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Randomization and the Computational Power of

Analytic and Algebraic Decision Trees

Dima Grigoriev *

Abstract

We introduce a new powerful method for
proving lower bounds on randomized and de-
terministic analytic decision trees, and give
direct applications of our results towards
some concrete geometric problems. We de-
sign also randomized algebraic decision trees
for recognizing the positive octant in R™ or
computing MAX in R™*! in depth logo(l) n.
Both problems are known to have linear
lower lower bounds for the depth of any de-
terministic analytic decision tree recognizing
them. The main new (and unifying) proof
idea of the paper is in the reduction tech-
nique of the signs of testing functions in a de-
cision tree to the signs of their leading terms
at the specially chosen points. This allows us
to reduce the complexity of a decision tree to
the complexity of a certain boolean circuit.
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1 Introduction

The problem of obtaining complexity lower
bounds on algebraic decision trees has a
long history (a recent overview of the known
methods can be found, e.g., in [GKV95]; see
also [R72], [M85], [MPR94], [Y92], [Y94],
[GV96], [GKMS96]).
known results (with the exception of [R72],
[MPRY4], and [GV96]) concern algebraic de-
cision trees, i.e. decision trees with the gate
functions being polynomials.

However almost all

In this paper we introduce a new method
for proving lower bounds for a stronger com-
putational model of (deterministic and ran-
domized) analytical decision trees, i.e. the
trees with the gate functions being analytic

(cf. also [R72]).

Let us briefly mention the main results of
the paper.

In subsection 3.1, after describing the gen-
eral method we give a short proof for Rabin’s
([R72]) lower bound n (closing also a gap
in his original proof for the case of analytic
functions; cf. [R72], [MPR94]) on the depth
of testing membership to an octant R%? =
{(z1,"--,2n) € R" : 2y > 0,---,2, > 0}
by a deterministic analytic decision tree. In
subsection 3.2 we design a randomized alge-
braic decision tree (with the gates being poly-
nomials of degrees at most n) which recog-
nizes R} with the depth 0(log?n). Further-
more, we design another randomized tree of



the same type computing max{zy,---,z,}
with the depth 0(log® n). This extends the
result of [TY94] which was for the case of
x1, -, T, being pairwise distinct.

In Section 4 we study the size of analytic
decision trees (which is a stronger complex-
ity measure than the commonly considered
depth, since a lower bound on the size implies
immediately a lower bound on the depth). In
particular, as a corollary we prove an expo-
nential lower bound 2%(") on the size of an-
alytic decision trees testing membership to
the set of the points (zq,---,z2,) € R*"
with exactly n negative coordinates. No-
tice, that the only known so far exponen-
tial lower bound on the size of decision trees
was obtained in [GKY95] for testing the oc-
tant R’} under the assumption that the tree
is ternary (i.e., branching according to the
inequalities <, =, >) rather than a usual bi-
nary one (which branches according to <, >)
and besides, the decision tree is algebraic if
the gate functions are polynomials of a fixed
degree.

Finally, in Section 5 we obtain a lower
bound Q(y/n) on the depth of randomized
analytic decision trees which recognize a set
of the type {(z1,- -, z,) : the number of neg-
ative elements among zq, -
tiple of ¢} for a fixed ¢ being not a power
of 2. Notice that this is the first nontrivial
lower bound for randomized analytic decision
trees (for randomized algebraic decision trees
the nonlinear lower bounds were proved in
[GKMS96]).

A method for obtaining nonlinear lower
bounds on the depth of Pfaffian computa-
tion trees (which are the trees with the gates
being Pfaffian functions and thus, lying be-
tween the algebraic and analytic decision
trees) for the problem of testing membership
to a polyhedron, was developed in [GV96].
This result is however independent from the
present paper since relying on the methods

-, T, is a mul-

introduced below, one could get only linear
lower bounds on the depth.

2 Preliminaries

Similarly as in [GKMS96], for a given poly-
nomial g € R[ Xy, -+, X, ], we define its lead-
ing term [m(g) as follows. First we take the
terms of g with the least degree in X, then
among them with the least degree in X, _4
and so on, till X;. One can describe m(g) by
means of infinitesimals (cf., e.g., [GKMS96]).

Namely for a real closed field I’ (see e.g.
([L65], [GV88]) we say that an element ¢
transcendental over F is an infinitesimal
(with respect to F) if 0 < € < a for any
element 0 < @ € F. This uniquely induces
the order on the field F(¢) of rational func-

tions and further on the real closure F(eg)
(see [L65]). Now let ey > --- > g, > 0 be
the elements such that ey4¢ is infinitesimal

with respect to the real closed field R(e) for
e = (e1,---,&0), 0 < £ < n. Then the sign
sgn(g(er, -+ en)) = sgn(lm(g)(er, -+ en))
and on the other hand this property uniquely
determines the term Im(g). Actually, one
could stick in the arguing below with the real
numbers 1 = 880) > 8(10) > o> eP >0
() is “consider-
£4+1

ably smaller” than 5((50), 0<!<mn-1. But
then one should specify, what does it mean
“considerably smaller”, and it is more conve-
nient to use infinitesimals.

instead of €1, -+ ,¢, where e

As computational models we deal with
the decision trees (DTs) (see e.g. [R72],
[MPR94], [Y94], [GKV95], [GKY95]). We
consider two kinds of gates of DTs: either
polynomials of degrees at most d, then we
denote the corresponding algebraic decision
trees by d-DT, or the functions, being real
analytic (cf. [C48]) in a certain vicinity of
the origin, then we denote the corresponding
analytic decision trees by A-DT. We denote



by d-RDT or A-RDT, respectively, their ran-
domized counterparts, called randomized de-
cision trees, which are the sets {T,} (see e.g.
[MT82], [M85], [GKMS96]), with 7, being
a deterministic d-D'T or A-DT, respectively,
chosen with a probability p, > 0, Y p, = 1.

Observe that for a function a in n
variables Xy,---,X,,, being real analytic
at the origin, one can literally extend
the notion of the leading term [m(a) as

above, treating a as a power series in

X1, Xn.  Also sgn(a(er,---,e,)) =
sgn((Im(a))(e1,- - ,€p,)) holds, herewith the
power series a(ey,---,&,) could be natu-

rally considered as an element of the real
closed field R,, where Ry = R and for
each 0 < ¢ < n — 1 Ryyy is the field
of Puiseux series ijopjsfi{a, p; € R,
1 < 0 € Z, integers o < pp < -+ i
crease (see e.g. [GV88]). Since R,, is a real
closed field, due to Tarski’s transfer princi-
ple [T51], the sign sgn((Im(a))(e1,---,€n))
does not depend on, whether we regard
(Im(a))(e1, -+ ,€n) as an element of the real

1mn-

closure R(ey, -+ ,€,) or of its extension R,,.

3 Testing octant: determin-
istic vs. randomized deci-
sion trees

Testing membership to the nonnegative oc-
tant R} was firstly studied by M. Rabin in
[R72], where a (sharp) lower bound n was
formulated for the depth of A-DT (a gap in
the proof was filled in [MPR94] for algebraic
or Nash gate functions). In the next sub-
section we give a short proof of the bound
for the case of analytic functions, closing for
the first time a gap in Rabin’s original proof
[R72] for this case.

3.1 Deterministic decision trees

Let an A-DT T test membership to R%}. For
any vector 0 = (01,---,0,) € {—1,1}" con-
sider a point E, = (o161, ,006,) € (Rp)™

Consider any gate a of 7T, being
a real analytic function. For any
point (550),--- ,5&0)) € R™  where
5(10) > o> 2P > 0 and 553_)1 is suf-
ficiently less than 650)7 0 <1 < n—-1,
we have sgn(a(alego),--- ,Unegzo))) =
sgn((lm(a))(alsgo), e ,Unsgo))). Also
sgn(a(Fy)) = sgn((lm(a))(Es))
(cf. section 2 above), obviously
sgn((lm(a))(alsgo), e ,aneﬁf’))) =
sgn((lm(a))(E,)). Thus, sgn(a(E,)) =
sgn(a(olego), e ,anaﬁo))) and thereby runs

correctly for an input point F,.

Notice that the above argument was neces-
sary since we deal with A-DTs. If we would
consider d-DT rather than A-DT, we could
immediately apply Tarski’s transfer princi-
ple [T51] to ensure that d-DT runs correctly
for any input point from (R,,)". For the pur-
pose of this paper the restriction on the input
points F, for A-DT suffices.

Take the path in T along which T runs for
the point F(; ... 1) = (€1, ,€,) (and there-
fore, outputs “yes”). Let g1,---,g¢ be the
testing (real analytical) functions along this
path.

Lemma 1l.t>n

Proof. Denote  Im(g;) =
XX € BT < < n

The sign sgn(lm(g;)) is determined
by the vector S; = (sij,:",5n;)
(mod 2) € (Fy)", 1 < j < t. Suppose
that ¢ < nm. Then there exists a nonzero
vector (sy,---,8,) € Fy such that the inner
products ((s1,--+,5,),5;) = 0 (mod 2),
1 <7<t Denote o= ((—1)%,---,(=1)"").
Then Im(g;(Fq,..ny) = Im(g;(Es)),



1< j <t;ie. F, satisfies all the tests along
the path under consideration, and thereby
the output of T for the input F, is “yes”,
but E, does not belong to the nonnegative
octant, the obtained contradiction proves
the lemma.

Corollary 1. ([R72])
Any A-DT testing membership to R’ has
the depth at least n.

3.2 Randomized decision trees

In [TY94] it was shown that testing mem-
bership to the octant R} can be performed
by a n-RDT with the depth (logn)°(") under
the assumption that all the coordinates of
an input vector (z1,---,2,) € R™ are nonze-
ros. In this subsection we design an n-RDT
testing membership to R’} for arbitrary input
vectors.

Thus, RDT (in particular n-RDT and A-
RDT) could have much less depth than any
DT solving the same problem, cf. corollary
1. On the other hand, in [GKMS96] it was
proved the lower bound 5 on the depth of d-
RDT testing membership to R’;. This shows
that there is a noncollapsing hierarchy on the
computational power of d-RDT's with respect
to d.

Let (z1,---,2,) € R™ be an input vec-
tor. Denote by P C {1,---,n} the subset
of j such that z; < 0. Treating {1,---,n}
as a subset of V = (Fy)l°&271 (in an ar-
bitrary way), we apply to P theorem 2.4
[VV86]. It states that for a random choice
of vectors wy, -+, Weg,n] € V the proba-
bility that one of the truncated sets P, =
Pn{v € Vi(vyw)) = 0, 1 < i < (},
0 < ¢ < [logyn] consists of a single ele-
ment is at least 1/4 (provided that P # ¢).
For any 1 > § > 0 making 0(log1/§) rounds
of choosing the vectors wy, -+, wgg, ], We
could achieve the latter probability to be

greater than 1 — § (for at least one of the
rounds).

For the next step we need to be able to
pick out randomly a homogeneous multilin-
ear polynomial Ay from R[Yy,---,V,,] of de-
gree k (for 0 < k& < m) and with all the
coefficients in the interval [0, 1]. In fact, one
could pick out randomly from a suitable fi-
nite set of such polynomials, or one could use
the general statement from [M85] which en-
ables us for a randomized decision tree with
a continuous random parameter to replace it
by a discrete one. For the reason of simplicity
we will use a continuous random parameter.

Thus, fix for the time being a chosen
randomly truncated set {v € V;(v,w;) =
0, 1 < i < €& = {ji,jm). De
note {Yy,---, Y} = {X;,,---,X;.}. Ob-
serve that a random homogeneous multi-
linear polynomial hy € R[Yj,---,Y,,] van-
ishes (with the probability 1) at the point
(vi, - Ym) = (x4, ,2;,) if and only if
the number of zeroes among yi,- -+, ¥y, is
greater than m—Fk (if the latter is not fulfilled
it vanishes with the probability zero).

We construct an n-RDT T, which using
binary search is testing A, o1(y1, s Ym),
then testing hpp g (y1, -+ ym) if  the

first test returns =zero, or else testing
h3fmya1 (Y1, + ;ym) and so on, finds the
minimal ko for which Ay, (y1, ", Ym)
vanishes. Then m — kg + 1 equals

(with the probability 1) to the number

of zeroes among i, - ,ym. Test also
hig—1(y1,- -+, Ym), unless kg = 1 and in this
case (Y1, -+ ,Ym) = (0,---,0) and we agree
1> hg > 0. If all 4,---,y,, were nonneg-

ative (in particular, if (2, ---,2,) € R%})
then the latter test would be positive. If
among yq, -, Y, was exactly one negative
element then the latter test would be
negative (with the probability 1).
Summarizing, 7 makes 0(log1/§) rounds,
choosing at every

round some vectors



Wi, Wileg, o], then for each truncated set
(y1,- -+, Ym) finds ko as described above and
tests Ary—1(Y1, -+, Ym). If all these tests are
positive, then 7" returns (zy,---,z,) € R%,
else if at least one of the tests is negative, T
returns (z1,---,2,) ¢ R}.

It is not difficult to see the correctness of
T in testing membership to R%. Indeed,
if (z1,---,2,) € R7 then all the described
tests hg,—1(y1,- - ,Ym) are positive. Else, if
(z1,+++,2,) ¢ R} then with the probabil-
ity greater than 1 — § one of the truncated
sets (y1,---,ym) contains a single negative
element. Then for this truncated set the test
hio—1(y1,- -+, Ym) would be negative.

Now complete the depth analysis of T.
There are 0(log 1/§) rounds choosing vectors
W1, Wlog, n]» €ach of these vectors yields
a truncated set {y1, -+, ym} C {z1, -+, 2p}.
For every of these truncated sets T finds kg
by binary search, which in its turn also re-
quires 0(logn) steps. Thus, the depth of n-
RDT T can be bounded by 0(log? nlog 1/4).

As an application of the described n-RDT
one could design an n-RDT with a similar
depth 0(log? nlog1/6) and the probability
greater than 1 — § for the problem MAX =

(cf.  [TY94], [GKY95]), namely, whether
z1 = max{zy,---,z,} for an input vector
(z1,-++,2,). It suffices to apply T to the

vector (z1 — z9, -+, @1 — x,) € R"7L,

If one would like to solve the MAX prob-
lem (i.e. computing max{z,---,z,}), then
similarly as in [TY94] it is necessary to
have a subroutine which increases a candi-
date for max{zy,---,z,}, in other words,
which finds an element z; greater than z;
(provided that such z; does exist). It cor-
responds to detecting negative coordinate

among 1 — =, -+, 1 — &, (provided, it does
exist).

Namely, when a truncated set (y1,- -, Ym)
with the negative test hr,—1(y1, -+, Ym)
is found, we wuse the binary search

to test as above, whether for the set
(Y1, Y[my27) for the maximal k; for
which Ag, —1(y1,*** ,Y[m/21) does not van-
ish, the inequality Ag, —1(y1,- -, Yrm/2)) <
0 holds. If this is the case, then pro-
ceed to the half (yi,--,ypn/27), else if
hgy—1(Y1y s Y[my2)) > 0, then proceed to
the half (ypm 21,5 Ym),
(y1,- -+ ,Ym) contained a single negative ele-
ment after [log, m] steps, the described sub-
routine would find it. Thus, the depth of
n-RDT for the described subroutine which
finds a negative element among z,---,z,
(or returns that (zq,---,2,) € RJ) is
bounded by 0(log”n - log 1/8). The proba-
bility of the correct output is greater than
1-4.

Finally, in [TY94] it is shown that the
result of applying the procedure of finding
a greater element among xq,--
cessively O(logn) times, taking § = 0(1/n)
equals to max{zy,---,z,} with the proba-
bility close to 1. Thus, one can compute
max({z1, -+, z,} by n-RDT with the depth
0(log® n).

Let us summarize what we have proved in
this subsection in the following theorem.

and so on. If

©, Xy, SUC-

Theorem 1. For each of the following
problems there is an n-RDT which for any

input vector (z1,---,z,) € R"

a) tests membership to R} or tests whether
= max{z1, -,2,} in the depth
0(log? n);

b) finds a negative z; (or returns that
(z1,-++,2,) € R%) in the depth
0(log® n)

c) computes ¢ such that =
max{zy,-++,z,} in the depth 0(log® n).



4 Exponential lower bound
on the size of determinis-
tic analytic decision trees

In this section we study the size of a deci-
sion tree as its complexity measure rather
than its depth. Evidently, a lower bound on
the size immediately implies a (logarithmic)
lower bound on the depth, so it is a more
difficult problem, and the known methods for
obtaining lower bounds on the depth (see e.g.
[GKV95] and the references there) do not
give any lower bound on the size. Besides, as
a counterpart to Rabin’s linear lower bound
on the depth for testing membership to R’}
(see subsection 3.1) an upper linear bound on
the size is obvious. The point is that we deal
usually with the binary decision trees (i.e.
branching at < or >). In [GKY95] ternary
decision trees were studied (i.e. branching
goes according to <, =, >) and an expo-
nential lower bound on the size for testing
membership to R’ was obtained for algebraic
d-DT where d = const. However, the re-
sult of [GKY95] cannot be deduced from the
methods of this section since these methods
work for binary decision trees, and on the
other hand for binary trees there is already
mentioned above obvious linear upper bound
on the size for testing R’t. Thus, the lower
bounds on the size for binary and ternary
trees are independent.

In this section we design a method for ob-
taining the first exponential lower bounds on
the size of binary analytic decision trees, and
we provide some concrete examples of the
problems for which the sizes of A-DTs are
exponential.

Consider an A-DT T. As in the sub-
section 3.1 we restrict T’ to the inputs F,.
In this setting we attach to T a function
b:{-1,1}" — {—1,1} which maps o to 1
if and only if E, is accepted by T (to each

accepting (resp. rejecting) leaf of T 1 (resp.
—1) is attached). One could treat b as a
boolean function (cf. [BS90], [KM91]) and
also as an element of a bigger set B,, of func-
tions {—1,1}" — R which is isomorphic to
R?". Then B, is R-space with the basis of all
multilinear monomials {X7 = X' ... Xin};
Q1,0 0, € {0, 1}.

Thus, for a boolean function b we have an
expansion b = 3; 87X, herewith the norm
La((Br)1) = ;8% = 1 (since the vector
(8:)1 is an image of the vector (\/%)n (b(2))s
with Lo-norm equal to 1 under the unitary
Fourier transform being n-th tensor power
(1
V2 -1

of the matrix The impor-

vzl
tant feature of b studied in [BS90], [KM91]
is its Ly-norm Lq(b) = >";|Br|. We use the
following lemma from [KM91] for which we
give here also a short proof.

Lemma 2. ([KM91])If the tree T has m
leaves then Lqi(b) < m.

Proof. As we restrict T to the inputs F,
we could replace each gate ¢ of T" by Im(g)
(see subsection 3.1). Thereby, to any subtree
T" of T' we could assign a (boolean) function
by : {=1,1}" — {—1,1}, then b is assigned
to the whole tree T.

We prove lemma by induction on the size
of the tree. In case of the base of induction
the tree consists of a single leaf with constant
1 or —1 boolean function attached. For the
inductive step consider a term Im(g) = ¢ X7,
¢ € R in the root v of T and let the boolean
functions b(), 5(2) are attached to two sub-
trees T, T2 of T with the roots being
the sons of v. Then b = 1(1 — XT)p(1) 4
L1+ X152 and hence Ly (b) < L (6M) +
Ll(b(z)). Then applying inductive hypothe-
sis to the subtrees T, T(2) completes the
proof of the lemma.



To exhibit an example of a set, for which
the membership requires an exponential size
for any A-DT T, denote by C, = {o:X1 >
0,--,0,X, >0}, o1,--+,0, € {—1,1} an
octant. Assume that T recognizes mem-
bership to a set M such that U,eprCs C
M C UpemCo U{Xy--- X,,= 0} for a cer-
tain set M C {—1,1}", i.e. the inner part
of M coincides with U,carC,. Denote by
bp c{=1,1}" = {—1,1} the boolean func-
tion such that ba(o) = —1 if and only if
oceM.

Lemma 2 provides the bound
L1(ba) on the size of a decision tree T test-
ing the set M. Now we give two examples of
sets M with a big norm Lq(baq) taken from
[BS90].

Let n = 2k and define MgxacT CR™ to be
the set of points (z1,---,,) with exactly &k
negative coordinates among xq, -, z,.

Now let n = 4k and define M4CR" to be
the set of all the points (21, -, z,) such that
for each 0 < ¢ < k — 1 either 2441, Z4i+2
are both negative or z4;43, 24,44 are both
negative.

Using the bounds Lj(bampyaer) > 2/
(observe that this bound is close to the pos-
sible largest bound due to the Cauchy in-
equality L;(b) < 22 for any boolean func-
tion b €B,,), L1(bama) > (1.25)% [BS90] and

Lemma 2 we get the following corollary.

lower

Corollary 2. Any analytic decision tree
testing membership to a) MgxacT or to b)
M has the size greater than 29(%),

5 Lower bound on the depth
of randomized analytic de-
cision trees

We have shown in Section 3 that randomiza-
tion can enhance dramatically the efficiency
of analytic decision trees. In this section we

a prove lower bound Q(y/n) for randomized
analytic decision trees recognizing sets like
L;4=Us (mod ¢)=iC,, where the union is
taken over o € {—1,1}" such that the num-
ber of —1 in o has a residue ¢ (mod ¢), and
¢ is not a power of 2.

Thus, assume A-RDT 709 = {T,} with
the depth ¢ recognizes £;,. Assuming that
q is small (say, a constant), one can suppose
q to be an odd prime, taking into account
that the complexities of recognizing £; , for
diverse i (and fixed ¢) coincide. Indeed, in
order to reduce recognizing L; , to recogniz-
ing L;, one replaces the input (z1,-,z,)
by (—z1,--- y Tp)-

Again as in the previous section we re-
strict 7(49) to the set of 27 points F, and
take A-DT T, which makes at most %2” er-
rors on the points K C {F,},, i.e. |E] <
%2”. Again as in Section 4 we associate with
T, a boolean function b,, but unlike Sec-
tion 4 in a more standard setting, namely
by : {0,1}" — {0,1} = Fy. For each gate ¢
(being an analytic function) of T, consider
Im(g) = cXi1 -+~ X! and replace g by a lin-
ear form Ly(y1, - ,yn) = G191 + -+ -+ tn¥n

(mod 2) : F} — F,. To every path of T,
with the gate functions g¢y,---, g5, we at-
tach the product of linear functions (L, +
1)+ (Lg, + 1) where 7, € {0,1},1 <i<k
is the corresponding sign of the branch at
the path with the gate function g;. Then
b, coincides with the sum of the products
(Lgy + 71)---(Ly, + ) attached to all the
paths with the outputs 1. Similar to Sec-
tion 4 we can give an inductive description
of b,. For the base of induction consider a
tree consisting of a single leaf and b, equals
to the output of this leaf. For the inductive
step let the gate g be assigned at the root
v of T, and the boolean functions b(1), p(2)
are attached to the left and right subtrees,
respectively, with the roots being the sons of

v. Then by = L, -6 4 (L, +1)b®).

y "X j—iy Tj—ig1,



Therefore, degb, < t. Thus, b, coincides
with the boolean function MOD;, at more
than %2” points, and hence the Corollary and
Lemma 4 [S87] imply that degb, > Q(v/n)
for a certain 0 < ¢ < g—1, see above (to apply
directly Corollary [S87] one has to imbed the
functions b,, MOD; , in the set of functions
{0,1}" — F,¢ for a suitable extension F,. of
Fy, cf. lemma 5 [S87]). Thus, we get the
following theorem.

Theorem 2. Any A-RDT which recog-
nizes the union of octants U, (mod 4))=iCo
has the depth greater than Q(y/n) (for a fized
q being not a power of 2).

O

6 Open Problems and Fur-
ther Research

There remain important open problems on
randomized decision complexity of many con-
crete problems which are expressible by si-
multaneous positivity of small degree polyno-
mials, like quadratic or cubic ones. The in-
teresting examples include Flement Distinct-
ness in algebraic computation tree model or
for n-RDTs (cf. a randomized lower bound
Q(n log n) [GKMS96] for n’~-RDTs with suffi-
ciently small § > 0), Finite Union of Ballsin
R™, or algebraic version of 3SAT being the
existentional problem of simultaneous posi-
tivity of cubic polynomials.
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