., polyhedron P 0 obtained as a result of this process has a vertex.

There exists a linear form L = 1 X 1 + + n X n with i 2 R, 1 i n such that for every 2 R an intersection P 00 = fL + 0g \ P 0 is compact. Take such that x 2 fL + 0g \ P 0 for all .

In order to reduce consideration to the compact polyhedron P 00 , observe that from a Pfa an computation tree of depth K for the membership problem to P, one can easily produce a Pfa an computation tree of a depth at most K +n for the membership problem to P 00 . Assuming that the theorem is valid for the compact P 00 , and thus K + n ( p log N), we get a similar bound K ( p log N) under the supposed in the hypothesis of the theorem inequality for N. Therefore, in what follows we assume that P is bounded.

In section A2 a sequence

R = R 0 R 1 R 2
of nonstandard extensions of elds is introduced. One can choose in each R i+1 an element in nitesimal relative to R i . We denote these elements, respectively, by

1 2 R 1 ; f (j)
`2 R (` 1)(n 2 +1)+j+1 : 1 ` n 1; 1 j n 2 + 1g; 2 2 R n 3 n 2 +n+1 , 3 2 R n 3 n 2 +n+2 (the reason for these notations would become clear later on). To match the notations denote the elds

R 1 = R 1 , R (` 1)(n 2 +1)+j+1 = R (j) `, 1 ` n 1, 1 j n 2 + 1, R n 3 n 2 +n+1 = R 2 , R n 3 n 2 +n+2 = R 3 , respectively. For brevity set also R = R n 3 n 2 +n = R (n 2 +1) n 1
. The completion (see section A2) for any sub-Pfa an set U (see the de nition A4) we denote by U ( ) = U (n3 n2 +n) , U ( 3 ) = U (n 3 n 2 +n+2) . Analogously we denote the languages (see the section A2) L = L n 3 n 2 +n , L 2 = L n 3 n 2 +n+1 ; L 3 = L n 3 n 2 +n+2 . In the section A2 for each i the standard part st i is described. Actually, throughout the paper we'll use almost in all the cases st n 3 n 2 +n which we'll for brevity denote by st (on occasions we'll use also st n 3 n 2 +n+1 which we denote by st 2 ). Consider a Pfa an computation tree T testing the membership to P with depth K. Fix any its branch with the output \yes", and let f v 0 ; : : : ; f v K be the Pfafan functions attached to the nodes along this branch. We rename the functions f v 0 ; : : : ; f v K by u 0 ; : : : ; u K in such a way that u 0 ; : : : ; u K 1 for a certain K 1 5 K, correspond to the sign zero, and u K 1 +1 > 0; : : : ; u K > 0 correspond to nonzero signs along the branch. More precisely, consider a semi-Pfa an set (see the de nition A3) W = fx 2 R n 3 : u 0 (x) = = u K 1 (x) = 0; u K 1 +1 (x) > 0; : : : ; u K (x) > 0g: which is the accepting set corresponding to the branch. Then the set W \R n is the set of points on which T along the xed branch outputs \yes", hence W \ R n P.

Since the functions u 0 ; : : : ; u K are de ned over R, the completion (see the section

A2) (W \ R n ) ( 3 ) = W.
In the sequel we'll estimate the number of i-facets of P such that dim(W \ \ R n ) = i. When K 1 < 0 the set (W \R n ) lies in the interior of P, so this estimate is trivial.

Therefore, we assume that K 1 0 and denote f = u 2 0 + + u 2 K 1 .

II. Angle Points.

De nition 2. A point x 2 W is called a 0-quasiangle if u K 1 +1 (x) 1 ; : : : ; u K (x) ky i xk 2 , 1 i n and 0 B @ det @f @X 1 (y 1 ) : : : @f @X n (y 1 ) . . . . . . @f @X 1 (y n ) : :

: @f @X n (y n ) 1 C A 2 > 2 1 (y 1 ) (y n ) (0) where = P 1 i n @f @X i 2 .
Observe that corollary A5 states that for any point y 2 ff = 3 g R n

3 the gradient grad y (f) = @f @X 1 ; ; @f @X n (y) does not vanish. Notice that the inequality (0) in the de nition means that the absolute value of the determinant of the matrix formed by the normalized gradient vectors of f at the points y 1 ; : : : ; y n is greater than 1 .

De nition

3. A point x 2 W is called i-quasiangle (0 i < n) if for each
(n i)-subspace 2 A n i (see lemma 1) the point x is a 0-quasiangle point in the semi-Pfa an set W \ (x) (here we understand 0-quasiangle with respect to a basis in whose elements are from R n , in other words have coordinates from R, the role of f plays the restriction of f on (x)).

The set of i-quasiangle points of W we denote by e A i . Observe that e A i can be determined by a Pfa an formula and thus is a sub-Pfa an set (see the de nition A4).

De nition 4. The points of the set A i = st( e A i ) R n are called i-angles. Lemma A7 implies that A i is sub-Pfa an and de nable over R 1 . Due to lemma A4, A i W. Lemma 3. Let P i be an i-facet of P with dimension (see de nition A5) dim(W \ P i ) = i. If for two points e x 2 W \ R n \ P i , and x 2 P ( ) i the distance kx e xk is in nitesimal relative to R, then x 2 e A i .

Remark. Actually, the lemma states that x 2 A i since x = st(x) 2 st( e

A i ) = A i .
Proof of the lemma. Since dim(W \ P i ) = i, the lemma A1 implies that f vanishes on P i . Throughout this paper B z (s) R n

3 denotes the open ball centered at z with radius s. There exists 0 < c 2 R such that u j (e x) > c, K 1 + 1 j K, therefore there exists 0 < r 2 R such that u j (y) > c 2 , K 1 +1 j K for any y 2 B e

x (2r)\R n , taking into account that the Pfa an functions u j are de ned over R. According to the transfer principle (see the section A2) u j (y) > c 2 , K 1 + 1 j K for any y 2 B e x (2r) \ R n 3 . In particular, u j (x) > c 2 > 1 , K 1 + 1 j K.

Fix an arbitrary subspace 2 A n i . Our purpose is to show that x is 0quasiangle in the set W \ (x), which will imply the lemma (see de nition 3). Since is transversal to P i , the point x is a vertex of the polyhedron P = (P \ (x)) ( 3 ) (see lemma 2 and the supposition just after it). The vertex x belongs to at least n i of (n i 1)-facets (of the maximal dimension) of P. Observe that for each of these facets the normalized orthogonal (in (x)) vector has the coordinates in R. Choose any T 1 ; : : : ; T n i among them.

Notice that for any point y 2 cl(B x (r)) \ R n 3 (where cl denotes the closure in the topology with a base of all open balls) the inequalities u j (y) > 1 , K 1 + 1 j K hold since cl(B x (r)) B e

x (2r). Hence,

\ K 1 +15j5K ff = 0; & u j = 1 g ( 3 ) \cl(B x (r)) = ff = 0g ( 3 ) \ cl(B x (r)).
Denote by D (x) the intersection of the unique closed cone K with the vertex at x formed in (x) by (n i 1)-planes T 1 ; : : : ; T n i containing P, with the ball cl(B x (r)). For any point z 2 ff = 3 g \ (x) \ cl(B x (r)) we have st 2 (z) 2 ff = 0g\ (x)\cl(B x (r)), due to lemma A4. Therefore, st 2 (z) 2 W \cl(B x (r))\ (x) P \ cl(B x (r)) D, in particular the distance (z; D) from the point z to the set D is in nitesimal relative to R 2 . Since the set ff = 3 g \ (x) \ cl(B x (r)) is closed in the topology with a base of all open balls, and bounded, the maximum value 0 of (z; D) over all the points z 2 ff = 3 g \ (x) \ cl(B x (r)) exists (here we use the transfer principle), and is in nitesimal relative to R 2 . Shift (in (x)) each of (n i 1)-planes T 1 ; : : : ; T n i parallel to itself outward from D to the distance 0 . Denote the resulting shifted (n i 1)-planes by T 0 1 ; : : : ; T 0 n i , respectively. Denote by x 0 the (unique) common point of T 0 T 0 n i . Denote by D 0 the intersection of the closed cone K 0 formed by T 0 1 ; : : : ; T 0 n i , with the vertex in x 0 with the ball cl(B x (r)). Then ff = 3 g \ (x) \ cl(B x (r)) D 0 . Observe that the distance kx x 0 k is in nitesimal relative to R 2 .

We replace (n i 1)-planes T 0 j , 1 j n i (in (x)) by some (n i 1)-planes T 00 j , 1 j n i, respectively, in the following way. Take any hyperplane (in (x)), de ned over R , such that the intersection C 1 = \ K D. Then C 1 is a

(n i 1)-dimensional simplex, let its (n i 2)-facets which are the intersections of with T 1 ; : : : ; T n i , respectively, be determined in by the equations fL j = 0g, 1 j n i for some linear polynomials L j de ned over R . Thus C 1 = fL 1 0; : : : ; L n i 0g\ . Consider now (n i 1)-dimensional simplex C 2 = fL 1 + 2 0; : : : ; L n i + 2 0g\ C 1 . The facets of C 2 are fL j = 2 g\ , 1 j n i, and therefore, they are parallel to the corresponding facets of C 1 . Denote by T (3) j , 1 j n i the hyperplane (in (x)) containing x and fL j = 2 g \ . Denote by K (3) (x) the cone formed by T (3) j , 1 j n i containing C 2 ; observe that K (3) K.

We claim that the sine of the angle between the hyperplanes T j and T (3) j , (i.e., between vectors, orthogonal to T j and T (3) j respectively) is in nitesimal relative to R . Indeed, consider the unique 2-plane ! j , 1 j n i passing through x and orthogonal to fL j = 0g \ . It intersects (n i 2)-plane fL j = 0g \ (respectively, (n i 2)-plane fL j = 2 g\ ) at the unique point y j (respectively y (3) j ). Observe that the vector in ! j orthogonal to the line `j passing through x and y j (respectively, the line `(3) j passing through x and y (3) j ) is orthogonal to T j (respectively, T (3) j ). The segment (y j ; y (3) j ) lies on the line ! j \ and is orthogonal to fL j = 0g \ . Hence the distance between (n i 2)-planes fL j = 0g \ and fL j = 2 g\ , which is equal to the length of the segment y j ; y (3) j ], is in nitesimal relative to R . Since the angle equals to the angle between the lines `j and `(3) j , we conclude that sin is in nitesimal relative to R taking into account that in the triangle (x; y j ; y (3) j ) the vertices x and y j are de ned over R , therefore the sides (x; y j ) and (x; y (3) j ) are not in nitesimal relative to R and (y j ; y (3) j ) is in nitesimal relative to R . This proves the claim.

Let us show that there exists an element 0 < 2 R 2 such that for any two points z 1 2 @C 1 , z 2 2 @ C 2 from the boundaries, (see de nition A8 (here we mean the boundary in the hyperplane )), the sine of the angle between the lines (x; z 1 ) and (x; z 2 ) is greater or equal to . Since both points z 1 ; z 2 range over bounded closed sets, there exists (due to the transfer principle) the minimum of these sines. Observe that > 0 since @C 1 \ @C 2 = ;. One could de ne the element by a formula of the language L 2 . Therefore, 2 R 2 by the transfer principle, as was to be shown.

Note that the cones K and K 0 are isometric. We de ne the desired (n i 1)planes T 00 j , 1 j n i as the images of T (3) j , respectively, under the shift mapping the cone K onto K 0 , then the cone K 00 formed by T 00 j , 1 j n i, is the image of the cone K (3) .

For every 1 j n i, pick a point x j 2 ff = 3 g \ (x) \ cl B x (r) with the property that x j is the nearest to T 00 j on the (bounded and closed) set ff = 3 g \ (x) \ cl B x (r). Lemma A4 entails that there exists a point y 2 ff = 3 g \ (x) \ B x (r) such that kx yk is in nitesimal relative to R 2 , therefore kx 0 yk is in nitesimal relative to R 2 as well, hence the distance from x j to T 00 j is also in nitesimal relative to R 2 . Denote by x 00 j 2 T 00 j the orthogonal projection of x j on T 00 j . Let us prove that kx j x 0 k is in nitesimal relative to R 2 . Since x j 2 (ff = 3 g \ (x) \ cl(B x (r))) D 0 , the segment (x j ; x 00 j ) intersects @K 0 (here we mean the boundary in (x)) at the unique point x 0 j . Since the sine of the angle between the lines (x 0 ; x j ) and (x 0 ; x 00 j ) is greater than or equal to the sine of the angle between the lines (x 0 ; x 00 j ) and (x 0 ; x 0 j ) which, in its turn, is greater or equal to (see above), we conclude that sin 2 R 2 . Therefore, kx 0 x j k = kx j x 00 j k sin is in nitesimal relative to R 2 , 1 j n i, which was to be proved. Hence, kx x j k is in nitesimal relative to R 2 as well, in particular x j 2 B x (r).

Observe that the gradient grad x j ( f) (where f denotes the restriction of f on (x), cf. De nition 3) does not vanish because x j 2 ff = 3 g \ (x) (see corollary A5) and it is orthogonal to the hyperplane T 00 j (in (x)), as x is the nearest to T 00 j on the set ff = 3 g \ (x) \ cl B x (r). Since the sines of the angles between any pair of hyperplanes T j 1 ; T j 2 (in (x)) is greater than a certain c, 0 < c 2 R, we conclude that the sines of the angles between any pair of hyperplanes T 00 j 1 , T 00 j 2 is greater than c=2 according to the claim proved above (stating that the sine of the angle between T j 1 and T 00 j 1 is in nitesimal relative to R ). Therefore det grad x 1 ( f) kgrad x 1 ( f)k ; : : : ; grad x n i ( f)

kgrad x n i ( f)k ! > c 1 > 0 for a suitable c 1 2 R.
Taking the points x 1 ; : : : ; x n i as the points y 1 ; : : : ; y n i in the de nition 2 we get that x is 0-quasiangle in the semi-Pfa an set W \ (x), whence x is i-quasiangle because (n i)-plane 2 A n i was chosen arbitrarily.

Corollary. Let a point e x 2 W \P i \R n and the dimension in the point e

x dim e

x (W \

P i ) = i, then (a) dim e x (A i \ P ( ) i ) = i; (b) dim(A i \ P ( 3 ) i ) = i.
Proof. Lemma 3 and the remark following this lemma imply that for any 0 < 2 R which is in nitesimal relative to R, we have the inclusion (B e

x ( ) \ P ( ) i ) A i , this provides a).

Moreover, lemma 3 and the remark imply that (B e

x ( ) \ P ( ) i ) st( e A i \ P ( 3 ) i ). Thus, b) follows from lemma A8.

Lemma 4. dim(A i ) i

Proof. First let us reduce the proof to the case i = 0, in which Ã0 ; A 0 are de ned for a set W given by Pfa an functions u 1 ; : : : ; u K de ned over R (rather than R), see section A2. Thus, let i 1 and suppose that e = dim(A i ) i + 1. Due to corollary A1, there exists a nonsingular point y 2 A i such that dim y (A i ) = e. Denote by T y the tangent plane to A i at the point y. Since dim(T y ) = e one can nd (n i)subspace 2 A n i such that dim(T y \ (y)) = e i. Take any (n e)-subspace R de ned over R for which (T y \R(y)) = fyg. Consider the linear orthogonal projection : R n 3 ! R e

3 onto e-subspace along R. Then dim (T y ) = e. Therefore, (A i ) R e contains e-dimensional ball B (y) (r) for a certain 0 < r 2 R (by the implicit function theorem and the transfer principle).

For any point x 2 A i there is a point x 0 2 e A i such that st(x 0 ) = x, hence st( ( e

A i )) B (y) (r).
By assumption that the lemma is valid for the case i = 0.

Then for any point z 2 R n applying this assumption to the set of 0-angle points of the intersection (z) \ W we conclude that the sub-Pfa an set st( (z) \ e A i ) has the dimension at most 0 (taking into account the de nition 3 of i-quasiangle points and that (z) is de ned over R ).

Let us show that ( e A i ) does not contain a ball B w (r 1 ) for any 0 < r 1 2 R and w 2 R e 3 . Assume the contrary, then there exists a point w 1 2 B w (r 1 ) \ R e . Let z 1 2 R n be a point such that (z 1 ) = w 1 . Denote 1 = ( ), then dim 1 = e i, = 1 ( 1 ). Then the following inequalities hold:

dimst( 1 (w 1 ) \ ( e A i )) dimst( 1 (w 1 ) \ B w (r 1 )) = e i 1:
On the other hand, 1 (w 1 ) \ ( e A i ) = ( e A i \ (z 1 )), and, therefore, dimst( 1 (w 1 ) \ ( e A i )) dimst( e A i \ (z 1 )) 0;

(the latter inequality was proved above). The obtained contradiction shows that ( e A i ) does not contain a ball B w (r 1 ) for any 0 < r 1 2 R .

We claim that for any ball B z 2 (r 2 ) B (y) (r) de ned over R 3 such that 0 < r 2 2 R , the intersection B z 2 (r 2 ) \ @ ( e A i ) 6 = ;. Assume the contrary. Then either B z 2 (r 2 ) ( e A i ) or B z 2 (r 2 ) \ ( e A i ) = ;. The inclusion B z 2 (r 2 ) ( e A i ) is impossible as was shown above. If B z 2 (r 2 ) \ ( e

A i ) = ;, then st(z 2 ) = 2 st( ( e A i )),
the latter contradicts to the inclusions st( ( e

A i )) B (y) (r) B st(z 2 ) (r 2 =2
) of the sets in the space R e . This proves the claim.

Because of lemma A3, dim(@( ( e A i ))) e 1. Applying lemma A8, we get dim(st(@( ( e

A i )))) e 1.
On the other hand we shall now prove that st(@( ( e A i ))) B (y) (r). This contradiction completes the proof of the reduction of the lemma to the case i = 0. Indeed, let z 3 2 B (y) (r). Observe that the set D = fkz z 3 k 2 : z 2 @( ( e A i ))g is sub-Pfa an. Due to Corollary A4, D is a nite union of points and intervals. Let ! be the minimal among these points and the endpoints of these intervals. Suppose that z 3 6 2 st(@( ( e A i ))), i.e. there does not exist z 2 @( ( e A i )) such that st(z) = z 3 . Thus, ! > r 2 3 for an element 0 < r 3 2 R . It follows that B z 3 (r 3 ) \ @( ( e A i )) = ;. This contradicts the claim just proved. Now let i = 0. Suppose the statement of the lemma is wrong and dim(A 0 ) = s 1. There is a linear projection : R n ! R s onto a certain coordinate s-subspace, such that (A 0 ) B z (r) for some z 2 R s , 0 < r 2 R . Choose an open interval L B z (r) of the length 2r passing through z.

Our nearest purpose is to prove the existence of a sub-Pfa an curve (i.e. onedimensional sub-Pfa an set) C 0 A 0 such that (C 0 ) = L and the mapping : C 0 ! L is bijective. This follows from the next, a more general construction. Let V F n , U F m be sub-Pfa an sets where F is one of the elds R j de ned in the section A2 and ' : V ! U be a sub-Pfa an mapping (i.e. a mapping with a sub-Pfa an graph). Let us describe one of the possible ways to construct a sub-Pfa an set V 0 V such that the restriction ' : V 0 ! '(V ) of ' is bijective.

For every point u 2 '(V ) take the (unique) point v u 2 V such that '(v u ) = u according to the following rule (actually, this rule is quite exible).

A projection 1 (' 1 (u)) of ' 1 (u) onto the axis X 1 is a union of a nite number of intervals (with or without endpoints) since 1 (' 1 (u)) is sub-Pfa an (see Corollary A4). Let a 1 ; a 2 be the endpoints of the leftmost among these intervals (note that a sub-Pfa an set is always bounded, see De nition A4). Then a 1 +a 2 2 2 1 (' 1 (u)). Consider the projection 2 (' 1 (u) \ fX 1 = a 1 +a 2 2 g) onto the axis X 2 . Continuing in the similar way, after n steps we obtain a point v u = ( a 1 +a 2 2 ; : : : ) 2 ' 1 (u). We de ne V 0 as a set of all the obtained points v u for all u 2 '(V ). One can easily prove that V 0 is sub-Pfa an and the mapping ' : V 0 ! '(V ) is bijective.

Applying this construction to the mapping 1 (L)\A 0 : 1 (L) \ A 0 ! L we get a required sub-Pfa an curve C 0 A 0 . Since there is only a nite number of connected components of C 0 (see Corollary A3), there exists a connected component

C such that (C) is an interval of a length r 0 > 0 for a certain r 0 2 R . Then the completion C ( 3 ) R n 3 is a connected component of the curve C ( 3 ) 0 R n 3 (see the section A3).
Fix a nonsingular point x 2 C (due to corollaries A1, A4 C has only a nite number of singular points). Denote by R n the tangent line to C at x, then its completion ( 3 ) R n

3 is tangent to C ( 3 ) . After a suitable linear coordinate transformation (de ned over R ) one can assume that x = 0 and coincides with the axis X n . Denote by the projection mapping on the axis X n .

There exists 0 < 2 R satisfying the following properties:

(i) the unique connected component c of the intersection C\f < X n < g R n , containing 0, is a nonsingular curve and the mapping 1 : ( ; ) ! c is de nable and doubly di erentiable;

(ii) there exists 0 < 2 R such that for any y 2 ( ; ) the inequality k 1 (0; : : : ; 0; y) (0; : : : ; 0; y)k jyj 2 holds.

One can prove the existence of for the curves in R n using Taylor formula, and then for C applying the transfer principle.

The transfer principle also implies that (i), (ii) hold for the completions c ( 3 ) C ( 3) and any y 2 ( ; ) ( 3 ) .

The angle between a line `and a hyperplane P in R n

3 is de ned as a di erence between =2 and the angle between `and the vector orthogonal to P. Observe that there exists 0 < 2 R 1 such that if n normalized vectors v 1 ; : : : v n 2 R n 3 satisfy the inequality jdet(v 1 ; : : : v n )j > 1 , then for any hyperplane P there is i, 1 i n for which the sine of the angle between v i and P is greater than (actually, one could take = 1 =2 but we will not use this particular value).

Introduce the sub-Pfa an set V R n

3 consisting of all the points z = (z 1 ; : : : ; z n ) 2

R n 3 such that (1) z 2 ff = 3 g, jz n j < ;

(2) sine of the angle between grad z (f 3 ) and the hyperplane fX n = 0g is greater than ; (3) for a given z n the minimum of the distance to the axis X n (i.e., of the function (X 2 1 + + X 2 n 1 ) 1=2 ) on the set of all the points satisfying 1), 2) is attained at z.

Let us apply the above construction to the projection : V ! ( ; ). The construction supplies us with a sub-Pfa an subset V 0 V such that each nonempty preimage 1 (y) contains exactly one point from V 0 . Therefore dim(V 0 ) 1.

We claim that, actually, dim(V 0 ) = 1. Suppose the contrary, then V 0 would consist of a nite number of points (see corollary A4). We show, however, that V 0 contains in nitely many points. Indeed, take an arbitrary point y 2 R \ ( ; ) and the (unique) point w 2 c such that (w) = (0; : : : ; 0; y). Since c A 0 there exists (see the de nition 4 of 0-angle points) a point w 1 2 e A 0 such that st(w 1 ) = w, therefore (see de nition 2 of 0-quasiangle points) there exists a point w 2 2 ff = 3 g for which kw 1 w 2 k 2 and the sine of the angle between the vector grad w 2 (f 3 ) and the hyperplane fX n = 0g is greater than (see (0)). Because stkw 2 wk = 0 and for the orthogonal projection k (w 2 ) (w)k kw 2 wk, we deduce that st( (w 2 )) = st( (w)) = (w). Since the point w 2 satis es the conditions 1), 2) in the de nition of V , there exists a point w 3 2 ff = 3 g such that (w 3 ) = (w 2 ), the sine of the angle between grad w 3 (f 3 ) and the hyperplane fX n = 0g is greater than , and w 3 has the minimal distance to the axis X n among the points with these properties. Then w 3 2 V .

Thus, we have shown that for each point y 2 R \ ( ; ) there exists a point w 3 2 V such that st( (w 3 )) = (0; : : : ; 0; y). Because of the above construction, there exists the unique point w 4 2 V 0 for which (w 4 ) = (w 3 ). Hence V 0 contains an in nite number of points, i.e. dim(V 0 ) = 1.

Let V 0 = i V i be the decomposition of V 0 into the connected components. Since V 0 is sub-Pfa an, it has only a nite number of singular points and a nite number of points at which the tangent to the curve V 0 is orthogonal to the axis X n (i.e. of the critical points of the mapping ), here we invoke corollaries A1, A4. It follows that each V i admits a nite partition V i = j V ij j 1 v ij 1 , where every V ij is a nonsingular connected sub-Pfa an curve (without the endpoints) not containing the critical points of , and every v ij 1 is a set consisting of a single point.

We have shown above that st( (V 0 )) = ; ]. Since (V ij ) ( ; ) ( 3 ) is connected (as an image of a connected curve), it is an interval, hence st( (V ij ))

; ] is a closed interval. Therefore, there are i 0 ; j 0 for which an interval I = st( (V i 0 j 0 )) has a positive length jIj 2 R , besides I contains 0 and does not lie entirely to the left of 0.

Due to the implicit function theorem, one may represent the curve V i 0 j 0 in a parametrical form: (X 1 (X n ); : : : ; X n 1 (X n ); X n ) where X 1 ; : : : ; X n 1 are smooth functions. Observe that for any point z = (X 1 (z n ); : : : ; X n 1 (z n ); z n ) 2 V i 0 j 0 the tangent vector ( _ X 1 (z n ); : : : ; _ X n 1 (z n ); 1) at this point to the curve V i 0 j 0 has a sine of the angle with the axis X n greater than , since this tangent vector is orthogonal to grad z (f 3 ), taking into account inclusions V 0 V ff = 3 g. In other words

P 1 i n 1 ( _ X i (z n )) 2 > 2 =(1 2 ).
For each pair of indices 1 i < j n 1 either there are at most a nite number of the tangent vectors ( _ X 1 (z n ); : : : ; _ X n 1 (z n );1) at the points of the curve V i 0 j 0 such that _ X i (z n ) = _ X j (z n ) or all these vectors satisfy one of the two conditions:

_ X i (z n ) = _ X j (z n ) or _ X i (z n ) = _
X j (z n ), because V i 0 j 0 is sub-Pfa an. Therefore, there exists a connected sub-Pfa an curve V V i 0 j 0 for which the length of the interval st( (V)) 2 R is positive, besides st( (V)) contains 0 and does not lie entirely to the left of 0. Apart from that, either j _ X i (z n )j 6 = j _ X j (z n )j, for any pair X s (z n ) < 0 can be considered in a similar manner). Then _ X s (z n ) > =((n 1)(12 )) 1=2 = 0 2 R 1 and 0 > 0.

Let an interval 0; 2 ] st( (V))

; ] where 0 < 2 2 R . Then for any 3 , 4 2 R , such that 0 < 3 < 4 < 2 , the completion of the interval 3 ; 4 ] ( 3 ) (V). Since _ X s (z n ) > 0 for any z n 2 3 ; 4 ] ( 3 ) , for any point

2 3 ; 4 ] ( 3 ) the inequality X s ( ) X s ( 3 ) 0 ( 3 )
holds. Indeed, the latter statement could be written as a formula of the rst-order theory of real closed elds, in the case of the eld R it is true because

X s ( ) X s ( 3 ) = Z 3 _ X s 0 ( 3 );
then use the transfer principle.

Let y 2 ( ; ) \ R . We have proved above that for the unique point w = 1 (0; : : : ; 0; y) 2 c A 0 there exists a point w 1 2 e A 0 such that st(w 1 ) = w, besides there exists a point w 2 2 ff = 3 g such that kw 1 w 2 k 2 and the sine of the angle between the vector grad w 2 (f 3 ) and the hyperplane fX n = 0g is greater than . Then the distance from w 2 to the axis X n does not exceed kw 2 w 1 k + kw 1 wk + kw (0; : : : ; 0; y)k 2 + kw 1 wk + y 2 0 y 2 for 2 R , introduced in (ii) above, and any < 0 2 R . So the distance to the axis X n from the unique point w 4 2 V 0 , for which (w 4 ) = (w 2 ), also does not exceed 0 y 2 . Note that st( (w 4 )) = (0; : : : ; 0; y).

On the other hand if y 2 3 ; 4 ] \ R , then applying the above arguing to the point (y + 3 )=2 instead of y we prove the existence of a point w 5 2 V 0 such that st( (w 5 )) = (0; : : : ; 0; (y + 3 )=2) and the distance to the axis X n from the point w 5 does not exceed 0 ((y + 3 )=2) 2 . Arguing as above, we get X s (w 4 ) X s (w 5 ) 0 k (w 4 ) (w 5 )k > 1 (y 3 )=2 for arbitrary 1 2 R 1 , 0 < 1 < 0 . Then either the distance from the point w 4 to the axis X n or the distance from the point w 5 to X n is greater than 1 (y 3 )=4, on the other hand both distances do not exceed 0 y 2 . Taking any y, 0 < y 2 R , such that y < 1 =( 1 + 4 0 ) and 3 = y 2 , we get a contradiction because 1 (y y 2 )=4 > 0 y 2 .

III. Flat Points.

De nition 4. Let 0 i n 1. A point x 2 A i is iat if there exists an i-plane , passing through x such that dim( \ A i ) = i.

Denote by i A i the set of iat points. Note that for i = 0 lemma 4 implies that dimA 0 0, i.e. A 0 consists of at most nite set of points (see corollary A4), therefore 0 = A 0 . Lemma 5. a) There is at most a nite number of i-planes such that dim( \ i ) = i; b) i is contained in the union of all i-planes described in a).

Proof. If i = ;, the lemma is trivial, so suppose that i 6 = ;. Since 0 = A 0 consists of a nite number of points, the lemma for the case i = 0 is obvious. So, in what follows we assume that i 1.

b) is evident. Note that if satis es a) then dim( \ A i ) = i since i A i .

Introduce a set b i i consisting of all the points y 2 i for which there exists an i-plane passing through y, such that for suitable 0 < r 2 R we have B y (r) \ i . The set b i is obviously sub-Pfa an. Besides, dim b i = i. Indeed, lemma 4 implies that dim b i i. On the other hand as i 6 = ;, there exists i-plane such that dim( \ A i ) = i, hence \ A i \ B y 1 (r 1 ) for some y 1 2 , 0 < r 1 2 R . Then \ B y 1 (r 1 ) b i , i.e. dim b i i.

If su ces to prove that there exists only a nite number of i-planes for which dim( \ b i ) = i. This would imply the item a) of the lemma since for any i-plane such that dim( \ i ) = i we have dim( \ b i ) = i. Denote by ^ i b i the set of all nonsingular points of b i . The set b i r ^ i of all singular points is sub-Pfa an and dim( b i r ^ i ) i 1 (see corollary A1 and lemma A2). For any point y 2 2 ^ i there is the unique i-plane 0 such that for an appropriate 0 < r 2 2 R we have B y 2 (r 2 ) \ 0 b i . Then for a suitable 0 < r 3 2 R , a certain neighbourhood of y 2 in b i coincides with B y 2 (r 3 ) \ 0 , moreover B y 2 (r 3 ) \ 0 is a neighbourhood of y 2 in ^ i .

If dim( \ b i ) = i for i-plane then \ b i contains a nonsingular point y 3 2 ^ i (since dim( b i r ^ i ) i 1); moreover a neighbourhood of y 3 in ^ coincides with B y 3 (r 4 ) \ for a suitable 0 < r 4 2 R . Thus, it is su cient to show that there is only a nite number of i-planes such that dim( \ ^ i ) = i. Each connected component of ^ i is contained in an i-plane , since for any point y 4 2 ^ i its certain neighbourhood in ^ i coincides with B y 4 (r 5 ) \ 00 for some 0 < r 5 2 R and i-plane 00 . Because the number of connected components of ^ i is nite (see corollary A3), the number of i-planes such that dim( \ ^ i ) = i is also nite. Lemma 6. If a connected component ' of i has a nonempty intersection '\P i 6 = ; with a i-facet P i of P, then ' P i .

Proof. First we prove for a connected component ' 0 of i the following statement: if ' 0 \cl(P i ) 6 = ; then ' 0 cl(P i ). Assume the contrary. Then there exists a point y 2 ' 0 \ P i such that y 2 cl(' 0 r P i ) cl( i r P i ). Due to lemma 5, there is a nite family P of i-planes such that dim( \ i ) = i and i lies in the union of all these i-planes. Let us show that there exists 0 2 P, 0 6 = P i such that y 2 0 . Indeed, let y j ! j!1 y, where y j 2 ' 0 r P i . For each j there is 00 2 P such that y j 2 00 (obviously 00 6 = P i ). Since P is nite there exists an in nite subsequence y j `, 1 `< 1 and 000 2 P for which y j `2 000 , 1 `< 1. Thus y 2 000 6 = P i .

Since i A i W \ R n (see the remark following the de nition 4) the function f vanishes on the intersection of 000 with the domain of f (see the lemma A1), taking into account that dim( 000 \ i ) = i. Besides u K 1 +1 (y) > 0; : : : ; u K (y) > 0, therefore u K 1 +1 ; : : : ; u K are positive also in B y ( ) for an appropriate 0 < 2 R . Hence 000 \ B y ( ) W \ R n . This contradicts to the inclusion W \ R n P ( ) because y belongs to the closure cl(P i ) of i-facet of the convex polyhedron P ( ) . Thus ' 0 cl(P i ), and the statement is proved.

To complete the proof of the lemma it su ces to show that '\(cl(P i )rP i ) = ;. If z 2 ' \ (cl(P i ) r P i ) then there is another i-facet P 0 i of P such that z 2 cl(P 0 i ). Then, by the proved above, ' cl(P 0 i ), this contradicts to ' \ P i 6 = ;.

Our next purpose is to explicitly describe (see lemma 7 below) the su cient condition for iatness of a point x 2 A i by means of Pfa an formula with purely existential quanti er pre x.

Let be an i-plane containing x and for some points v 1 ; : : : ; v i 2 \ A i , the vectors v 1 x; : : : ; v i x be linearly independent. Denote by 1 ; : : : ; (i+1)n the coordinates of the vectors x; v 1 ; : : : ; v i . Due to lemma A9, 1) the degree of sub-Pfa an transcendency 1 ; : : : ; (i+1)n ] R 1 (i + 1)n n 2 . Introduce the points w (j) = x + P 1 ` i (j) `(v ` x) 2 , 1 j n 2 + 1.

Lemma 7. Let the points x; v 1 ; : : : ; v i 2 A i \ . If w (1) ; : : : ; w (n 2 +1) 2 A i \ , then x is iat and moreover dim(A i \ ) = i.

Proof. Suppose that on the contrary, dim(A i \ ) i 1. Consider the sub-Pfa an set A R (i+1)n+i consisting of all the points (y 1 ; : : : ; y n ; y 1;1 ; : : : ; y 1;n ; y 2;1 ; : : : ; y 2;n ; : : : ; y i;1 ; : : : ; y i;n ; z 1 ; : : : ; z i ) for which (y 1 ; : : : ; y n ) + P 1 ` i z `((y `;1 ; : : : ; y `;n ) (y 1 ; : : : ; y n )) 2 A i (cf. expressions for w (j) ). Then A is de nable over R 1 since A i is de nable over R 1 (see the remark following the de nition 4). Besides dim(A\f(y 1 ; : : : ; y n ; y 1;1 ; : : : ; y 1;n ; : : : ; y i;1 ; : : : ; y i;n ) = ( 1 ; : : : ; (i+1)n )g) = dim(A i \ ) i 1 by the supposition. According to the de nition A10, this means that ( (j) 1 ; : : : ; (j) i ) : ( 1 ; : : :

; (i+1)n )] R 1 i 1,
for each 1 j n 2 + 1 since w (j) 2 A i \ . Applying several times lemma A10 proceeding by induction on j, and taking into account that ( (j) 1 ; : : : ; (j) i ) : ( 1 ; : : : ; (i+1)n ; (1) 1 ; : : : ; (1) i ; : : : ; (j 1) 1 ; : : : ; (j 1)

i )] R 1 ( (j) 1 ; : : : ; (j) i ) : ( 1 ; : : : ; (i+1)n )] R 1 we obtain the inequality 1 ; : : : ; (i+1)n ; (1) 1 ; : : : ; (1) i ; : : : ; (j) 1 ; : : : ; (j) i ] R 1 n 2 + j(i 1) for each 0 j n 2 + 1. Putting j = n 2 +1 leads to a contradiction since 1 ; : : : ; (i+1)n ; (1) 1 ; : : : ; (1) i ; : : : ;

(n 2 +1) 1

; : : :

; (n 2 +1) i ] R 1 (1) 
1 ; : : : ; (1) i ; : : : ; (n 2 +1) 1 ; : : : ; (n 2 +1) i ] R 1 = i(n 2 + 1) because of lemma A9, 2).

De nition 6. A point y 2 e

A i is called i-pseudo at if there exist the points v 1 ; : : : ; v i 2 e A i such that j det(v 1 y; : : : ; v i y) T (v 1 y; : : : ; v i y)j > 1 (where (v 1 y 1 ; : : : ; v i y) T denotes the transposition of n i matrix with the columns v 1 y; : : : ; v i y) and the points y + P 1 ` i (j) `(v ` y) 2 e A i , 1 j n 2 + 1.

The sub-Pfa an set of all i-pseudo at points denote by e i . Lemma 8. If dim(W \ P i ) = i then W \ P i \ R n e i .

Proof. Let e x 2 W \ P i \ R n . Take arbitrary points v 1 ; : : : ; v i 2 W \ P i \ R n such that the vectors v 1 e

x; : : : ; v i e

x are linearly independent, then R 3 j det(v 1 e x; : : : ; v i e x) T (v 1 e x; : : : ; v i e

x)j > 0; obviously j det(v 1 e x; : : : ; v i e x) T (v 1 e x; : : : ; v i e x)j > 1 :

The distance from a point e w (j) = e x + P 1 ` i (j)

`(v ` e x) 2 R n to e

x is in nitesimal relative to R 1 for each 1 j n 2 + 1. Lemma 3 implies that e w (j) 2 e

A i , 1 j n 2 + 1, hence e

x 2 e i by de nition 6. Lemma 9. st( e i ) i Proof. Let e y 2 e i and v 1 ; : : : ; v i 2 e

A i satisfy de nition 6. Observe that j det(st(v 1 )

st(e y); : : : ; st(v i ) st(e y)) T (st(v 1 ) st(e y); : : : ; st(v i ) st(e y))j > 1 =2, taking into account lemma A4 and that the points e y; v 1 ; : : : ; v i 2 e

A i W P are R-nite (see section A2). Furthermore, st(e y) + P

`(st(v `) st(e y)) 2 st( e A i ) = A i , 1 j n 2 + 1. Denote by the unique i-plane passing through the points st(e y); st(v 1 ); : : : ; st(v i ). Lemma 7 entails that st(e y) 2 i and dim( \A i ) = i.

Let e i = j e ' j , i = j ' `be the representations of e i and i , respectively, as the unions of (necessarily sub-Pfa an, see the section A3) connected components. Lemmas A6, A7 imply that st(e ' j ) is a sub-Pfa an connected set. Hence due to lemma 9, for each j there is `such that st(e ' j ) ' `. For any i-facet P i of P such that dim(W \ P i \ R n ) = i, lemma 8 entails that W \ P i \ R n e i . Take a point x 2 W \ P i \ R n , then x 2 e ' j for a certain j. It follows that st(e ' j ) ' `for a suitable `, thus x = st(x) 2 st(e ' j ) ' `. Due to lemma 6, ' ` P i . So, to any facet P i such that dim(W \ P i \ R n ) = i, corresponds (not necessary unique) connected component e ' j , and to di erent such i-facets P i , P 0 i correspond di erent connected components, respectively. Thus, we obtain the following lemma.

Lemma 10. The number of i-facets P i such that dim(W \ P i \ R n ) = i, does not exceed the number of connected components of e i .

Observe that e i can be de ned by a Pfa an formula having a pre x with only existential quanti ers. Moreover, the pre x contains O(n 4 ) quanti ers, since for each of O(n 2 ) points v 1 ; : : : ; v i , y + P 1 ` i (j) `(v ` y), 1 j n 2 + 1, the formula expresses the condition of membership to the set e A i (see de nition 6), which, in its turn, requires O(n 2 ) existential quanti ers (see de nitions 2, 3), namely for the coordinates of the points y 1 ; : : : ; y n . The polynomials, occurring in , and the polynomials of the type g v;j , occurring in the de nition of Pfa an functions u 0 ; : : : ; u K (see the beginning of the section 1), have the degrees less than O(dn) (cf. (0)). The number of all these polynomials (i.e., the number of atomic subformulas of ) can be bounded by n O(1) K (see lemma 1 and de nitions 2, 3). Therefore, the number of all connected components of the sub-Pfa an set e i does not exceed 2 K 2 (dn K) O(K+n 4 ) , due to corollary A2. Together with lemma 10 this implies the following lemma. Lemma 11. The number of i-facets P i such that dim(W \ P i \ R n ) = i, does not exceed 2 K 2 (dn K) O(K+n 4 ) .

In order to complete the proof of the theorem one observes that the Pfa an computation tree T contains at most 3 K branches and for each 0 i n 1 for each i-facet P i there is a branch of T such that dim(W 0 \P i \ R n ) = i where W 0 is the accepting set corresponding to this branch. Hence N 3 K 2 K 2 (dn K) O(K+n 4 ) . Together with the assumption N (dn) (n 4 log d) , this entails the inequality K ( p log N).

APPENDIX. Sub-Pfaffian sets A1. Gabrielov's theorem and Khovanskii's bound.

In this section we give de nitions and describe some properties of concepts related to Pfa an functions and to the subsets of R n de ned by these functions. We skip all the proofs which could be found elsewhere.

The concept of Pfa an function was introduced by Khovanskii 19, 20], who had established their fundamental properties.

De nition A1. A subset A C n is called complex analytic variety if any point of C n has a neighbourhood U such that the intersection A \ U coincides with the set fg i = = g k = 0g \ U where g i ; : : : ; g k are complex analytic (holomorphic) functions on U (see e.g. 21]).

We say that a real analytic function f has a domain G R n , if there is an open subset G R n such that f is de ned on G and G G.

De nition A2. (a)

A Pfa an chain of the length r and degree d 1 = 1 is a sequence of real analytic functions f 1 ; : : : ; f r with the following properties.

1. For each 1 5 j 5 r there exists a complex analytic function fj de ned in a subset e G j C n , such that C n r e G j is a complex analytic variety , and f j is the restriction of fj on R n .

Observe that as real analytic function f j has a domain G j e

G j \ R n . Let e G = \ 15j5r e G j and G = \ 15j5r G j .
2. Every f j , 1 5 j 5 r satis es a Pfa an equation df j (X) = X 15i5n g ij (X; f 1 (X); : : : ; f j (X))dX i for 1 5 j 5 r. Here X = (X 1 ; : : : ; X n ), g ij 2 R X; Y 1 ; : : : ; Y j ], deg X;Y 1 ;:::;Y j (g ij ) 5 d 1 .

(b) A function f(X) = P(X; f 1 (X); : : : ; f r (X)), where P 2 R X; Y 1 ; : : : ; Y r ], deg X;Y 1 ;:::;Y r (P ) 5 d 2 is called a Pfa an function (with a Pfa an chain f 1 ; : : : ; f r ) of length r and degree d = d 1 + d 2 .

Note that our de nition of a Pfa an function is more restrictive than a usual one (see [START_REF] Khovanskii | Fewnomials and Pfa manifolds[END_REF][START_REF] Khovanskii | Translations of Mathematical Monographs[END_REF]) due to the requirement of existence of fj .

Examples. (the exposition follows 8])

(1) Pfa an function of the length 0 and degree d + 1 are polynomials of degree not exceeding d.

( due to the equations cos(X) = 2f(X) 1; df(X) = f(X)g(X)dX; dg(X) = 1=2(1 + g 2 (X))dX;

where f(X) = cos 2 (X=2) and g(X) = tan (X=2). due to the equations df = g(X)dx where g(X) = cos(X).

Let us now list some elementary properties of Pfa an functions, describing the behaviour of their parameters under the basic operations (proofs are simple, see e.g. 8]).

(1) The sum and the product of two Pfa an functions f 1 and f 2 of length r 1 and r G = H 1 \ H 2 for both the sum and the product. If two Pfa an functions are de ned by the same Pfa an chain of the length r, the length of the sum and the product is also r.

(2) A partial derivative of a Pfa an function of the length r and the degree d is a Pfa an function of the length r and degree 2d.

(3) Let X = (X 1 ; : : : ; X n ), Z = (Z 1 ; : : : ; Z `) be tuples of variables and f be a Pfa an function in X; Z of the length r 1 , degree d 1 and with e G = e

H 1 C n+`, G = H 1 R n+`.
Let h = (h 1 ; : : : ; h `) be an `-tuple of Pfa an functions in X of length r 2 , degree d 2 , with a common Pfa an chain, with e G = e H 2 C n , G = H 2 R n , such that (x; h(x)) 2 H 1 for all x 2 H 2 . Then the complex analytic function g f(X; h(X))

(see (a), 1 of the De nition A2) is de ned in a subset e H 3 C n such that C n r e H 3 is a complex analytic variety of a dimension smaller than n. Indeed, the preimage of the complex analytic variety C n+`r e H 1 in C n r e H 2 , under the map h, is also a complex analytic variety di erent from C n since g is a composition of analytic functions. Therefore, the dimension of this preimage is less than n (see [START_REF] Lojasiewicz | Introduction to complex analytic geometry[END_REF]). An easy computation (see 8]) shows that g f(X; h(X)) is a Pfa an function in G 2 of the length r 1 + r 2 and degree d 1 d 2 .

Lemma A1. Let f be a Pfa an function with G R n and L R n be a p-plane.

If there exist x 2 G \ L and r, 0 < r 2 R such that f vanishes in the intersection L\B x (r) then f vanishes in G\L (here B x (r) denotes an open n-dimensional ball centered at x with radius r).

Proof. Consider complex analytic function f corresponding to f as in the De nition A2, and the complex p-plane L, de ned in C n by the same system of linear equations as L. Since L is an irreducible complex analytic variety, either it is contained in the variety C n r e G or the complex dimension dim C ( L \ (C n r e G)) < dim C ( L) (by the dimension of intersection theorem, see 21]). The rst alternative is impossible because x 2 L L. Since dim(L \ B x (r)) = p, the second alternative implies that the complex analytic function f is de ned on p-plane L everywhere except a subset L r e G of a dimension less than p, and vanishes on a subset of complex dimension p. Since e G \ L is connected in the topology with the base of all open balls of L, treated as 2p-dimensional real space, we conclude that f vanishes on L \ e G. Hence f is identically zero on L. It follows that the restriction f of f vanishes on G \ L R n .

Next we de ne by induction two closely linked notions: quanti er-free Pfa an formula, semi-Pfa an set. Again our de nitions will be more restrictive than the original ones (see [START_REF] Khovanskii | Fewnomials and Pfa manifolds[END_REF][START_REF] Khovanskii | Translations of Mathematical Monographs[END_REF][START_REF] Gabrielov | Existential formulas for analytic functions[END_REF]).

De nition A3. Let h 0 be a Pfa an chain of length 1, with h 0 de ned in R n . A quanti er-free formula of rank 0 is an expression of the form

(0) = _ 15i5s 0 (f (0) i1 = = f (0) ik (0) i = 0 & g (0) i1 > 0 & & g (0) i`( 0) i > 0); (1)
where f (0) ij ; g (0) ij are Pfa an functions (called atomic functions), with h 0 as a common Pfa an chain (see De nition A2(b)), thus, in particular, f (0) ij ; g (0) ij are de ned in R n . Suppose that we had already de ned a concept of a quanti er-free Pfa an formula (`) of rank `, 0 5 `2 Z. A semi-Pfa an set W R n , determined by (`) is the set of all points x 2 R n , satisfying (`) . We write W = f (`) g. A quanti er-free Pfa an formula of the rank `+ 1 is of the form

(`+1) = _ 15i5s `+1 (f (`+1) i1 = = f (`+1) ik (`+1) i = 0 & g (`+1) i1 > 0 & & g (`+1) i`( `+1) i > 0);
where f (`+1) ij ; g (`+1) ij are Pfa an functions with the common Pfa an chain h 0 ; : : : ; h `+1 . Here the function h `+1 is de ned in a domain G which is a closure of a semi-Pfa an set of the kind f (`) g, where (`) is a quanti er-free Pfa an formula of the rank `. Functions f (`+1) ij ; g (`+1) ij , together with all atomic functions occuring in the description of (`) are called atomic functions of (`+1) .

Example.

The set ftan(X) = 0 & a < X < bg R, where =2 < a < b < =2, is semi-Pfa an, de ned by a quanti er-free Pfa an formula. On the other hand, the set ftan(X) = 0g \ S k2Z fa + k < X < b + k g R for =2 < a < b < =2 (cf.

Example (5) above) is not semi-Pfa an.

De nition A4. Fix a certain R, 0 < R 2 R and let K n R n be the n-dimensional cube centered at the origin and having an edge with length 2R. A Pfa an formula is an expression of the form = Q 1 Y 1 Q 2 Y 2 : : : Q t Y t ( ) where is a quanti er-free Pfa an formula of arbitrary rank (called quanti er-free part of ) with atomic functions in n + t variables Y 1 ; : : : ; Y t ; X 1 ; : : : ; X n and Q j , 1 5 j 5 t are quanti ers 9 or 8, each restricted on the interval ( R; R) R. A sub-Pfa an set V R n , determined by , is the set of all points x 2 K n , satisfying . We write V = f g.

We say that two Pfa an formulas , 0 are equivalent if f g = f 0 g. De nition A5. The local dimension dim x (V ) of a set V at a point x 2 V is the maximal p, 0 5 p 2 Z such that the linear projection of a neighbourhood of x in V onto a coordinate p-subspace (along all the rest of coordinates) contains a p-dimensional ball. The dimension dim(V ) of V is the maximal value dim x (V ) for all x 2 V . De nition A6. A point x of a set V R n , with dim(V ) = p, is called analytically nonsingular (or nonsingular) if a neighbourhood of x in V is analytically di eomorphic (respectively, C 1 -di eomorphic) to an open p-dimensional ball. Denote by V 0 a (or, by V 0 ) the set of all analytically nonsingular (respectively, nonsingular) points of V . The points of the set V a = V r V 0 a (respectively V = V r V 0 ) are called analytically singular (respectively, singular).

For a set V R n denote by cl(V ) its closure in the topology with a base of all open balls in R n .

De nition A7. For a set V R n the disjoint family fV i g of subsets

V i V is called a smooth strati cation of V if 1. V = i V i 2. each V i , called a stratum, is an analytic manifold in R n 3. if V i \ cl(V j ) 6 = ;, then V i cl(V j ) and dim(V i ) < dimV j .
Proposition A1. [START_REF] Hardt | Topological properties of sub-analytic sets[END_REF][START_REF] Sussmann | Real-analytic desingularization and sub-analytic sets: an elementary approach[END_REF]) For any sub-Pfa an set V R n there exists a nite smooth strati cation.

Corollary A1. dim(V ) < dim(V ).

Proof. The inequality dim(V a ) < dim(V ) directly follows from Proposition A1, the inequality dim(V ) 5 dim(V a ) follows from the obvious inclusion V V a .

Lemma A2. For a sub-Pfa an set V R n the subsets V 0 and V are sub-Pfa an.

Proof. The sets V 0 and V can be described by appropriate Pfa an formulas involving a Pfa an formula de ning V .

De nition A8. For a set V R n the boundary @V is a subset of all points x 2 R n such that for every r, 0 < r 2 R, the intersections B x (r) \ V 6 = ;, B x (r) \ (R n r V ) 6 = ;. Lemma A3. For a sub-Pfa an set V R n the dimension dim(@V ) 5 n 1.

Proof. Let fV i g be a nite smooth strati cation of V , see Proposition A1. Suppose rst that dim(V ) < n. Then, the closure cl(V ) = i cl(V i ) = i @V i = @V . On the other hand, dim(cl(V )) = dim(V ) 7], hence the lemma is valid in this case. Now let dim(V ) = n. The set V is representable as V = V max V min , where V max is the union of all n-dimensional strata of V , and V min is the union the remaining strata (of smaller dimensions). Then dim(@V ) 5 dim(@V max @V min ) = dim((cl(V max ) r V max ) @V min ) = maxfdim(cl(V max ) r V max ); dim(@V min )g: According to 7], dim(cl(V max )rV max ) < dim(V max ). The inequality dim(@V min ) 5 n 1 was proved before.

De nition A9. Let be a Pfa an formula having N atomic Pfa an functions in n variables with the same Pfa an chain of length r and degrees less than d. The 4-tuple (N; n; r; d) is called the format of . Proposition A2. [START_REF] Gabrielov | Existential formulas for analytic functions[END_REF], theorem 2) For a Pfa an formula of a format (N; n; r; d) there exists an equivalent formula 0 having only existential quanti ers, and of the format (N 0 ; n 0 ; r 0 ; d 0 ), where the values N 0 ; n 0 ; r 0 ; d 0 are bounded from above by the value of a suitable function in N; n; r; d. Proposition A3. [START_REF] Gabrielov | Existential formulas for analytic functions[END_REF], theorem 1) For a sub-Pfa an set f g R n with a Pfa an formula of a format (N; n; r; d), any of its connected components can be de ned by a Pfa an formula of a format (N 0 ; n 0 ; r 0 ; d 0 ), where the values N 0 ; n 0 ; r 0 ; d 0 are bounded from above by the value of an appropriate function in N; n; r; d. Proposition A4. [START_REF] Khovanskii | Fewnomials and Pfa manifolds[END_REF][START_REF] Khovanskii | Translations of Mathematical Monographs[END_REF]) The number of the connected components of a semi-Pfa an set f g de ned by a quanti er-free formula of the format (N; n; r; d)

does not exceed 2 r 2 n O(r) (Nd) O(r+n) .
There is a generally adopted conjecture that under the hypothesis of the Proposition A4 the bound n O(r) (Nd) O(r+n) is actually true.

Corollary A2. The number of the connected components of a sub-Pfa an set f g, de ned by a formula of the format (N; n; r; d) in which only existential quanti ers can occur, does not exceed 2 r 2 n O(r) (Nd) O(r+n) .

Proof. It is su cient to note that the number of the connected components of a projection of a set does not exceed the number of the connected components of the set itself.

Corollary The number of the connected components of an arbitrary sub-Pfa an set f g, de ned by a formula of a format (N; n; r; d) is nite, moreover, is bounded from above by the value of a certain function in N; n; r; d.

Proof. Apply to successively the Proposition A3 and the Corollary A2.

Corollary A4. Zero-dimensional sub-Pfa an set in R n is nite. A sub-Pfa an set in R 1 is a nite union of points and (open, closed or semi-closed) intervals. In each case the number of the points or the intervals is bounded from above by the value of a certain function in the format of a formula representing the sub-Pfa an set.

Proof. Directly follows from Lemma A2 and Corollary A3. A2. Sub-Pfa an sets over nonstandard extensions of reals.

In the main text of the paper we consider the extensions of the eld R with \nonstandard" (in particular in nitesimal) elements. The following digest from nonstandard analysis is taken from 27] , for a detailed exposition see 6].

There exists a sequence of ordered elds R 0 = R R 1 R 2 R k : : : in which the eld R k , k = 1 contains an element " k > 0 in nitesimal relative to the elements of R k 1 (i.e., for every positive element a 2 R k 1 the inequaltiy " k < a is true). In addition, for every function ' : R n k 1 ! R k 1 there exists a natural extension, being a function ' from R n k to R k . It follows, invoking characteristic functions, that each subset S R n k 1 has a natural extension to R n k . We say that R j is a nonstandard extension of R i for 0 5 i < j.

Consider the language L k , k = 0 of the rst order predicate calculus, in which the set of all function symbols is in a bijective correspondence with the set of all functions of several arguments from R k taking values in R k and the only predicate is the equality relation. We shall say that the closed (i.e., containing no free variables) formula of the language L k is true in R k , k = 0, if and only if the statement expressed by this formula with respect to R k is true. The following \transfer principle" is valid: for all integers 0 5 i < j the closed formula of L i is true in R i if and only if it is true in R j .

An element z 2 R k , k = 1 is called in nitesimal relative to R j , j < k, if for every 0 < w 2 R j the inequality jzj < w is valid. An element z 2 R k is called in nitely large, if z = 1=z 0 , where z 0 is in nitesimal. If z 2 R k is not in nitely large relative to R j , z is called R j -nite.

One can prove 6] that if an element z 2 R k is R j -nite then there exist unique elements z 1 2 R j and z 2 2 R k , where z 2 is in nitesimal relative to R j , such that z = z 1 + z 2 . In this case z 1 is called the standard part of z (relative to R j ) and is denoted by z 1 = st j (z). One can extend the operation st j (componentwise) to vectors from R n k and (elementwise) to subsets of R n k .

In what follows, all the functions ' we shall consider in R n k , k = 0, will be Pfa an.

By this we mean that for each ' there exists a Pfa an function ' 0 de nable over R (i.e., in the sense of the De nition A2) such that ' is the result of a replacement of some variables in ' 0 by some elements of R k .

Moreover, we assume that the domain G R n k of ' is a sub-Pfa an set, de ned by a Pfa an formula with atomic functions de nable over R and some variables replaced by elements from R k . We say that ' is de nable over R k .

For any `> k, the same function ' 0 , formula and the replacements determine the function ' (`) : G (`) ! R `which coincides with ' in R n k and is called the completion of ' over R `, similarly G (`) R n `(determined by ) is called the completion of G over R `.

Basic notions, introduced in section A1 can be naturally extended to a nonstandard eld R k for k > 0. Thus, we shall consider semi-Pfa an sets, sub-Pfa an sets, Pfa an formulas, determined in R n k by Pfa an functions de nable over R k . In this case we say that the sets and formulas are de nable over R k .

If a sub-Pfa an set W R n k is determined in R n k by a Pfa an formula with atomic subformulas de nable over R k then the sub-Pfa an set in R n `, `> k determined by the same formula in which the atomic functions are replaced by their completions is called the completion of W and is denoted by W (`) . Some of the basic statements proved earlier in this Appendix can be extended (using the transfer principle) to the elds R k for k > 0. This obviously concerns the statements: lemma A1, corollary A1, lemma A2, lemma A3, proposition A2, corollary A4. Propositions A3, A4, Corollaries A2, A3, about the estimates of the connected components are also extendable (see below).

The following lemma illustrates a use of the transfer principle and the notion of the standard part. Lemma A4. Let f : S ! R k be a Pfa an function de ned in a sub-Pfa an bounded set S R n k . Denote by S (k+1) the completion of S over R k+1 and by f (k+1) the completion of f. Then for any point x 2 S (k+1) such that B x (r) S (k+1) for some r; 0 < r 2 R k , the standard part st k (f (k+1) (x)) = f(st k (x)). If in addition, there do not exist y 2 S and R; 0 < R 2 R k such that f(z) = 0 for all z 2 B y (R), and besides f(w) 0 for all w 2 S, then st k (ff (k+1) = " k+1 g) = ff = 0g:

Proof. First, observe that any Pfa an function is continuous. This is true for a Pfa an function ' de nable over R (since ' is analytic, see de nition A2), then the Pfa an formula of the language L 0 expressing continuity, is valid for the completion ' (`) ; ` 0, due to the transfer principle, and hence, it is valid as well for Pfa an functions de nable over arbitrary R `. The equality st k (f (k+1) (x) = f(st k (x)) and thereby the inclusion st k (ff (k+1) = " k+1 g) ff = 0g follows from continuity of f and f (k+1) . Now let x 2 ff = 0g. Take r; 0 < r 2 R k such that B x (r) S (cf. de nition A2). Consider a sub-Pfa an set D = fkx zk 2 : z 2 S (k+1) ; f (k+1) (z) = " k+1 g R k+1 . If it is empty, then f (k+1) is less than " k+1 everywhere on the ball B x (r), by virtue of the theorem on intermediate values of continuous functions which holds for Pfa an functions by the transfer principle, hence f vanishes everywhere on the ball B x (r) \ R n k and we get a contradiction. Due to the Corollary A4 the set D consists of a nite union of points and intervals. Denote by u the minimum of these points and endpoints of these intervals. If st k (u) > 0 then the function f (k+1) on the ball B x ( p u) \ B x (r) takes the values less than " k+1 because of continuity of f (k+1) . Therefore, f vanishes everywhere on the ball B x ( p u) \ B x (r) \ R n k B x (st k ( p u)=2) \ B x (r) \ R n k with a positive radius from R k (sf. above). The obtained contradiction shows that st k (u) = 0. Take any point w such that f (k+1) (w) = " k+1 and kw xk 2 u+" k+1 , then st k (w) = x. Lemma A5. Let a sub-Pfa an set W R n k , de ned by a Pfa an formula , be nite. Then the completion W (`) R n `, `> k of W coincides with W.

Proof. Let W = fx (1) ; : : : ; x (t) g. Then the following formula of the language L k is true over R k :

& 15i5t (x (i) ) & 8X 1 8X n &
15i5t ((X 1 ; : : : ; X n ) 6 = x (i) ) ) k (X 1 ; : : : ; X n ) :

By the transfer principle, this formula is also true over R `.

For a Pfa an function f : G ! R k , G R n k a point x 2 G is called the critical point of f if the gradient vector @f @X 1 ; : : : ; @f @X n (x) = 0. The value f(x) is called, in this case, the critical value of f. The value which is not critical is called regular.

Corollary A5. For a Pfa an function f de nable over R k , any element 2 R `r R k for `> k cannot be a critical value of f. Proof. Observe that the set k R k of all critical values of f is sub-Pfa an and de nable over R k .

Suppose rst that k = 0. Then Corollary A4 implies that 0 consists of a nite number of points and segments. Moreover, by Sard's theorem, 0 actually consists of a nite number of points. For all sub-Pfa an sets of the form 0 and having a xed format the latter statement can be expressed by a formula of the language L 0 (taking into the account that the number of points is bounded via the format). Hence, by the transfer principle the statement is true for any k = 0, i.e., k is nite.

According to lemma A5, the completion (`) k = k R k , and, therefore 6 2 (`) k .

Corollary A6. Let a Pfa an function f : G ! R k ; G R k be de nable over R k and f 6 0 on G. If 2 R `r R k for `> k then f( ) 6 = 0.

Proof. According to lemma A1 and corollary A4, the set W of roots of f is nite. Apply lemma A5 to W.

A3. Connected components of sub-Pfa an sets over non-standard elds. Now we are going to extend the notion of the connected component to the sub-Pfa an sets de nable over R n k , k = 1. Observe that a direct way to do this, starting with the topology on R n k with the base of all open balls, would lead to unnatural objects, e.g., the segment 0; 1] R k is not connected in this topology. The analogous construction of connected components for semialgebraic sets over non-standard elds was described in 14].

Let V = f g be a sub-Pfa an set in R n determined by a Pfa an formula . The Proposition A3 and the Corollary A3 imply the existence of a function ! : N ! N such that if the elements of the 4-tuple format of are bounded from above by some N 2 N, then:

1. The number of the connected components does not exceed !(N); 2. For each connected component V i of V there exists a Pfa an formula i of a format with components not exceeding !(N), such that V i = f i g. It follows that for a given positive integer N, there exists a Pfa an formula N of the language L 0 , expressing the existence of a decomposition of any sub-Pfa an set V = f g of the format of less than N into its connected components V = i f i g such that the format of every i , and the number of i , are less than !(N).

Moreover, the formula N states that for each pair of indices i 1 6 = i 2 the components f i 1 g and f i 2 g are \separated", i.e. the following Pfa an formula of the language L 0 is valid: 8 (x 2 f i 1 g)9z > 08 (y 2 f i 2 g)(kx yk = z):

Besides, the formula N claims the connectedness of every component f i g, this means that there do not exist two \separated" sub-Pfa an subsets of f i g, each determined by a Pfa an formula with format less than !(!(N)).

Apart from that, for given positive integers N, M one can verify a formula N;M of language L 0 expressing the following statement. If a sub-Pfa an set f g (where the format of is less than N) can be represented as a union of more than one and less than M pairwise \separated" sub-Pfa an sets, each being determined by a Pfa an formula of L 0 of a format less than M, then f g can be represented as a union of more than one and less than !(N) pairwise \separated" connected sub-Pfa an sets, each being determined by a Pfa an formula of L 0 of a format less than !(N).

Applying the transfer principle to the formulas N , N;M for all positive integers N; M, we conclude that any sub-Pfa an set, de ned over R k , k = 0, can be uniquely represented as a union of its pairwise \separated" connected components, moreover, each component is sub-Pfa an and is connected, i.e. cannot be represented as a union of more than one pairwise \separated" sub-Pfa an sets.

Having de ned the connected components of a sub-Pfa an set de nable over R k , k = 0, one can use the transfer principle to extend to this set Propositions A3, A4 and Corollaries A2 and A3.

Lemma A6. Let V R n k , W R n k+t be two sub-Pfa an sets and V = st k (W ).

Let V = m V m ; W = `Wb
e the decompositions of the sets V; W into their connected components. Then, for every index m there exist such indices `1; : : : ; `s that st(W `1 W `s) = V m : Moreover, for each `there exists the unique index m such that st(W `) V m .

Proof. Is almost verbatim repetition of the proof of the lemma 1 in 14].

For a sub-Pfa an set W R n k , k = 0, we denote by cl(W) its closure in the topology in R n k with the base of all open balls. Lemma A7. (cf. 25]) Let W Y = f Y g R n+t k be a sub-Pfa an set determined by a Pfa an formula Y in which the atomic Pfa an functions are in variables X 1 ; : : : ; X n , Y 1 ; : : : ; Y t , Z 1 ; : : : ; Z s , where rst n + t variables occur free. Let, for the sequence of elds R k R k+1 R t , the element " k+i+1 be in nitesimal relative to R k+i for 0 5 i 5 t 1. Denote by " the Pfa an formula which is the result of the replacement of Y `by " k+`f or every 1 5 `5 t; let W " = f " g R n k+t .

Then the set V = st k (W " ) R n k is sub-Pfa an.

Proof. It is su cient, due to Proposition A2, to prove the lemma for the case Y = 9Z 1 ; : : : 9Z s ( Y ) with quanti er-free Y . Observe that W " = f " g where " is quanti er-free formula, being the result of the replacement of Y `by " k+`, 1 5 `5 t in Y , and is the linear projection map on the subspace of coordinates X 1 ; : : : ; X n along the coordinates Z 1 ; : : : ; Z s . The proof can be conducted by induction on t, in which an ith induction step proves that the set st k+t i (W " ) is sub-Pfa an. It will be obvious from the formula (4) below that the output of the inductive step, namely, the set st k+t i (W " ), satis es the requirements for the set W " of the lemma, i.e., there exists a sub-Pfa an set W 0 Y , determined by a Pfa an formula 0 Y in variables X 1 ; : : : ; X n , Y 1 ; : : : ; Y t i , Z 0 1 ; : : : ; Z 0 s 0, where rst n+t i variables occur free, such that st k+t i (W " ) = f 0 " g, where 0

" is the result of the replacement of Y `by " k+`f or every 1 5 `5 t i.

Thus, we assume that t = 1.

We can identify the sets f " g and f Y & (Y 1 = " k+1 )g.

Let us prove that

st k (f Y & (Y 1 = " k+1 )g) = cl(f Y & (Y 1 > 0)g) \ fY 1 = 0g: (2) 
Observe that the right side of the equality (2) is a sub-Pfa an set.

Let x 2 st k (f Y & (Y 1 = " k+1 )g), then there exists z 2 f Y & (Y 1 = " k+1 )g such that x = st k (z). Hence, x 2 fY 1 = 0g. Suppose that x 6 2 cl(f Y & (Y 1 > 0)g). Then there exists an element r, 0 < r 2 R k such that B

x (r) \ f Y & (Y 1 > 0)g = ;. This contradicts to the inclusion z 2 f Y & (Y 1 = " k+1 )g f Y & (Y 1 > 0)g. Suppose now that x 2 cl(f Y & (Y 1 > 0)g) \ fY 1 = 0g;
i.e. x belongs to the right side of (2).

Let us prove the following claim: for any element R, 0 < R 2 R k , there exists an element , 0 < 2 R k , such that for every , 0 < 2 R k , < the intersection

B x (R) \ f y & (Y 1 = )g is nonempty. Indeed, since the set B x (R) \ f Y & (Y 1 > 0)g is sub-Pfa an,
and, thus has a nite number of the connected components (see the considerations preceding the lemma), there exists a connected component U of this set such that x 2 cl(U). One can take as the Y 1 -coordinate of any point from U and the claim is proved.

It follows (with a help of the transfer principle) that for every xed R,

0 < R 2 R k the intersection B x (R) \ f Y & (Y 1 = " k+1 )g 6 = ;: (3) 
Observe that the set A = fkz xk 2 : z 2 f Y & (Y 1 = " k+1 )gg R k+1 is sub-Pfa an. Due to Corollary A4, A is a nite union of points and intervals. Let w 2 R k+1 be the minimal among these points and the endpoints of these intervals. Suppose that x 6 2 st k (f Y & (Y 1 = " k+1 )g), i.e. there does not exist z 2 f Y & (Y 1 = " k+1 )g such that st k (z) = x. Thus, w > r 2 1 for an element 0 < r 1 2 R k . It follows that B x (r 1 ) \ f Y & (Y 1 = " k+1 )g = ;. This contradicts (3) for R = r 1 , and the equality (2) is proved.

We have:

st k (W " ) = st k ( (f Y & (Y 1 = " k+1 )g)) = (st k (f Y & (Y 1 = " k+1 )g)) = (cl(f Y & (Y 1 > 0)g) \ fY 1 = 0g): (4)
The latter set is obviously sub-Pfa an, this proves the lemma.

Lemma A8. Let W R n k+t be a sub-Pfa an set, V = st k (W ) R n k . Then dim(V ) dim(W ).

Proof. Suppose the contrary, let dim W = ` 1, dim(V ) `. There exists a linear projection : R n k+t ! R `k+t de nable over R such that dim( (W )) = dim(W ); dim( (V )) = `, here (V ) R `k (actually \almost any" linear projection satis es these properties). Using the obvious identity st k ( (W )) = (st k (W )) one can assume without loss of generality that dim(W ) = n 1, dim(V ) = n. Hence V contains a ball of a certain radius 0 < r 2 R k .

Fix some integer M which we'll specify later. Making a suitable a ne transformation of the coordinates (de nable over R k ), we can assume that the following requirements are ful lled (cf. lemma 2). The set V contains n-dimensional cube K with a side 0 < r 1 2 R k , contained in the nonnegative ortant and having the origin as one of its nodes. Moreover, we require that for each 1 j n and a j-plane P being the intersection of any (n j) hyperplanes of the form P (m) s = X s = m M r 1 , 1 s n, 0 m M, the dimension dim(W \ P) j 1.

Observe that the hyperplanes P (m) s divide K in M n small cubes with sides r 1 =M. Moreover for each 0 j n and each j-plane P the intersection P \ K is divided by the same way in M j j-facets being j-dimensional cubes with sides r 1 =M (we assume here that a facet contains its boundary). Note that the boundary of j-facet is the union of (j 1)-facets. Denote by j the number of j-facets which have common points with W. Denote by A j , 0 j n the intersection of the set W \K with the union of all j-planes of the described form. Obviously, A j is a sub-Pfa an set. Denote by j the number of connected components of A j .

We claim that j 2(n j + 1) j 1 + j , 1 j n. Indeed, j (0) j + (1) j , where (0) j is the number of j-facets Q (0) which have common points with the connected components C (0) of A j such that C (0) has no common points with jfacets other than Q (0) , and (1) j is the number of j-facets Q (1) not satisfying this property and Q (1) \ W 6 = ;. Obviously, (0) j j . For j-facet Q (1) take any connected component C (1) of A j such that C (1) has common points with some jfacet di erent from Q (1) , then C (1) has a common point with a certain (j 1)-facet R from the boundary of Q (1) , attach to Q (1) any such (j 1)-facet R. Since any (j 1)-facet R lies in the boundary of at most 2(n j + 1) j-facets, R can be attached to at most 2(n j +1) j-facets. Hence (1) j 2(n j +1) j 1 that proves the claim. Corollary A3 implies that there exists an integer c which depends only on the format of a Pfa an formula de ning the set W such that the number of connected components of the intersection of W \K with any j-plane does not exceed c. Therefore, j c(M + 1) n j .

Clearly, n = M n since st k (W ) K (indeed, if some n-facet does not intersect with W then its center does not belong to st k (W )). Using the bound on j and the proved above claim we prove by induction on 0 j n 1 the existence of integers c j such that n j 1 c j M n for large enough arbitrary M.

On the other hand, A 1 consists of a nite number of points (since dim(A 1 ) = 0), hence 0 1 , then the proved claim (for j = 1) entails 1 (2n + 1) 1 c 0 M n 1 for an appropriate integer c 0 , that leads to a contradiction for large enough M > c 0 c n 1 .

A4. Degree of sub-Pfa an transcendency.

Let 1 j 1 < j 2 and the elements 1 ; : : : ; k , 1 ; : : : ; `2 R j 2 . Denote the coordinates in R k+j 2 by Y 1 ; : : : ; Y k+`.

De nition A10. The degree of sub-Pfa an transcendency ( 1 ; : : : ; `) : ( 1 ; : : : ; k )] = ( 1 ; : : : ; `) : ( 1 ; : : : ; k )] R j 1 is the minimal integer s = 0 such that there exists a sub-Pfa an set S R k+j 2 de nable over R j 1 such that ( 1 ; : : : ; k ; 1 ; : : : ; `) 2 S and dim(S \ fY 1 = 1 ; : : : ; Y k = k g) = s.

When k = 0 we write simply 1 ; : : : ; `]. Observe that the de nition correlates with the usual notion of degree of transcendency of the elds extension F( 1 ; : : : ; `; 1 ; : : : ; k ) : F( 1 ; : : : ; k )] replacing R j 1 by a eld F and taking as S an algebraic variety. Lemma A9. 1) 1 ; : : : ; `+1 ] 1 ; : : : ; `] + 1;

2) " j 1 +1 ; : : : ; " j 2 ] = j 2 j 1 (the in nitesimals " j were introduced in section A2).

Proof. 1) Let S R `j2 be as in the de nition, then the point ( 1 ; : : : ; `+1 ) belongs to the cylinder S R j 2 R `+1 j 2 .

2) Conduct the proof by induction on (j 2 j 1 ). The base of induction for j 2 j 1 = 0 is trivial. For the inductive step assume the contrary and let S R j 2 j 1 j 2 be as in the de nition A10 such that (" j 1 +1 ; : : : ; " j 2 ) 2 S and dim(S) = s j 2 j 1 1. Let Y 1 ; : : : ; Y j 2 j 1 be the coordinates in R j 2 j 1 j 2 . Consider the sub-Pfa an set S 0 = fy : dim(fY 1 = yg \S) = sg R j 2 . Then dim(S 0 ) = 0, since dim(S) = s. Observe that S 0 is de ned over R j 1 , hence, due to corollary A4, S 0 consists of a nite number of points all belonging to R j 1 . Denote S 1 = fY 1 = " j 1 +1 g \ S fY 1 = " j 1 +1 g ' R j 2 j 1 1 j 2

. Then dim(S 1 ) s 1, and one can apply the inductive hypothesis to the set S 1 , taking into account that (" j 1 +2 ; : : : ; " j 2 ) 2 S 1 .

The following lemma is an analogy of the additivity of the usual degree of transcendency: F 3 : F 1 ] = F 3 : F 2 ] + F 2 : F 1 ] for elds extensions F 1 F 2 F 3 . Lemma A10. 1 ; : : : ; k ; 1 ; : : : ; `] = 1 ; : : : ; k ] + ( 1 ; : : : ; `) : ( 1 ; : : : ; k )].

Proof. Denote 1 ; : : : ; k ; 1 ; : : : ; `] = m; 1 ; : : : ; k ] = p; ( 1 ; : : : ; `) : ( 1 ; : : : ; k )] = s. First prove 1) m p + s. Let a sub-Pfa an set S be as in the de nition A10. Consider the sub-Pfa an set U 1 R k j 2 consisting of all the points (y 1 ; : : : ; y k ) for which dim(S \ fY 1 = y 1 ; : : : ; Y k = y k g) s. Then U 1 is de nable over R j 1 . Due to the de nition A10 there exists a sub-Pfa an set U R k j 2 de nable over R j 1 such that ( 1 ; : : : ; k ) 2 U and dimU = p. Denote by : R k+j 2 ! R k j 2 the natural projection onto the subspace with the coordinates Y 1 ; : : : ; Y k . Consider the sub-Pfa an set U = S \ ((U \ U 1 ) R `j2 ) R k+j 2 . Then U is de nable over R j 1 , besides ( 1 ; : : : ; k ; 1 ; : : : ; `) 2 U. The dimension dim(U) p + s, since dim( (U)) dim(U) = p and for any point y 2 (U) we have dim(U \ 1 (y)) s.

2) m p + s.

According to the de nition A10 there exists a sub-Pfa an set V R k+j 2 de nable over R j 1 such that ( 1 ; : : : ; k ; 1 ; : : : ; `) 2 V and dim(V) = m. Denote dim(V \ fY 1 = 1 ; : : : ; Y k = k g) = s 1 . Obviously s 1 s. Consider the sub-Pfa an set V 1 R k j 2 consisting of all the points (y 1 ; : : : ; y k ) for which dim(V \ fY 1 = y 1 ; : : : ; Y k = y k g) s 1 . Then V 1 is de nable over R j 1 and ( 1 ; : : : ; k ) 2 V 1 , therefore dim V 1 p. Arguing similarly as in 1), we get m s 1 +dimV 1 s+p.

)( 3 )( 4 )

 34 The exponential function f(X) = e aX is Pfa an of the length 1 and degree 2, with e G = C , G = R, due to the equation df(X) = af(X)dX: The function f(X) = 1=X is Pfa an of the length 1 and degree 3 with e G = fX 6 = 0g C , G = fX 6 = 0g R, due to the equation df(X) = f 2 (X)dX. Logarithm f(X) = ln(X) is Pfa an of length 2 and degree 3 with e G = fX 6 = 0g C , G = fX > 0g R, df(X) = g(X)dX; dg(X) = g 2 (X)dX where g(X) = 1=X.(5) Tangent f(X) = tan (X) is Pfa an of the length 1 and degree 3 equation df(X) = (1 + f 2 (X))dX. (6) Cosine cos(X) is Pfa an of the length 2 and degree 3

( 7 )

 7 Sine f(X) = sin(X) is Pfa an of the length 3 and degree 3

  2 , degrees d 1 and d 2 , with e

	G = e H 1 , and e G = e H 2 , G = H 1 ; G = H 2 respectively,
	are Pfa an functions of the lengths r 1 + r 2 , degree d 1 + d 1 and with e G = e H 1 \ e H 2 ,

, and there exist points y 1 ; : : : ; y n

ff

= 0g such that the Euclidean distances

i < j n 1 and any point (X 1 (z n ); : : : ; X n 1 (z n ); z n )

V, or for a certain pair1 i < j n 1, one of the two conditions _ X i (z n ) = _ X j (z n ) or _ X i (z n ) = _ X j (z n )holds for any point from V. Let us assume that j _ X i (z n )j 6 = j _ X j (z n )j for any pair 1 i < j n 1 (the case j _ X i (z n )j = j _ X j (z n )j can be treated in a similar way).There exists s, 1 s n 1 such that j _ X s (z n )j > j _ X j (z n )j, 1 j n 1, s 6 = j for all the points for V. Moreover, _ X s (z n ) has a constant nonnegative sign for all the points from V. For de niteness suppose that _ X s (z n ) > 0 for all the points from V (the case _
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