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Quadratic Randomized Lower Bound for the Knapsack Problem

We prove (n 2 ) complexity lower bound for the general model of randomized computation trees solving the Knapsack Problem, and more generally Restricted Integer Programming. This is also the rst nontrivial lower bound for randomized computation trees. The method of the proof depends crucially on the new technique for proving lower bounds on the border complexity of a polynomial which could be of independent interest.

Introduction

We prove for the rst time nonlinear complexity lower bounds for randomized computation trees (RCT s) (see e.g. MT82], S83]) recognizing languages like unions of hyperplanes (i.e. linear arrangements) or intersections of halfspaces (polyhedra). As an application we prove a quadratic lower bound on RCTs solving the knapsack problem, or more general, the restricted integer programming.

Obtaining general lower bounds for randomized computations was an open question for a long time (see e.g. M85a, b, c] and KV88]). Only recently, a nonlinear lower bound was proven in GKMS96] for a weaker model of randomized d-decision trees (d-RDT s), in which the testing polynomials have degrees at most d (for 2-dimensional case the lower bound was proven in GK93] and for the generic arrangements a lower bound was proved in GK94]). In particular, for d-RDTs in GKMS96] the lower bound (n log n) was proven for the Element Distinctness Problem (i.e. whether all the numbers x 1 ; : : : ; x n are pairwise distinct), and the lower bound (n 2 ) was proved for the Knapsack problem. Usually, the bound d on the degree in d-RDT is small enough, and the main di culty while considering RCT is that the degree of testing polynomials in principle could be exponential in the depth. Therefore, we develop in the present paper a new method for obtaining complexity lower bounds for RCTs.

The method developed in the present paper is not applicable to the element distinctness problem. In BKL93], GKMS96] a linear depth RCT was constructed for a similar problem (permutation problem) beating its deterministic (n log n) 2 lower bound B83]). This example shows that the still open problem of complexity of an RCT for the element distinctness problem is quite delicate.

We also mention that a linear n 4 lower bound for an RCT recognizing the arrangement S [START_REF] Grigoriev | Randomized (n 2 )Lower Bound for Knapsack[END_REF]. For a stronger model of randomized analytic decision trees (RADT ) a complexity upper bound O(log 2 n) for testing T 1 i n fX i 0g was proven in GKS96] (for deterministic analytic decision trees the exact complexity bound n was proved in R72], MPR94]). Besides, in GKS96] for RADT a sublinear lower bound (n 1=2 ) was proved for the union of orthants S f i X i 0; 1 i ng where i 2 f 1; 1g and the number of negative among i is divided by a xed q such that q 6 = 2 s for any s.

For deterministic models of the computation and decision trees several methods for obtaining complextity lower bounds were developed earlier.

The \topological" methods based on the number of connected components [START_REF] Strassen | Algebraic Complexity Theory[END_REF], B83]), or more general, on the sum of Betti numbers ( BLY92], Y94]), provide the lower bound (n 2 ) for the knapsack problem and the lower bound (n log n) for the distinctness or the permutation problem. The already mentioned example from BKL93] shows that these \topological" bounds cannot be directly extended to RCT. For testing a polyhedron (to which the topological methods are not applicable), the di erential-geometric method (involving the curvature) for obtaining complextity lower bounds for deterministic computations was developped in GKV96], which provides (log N) lower bound for decision trees (see also [START_REF] Grigoriev | Randomization and the Computational Power of Analytic and Algebraic Decision Trees[END_REF]) and (log N= log log N) for computation trees, where N is the number of all faces of the polyhedron.

We now brie y describe the content of the paper. In section 1 we introduce the notion of the border complexity, for the similar notations cf. S90] B79] BCLR79], of a polynomial and prove a lower bound on it which is of independent interest, in terms of the number of connected components.

In section 2 we prove the main theorem which provides a complexity lower bound for RCT testing an arrangement or a polyhedron. For that purpose we use some tools (in particular, the tree of ags) from GKMS96], but the proof di ers from the one in GKMS96] since the degree of RCTs could be exponential as we already mentioned.

In section 3 as an application of the main theorem we give a complexity quadratic lower bound (n 2 log j) for RCT testing the Restricted Integer Programming L n;j = a 2 f0;:::;j 1g n faX = 1g (which is an arrangement consisting of j n hyperplanes). Notice that for j = 2 this problem coincides with the Knapsack Problem. In particular, in section 3 we give a lower bound j (n 2 ) on the number of faces of L n;j (and thereby, on the number of the connected components of the complement of L n;j , which was also ascertained in YI65], M85b], GKMS96], and DL78]). Moreover, in section 3 we provide a stronger lower bound on the number of faces of subarrangements of L n;j (under a subarrangement we understand the restriction of a subset of hyperplanes from L n;j on a face of L n;j ). The analogue of this bound for subarrangements of the distinctness problem is wrong, that is why we cannot get a nonlinear complexity lower bound for RCT, solving the distinctness problem.

In the last section 4 we state the complexity lower bound for the deterministic computation trees recognizing a polyhedron under less restrictive conditions than for the randomized computation trees as in the theorem from section 2.

Lower bound on the border complexity

We start now with the technical development leading to the crucial lower bound on the border complexity of a polynomial.

Let H 1 ; : : : ; H n k IR n be hyperplanes such that their intersection = H 1 \ \ H n k has the dimension dim = k. For any polynomial f 2 IR X 1 ; : : : ; X n ] rewrite it in the coordinates f(Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k ) and following GKMS96], de ne its leading term

lm(f) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k
n k 0 6 = 2 IR (with respect to the coordinate system Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k ) as follows. First, take the minimal integer m n k such that Y m n k n k occurs in the terms of f. Consider the polynomial

0 6 f (1) = f Y m n k n k ! (Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 ; 0) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 ]
which could be viwed as a polynomial on the hyperplane H n k . Observe that m n k depends only on H n k and not on Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 , since a linear transformation of the coordinates Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 changes the coe cients (being the polynomials from IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 ]) of the expansion of f in the variable Y n k , and a coe cient vanishes identically if and only if it vanishes identically after the transformation. Then f (1) is the coe cient of the expansion of f at the power Y m n k n k . Second, take the minimal integer m n k 1 such that Y m n k 1 n k 1 occurs in the terms of f (1) . In other words, Y m n k 1 n k 1 is the minimal power of Y n k 1 occurring in the terms of f in which occurs the power Y m n k n k . Therefore, m n k , m n k 1 depend only on the hyperplanes H n k , H n k 1 and not on Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 2 , since (as above) a linear transformation of the coordinates Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 2 changes the coe cients (being the polynomials from IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 2 ]) of the expansion of f in the variables Y n k , Y n k 1 and a coe cient vanishes identically if and only if it vanishes identically after the transformation. Denote by 0 6 f (2) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 2 ] the coe cient of the expansion of

f at the monomial Y m n k 1 n k 1 Y m n k n k . Obviously f (2) = f (1) Y m n k 1
n k 1 ! (Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 2 ; 0)

One could view f (2) as a polynomial on the (n 2)-dimensional plane H n k \

H n k 1 . Continuing in the similar way, we obtain consecutively the (non-negative) integers m n k ; m n k 1 ; : : : ; m 1 and the polynomials 0 6 f (l) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l ] 1 l n k, by induction on l. Herewith, Y m n k l+1 n k l+1 is the minimal power of Y n k l+1 occurring in the terms of f, in which occurs the monomial Y m n k l+2 n k l+2 Y m n k n k for each 1 l n k. Notice that m n k ; : : : ; m n k l depend only on the hyperplanes H n k ; : : : ; H n k l and not on Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l 1 . Then f (l) is the coe cient of the expansion of f at the mono-

mial Y m n k l+1 n k l+1 Y m n k n k and f (l+1) = f (l) Y m n k l n k l ! (Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l 1 ; 0)
Thus, f (l) depends only on H n k ; : : : ; H n k l and not on Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l 1 . One could view f (l) as a polynomial on the (n l)-dimensional plane H n k \ \ H n k l+1 . Continuing, we de ne also m 0 k ; : : : ; m 0 1 . Finally, the leading term lm(f

) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k
n k is the minimal term of f in the lexicographical ordering with respect to the ordering

Z 1 > > Z k > Y 1 > > Y n k . The leading term lm(f (l) ) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k l
n k l , we refer to this equality as the maintenance property (see also GKMS96]).

Denote by V ar(f) = V ar (H 1 ;:::;H n k ) (f) the number of positive (i.e. nonzero) integers among m n k ; : : : ; m 1 . As we have shown above, V ar(f) is independent from the coordinates Z 1 ; : : : ; Z k of . Obviously, V ar(f) coincides with the number of 1 l n k such that Y n k l j f (l) , the latter condition is equivalent to that the variety ff (l) 

= 0g T (H n k \ \H n k l+1 ) contains the plane H n k \ \ H n k l+1 \ H n k l (being a hyperplane in H n k \ \ H n k l+1 ).
It is convenient (see also GKMS96]) to reformulate the introduced concepts by means of in nitesimals. Namely for a real closed eld F (see e.g. L65]) we say that an element " transcendental over F is an in nitesimal (relative to F) if 0 < " < a for any element 0 < a 2 F. This uniquely induces the order on the eld F(") of rational functions and further on the real closure g F(") (see L65]). One could make the order in g F(") clearer by embedding it in the larger real closed eld F((" 1=1 )) of Puiseux series (cf. e.g. GV88]). A nonzero Puiseux series has the form b = P i i 0 i " i= , where 1 < i 0 < 1 is an integer, i 2 F for every integer i; i 0 6 = 0 and the denominator of the rational exponents 1 is an integer. The order on F((" 1=1 )) is de ned as follows: sgn(b) = sgn( i 0 ). When i 0 1, then b is called an in nitesimal, when i 0 1, then b is called in nitely large. For any not in nitely large b we de ne its standard part st(b) = st " (b) 2 F as follows: when i 0 = 0, then st(b) = i 0 , when i 0 1, then st(b) = 0. In the natural way we extend the standard part to the vectors from (F ((" 1=1 ))) n and further to subsets in this space. Now let " 1 > " 2 > : : : > " n+2 > 0 be in nitesimals, where " 1 is an in nitesimal relative to IR; in general " i+1 is an in nitesimal relative to IR(" 1 ; : : : ; " i ) for all 0 i n + 1. Denote the real closed eld IR i = g IR(" 1 ; : : : ; " i ), in particular, IR 0 = IR. For an element b 2 IR n+2 for brevity denote the standard part st i (b) = st " i+1 (st " i+2 (st " n+2 (b) ) 2 IR i (provided that it is de nable).

Also we will use the Tarski's transfer principle T51]. Namely, for two real closed elds F 1 F 2 a closed (so, without free variables) formula in the language of the rst-order theory of F 1 is true over F 1 if and only if this formula is true over F 2 .

Tarski's transfer principle implies that a semialgebraic set ff 1 0; : : : ; f k 1 0; f k 1 +1 > 0; : : : ; f k > 0g F n , where the polynomials f i 2 F X 1 ; : : : ; X n ] have the degrees deg(f i )

d, has at most

(minf2 k ; ( k n ) n gd n ) O(1) connected components (cf. GV88]
), relying on this bound in case F = IR from W68] (cf. also BPR94]), which strenghtens the result of M64].

Another application of Tarski's transfer principle is the concept of the completion. Let F 1 F 2 be real closed elds and be a formula (with quanti ers and, perhaps, with n free variables) of the language of the rstorder theory of the eld F 1 . Then determines a semialgebraic set V F n 1 . The completion V (F 2 ) F n 2 is a semialgebraic set determined by the same formula (obviously, V V (F 2 ) ). Tarski's transfer principle entails, in particular, that the number of connected components of V is the same as the one of V (F 2 ) (cf. GV88]).

One could easily see that for any point (z 1 ; : : : ; z k ) 2 IR k k+2 such that f (n k) (z 1 ; : : : ; z k ) 6 = 0 (we utilize the introduced above notations) the following equality for the signs m 1 1 : : : m n k n k sgn f (n k) (z 1 ; : : : ; z k ) = sgn f(z 1 ; : : : ; z k ; 1 " k+3 ; : : : ; n k " n+2 ) (1) holds for any 1 ; : : : ; n k 2 f 1; 1g. For any 1 i n k such that m i = 0 (1) holds also for i = 0, agreeing that 0 0 = 1. Moreover, the following polynomial identity holds: f (n k) (Z 1 ; : : : ; Z k ) = st k+2 f(Z 1 ; : : : ; Z k ; " k+3 ; : : :

; " n+2 ) " m 1 k+3 " m n k n+2 ! (2)
For a family of hyperplanes H 1 ; : : : ; H m IR n let S = 1 i m H i be an arrangement, by B 0 (H 1 ; : : : ; H m ) we denote the number of connected components of the complement IR n S.

Following e.g. S90] we de ne the complexity s = C(f) of a polynomial f 2 IR X 1 ; : : : ; X n ] as the length of the shortest straight-line program which computes f. Recall that the latter is a sequence of operations u 1 = X 1 ; : : : ; u n = X n , then for every n < j s + n u j = ũj 1 ũj 2 , where for each i = 1; 2 either ũj i = u j i with j i < j or ũj i 2 IR and either = or = +. To every u j by recursion on j one attaches in the natural way a polynomial U j 2 IR X 1 ; : : : ; X n ] (the value of u j ). The straight-line program computes f if U s+n = f. Observe that one could consider also the division = = and the resulting rational functions, but since we deal only with the signs of the testing functions in the computation trees (see below), we could consider separately the computations of the numerators and denominators of the rational functions by means of the straight-line programs without the divisions.

For a polynomial g 2 IR Z 1 ; : : : ; Z k ] its border complexity C(g) (cf. S90]) is the minimal C(f) where f 2 IR X 1 ; : : : ; X n ] for a certain n k such that g = f (n k) , for suitable coordinates Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k , which we treat as the linear forms in X 1 ; : : : ; X n . Actually, one could literally extend the concept of the border complexity to the polynomials with the coe cients from an arbitrary eld.

The main result of this section is the following lower bound on the border complexity.

Proposition: Let for a polynomial g 2 IR Z 1 ; : : : ; Z k ] its border complexity C(g) s. Assume that H 1 ; : : : ; H m IR k are pairwise distinct hyperplanes such that the corresponding linear functions L H i j g, 1 i m (where the zero set of L H i is H i ). Then B 0 (H 1 ; : : : ; H m ) 2 O(s+k) .

Remark: In fact, one could formulate the proposition in a stronger setting as follows (the proof goes through literally). For a polynomial g with the border complexity less than s, the number of the connected components in the complement in IR k of the set fg = 0g of zeroes of g does not exceed 2 O(s+k) .

Proof: Let u i = X i , 1 i n; u j = ũj 1 ũj 2 , n + 1 j n + s be a straight-line program which computes a certain polynomial f 2 IR X 1 ; : : : ; X n ] such that g = f (n k) for suitable coordinates Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k (we utilize the introduced above notations). Ex- 

press X i = (i) 1 Z 1 + + (i) k Z k + (i) 1 Y 1 + (i) n k Y n k , 1 i
: ; " n+2 ) " m 1 k+3 " m n k n+2 ! (3) Denote u 0 i = (i) 1 z 1 + + (i) k z k + (i) 1 " k+3 + + (i) n k " n+2 , 1 i n.
Introduce a new variable Z 0 and two semialgebraic sets V = (z 0 ; z 1 ; : : : ; z k ; u n+1 ; : : : ; u n+s ) 2 IR k+s+1 n+2 : u j = ũ0 j 1 ũ0 j 2 ; n + 1 j n + s; where for each i = 1; 2 either ũ0 j i = u 0 j i when 1 j i n and ũ0 j i = u j i when n < j i < j, or ũ0 j i 2 IR according to the straight-line program which computes f;

( u n+s " m 1 k+3 " m n k n+2 ) 2 " 1 2 + z 2 0 + z 2 1 + + z 2 k 1 " 1 2 < " 2 ;
V = (z 0 ; z 1 ; : : : ; z k ) 2 IR k+1 1 : g 2 (z 1 ; : : :

; z k ) = " 1 ; z 2 0 + z 2 1 + + z 2 k = 1 " 1
Denote by Q : IR k+s+1 n+2 ! IR k+1 n+2 the linear projection along the coordinates u n+1 ; : : : ; u n+s . The linear projection Q : V f ! Q (V) is an isomorphism of the semialgebraic sets, since the projection Y (V) = ( (z 0 ; z 1 ; : : : ; z k ) 2 IR k+1 n+2 : 0 @ f(z 1 ; : : : ; z k ; " k+3 ; : : :

; " n+2 ) " m 1 k+3 " m n k n+2 ! 2 " 1 1 A 2 + (z 2 0 + z 2 1 + + z 2 k 1 " 1 ) 2 < " 2 )
and the inverse mapping is given by the polynomial mapping u j = ũ0 j 1 ũ0 j 2 , n + 1 j n + s. Then V Q (V) because of (3). Furthermore, st 1 ( Q (V)) = V ; the left side is de nable since for any point (z 0 ; : : : ; z k ) 2 Q (V) the square of its euclidean norm kz o ; : : :

; z k k 2 = z 2 0 + + z 2 k < 1 " 1 + " 1 2 2 < 1 " 1 + 1.
By the same reason lemma 1 from GV88] states that the number N 3 of the connected components of V does not exceed the number N 4 of the connected components of Q (V), the latter coincides with the number of the connected components of V since it is isomorphic to Q (V).

We claim that for any connected component W IR k (which is an open set in the euclidean topology) of the component IR k fg = 0g and an arbitrary point w 0 2 @W on the boundary, there exists a point (z 1 ; : : : ; z k ) 2 W (IR 1 ) IR k 1 from the completion W (IR 1 ) (as we have seen above from Tarski's transfer principle, the connected components W of the complement are in the bijective correspondence with their completions W (IR 1 ) W, being the connected components of the complement fg = 0g (IR 1 ) in IR k 1 , the number of these connected components we denote by N 0 ) such that g 2 (z 1 ; : : : ; z k ) = " 1 and st 0 (z 1 ; : : : ; z k ) = w 0 (cf. lemma 3 from GV88]). Indeed, pick out an arbitrary point w 2 W. Taking into account that w 0 2 @(W (IR 1 ) ), so g(w 0 ) = 0, and 0 < g 2 (w) 2 IR we conclude that g 2 attains on W (IR 1 ) any intermediate value from IR 1 between 0 and g 2 (w) (using Tarski's transfer principle), in particular, " 1 . Now take a point w 1 2 W (IR 1 ) being the nearest to w 0 such that g 2 (w 1 ) = " 1 (its existence follows again from Tarski's transfer principle). It su ces to prove that st 0 (w 1 ) = w 0 . Suppose the contrary. Then there exists 0 < r 2 IR such that for any point w 2 2 W (IR 1 ) with the distance kw 0 w 2 k r the inequality g 2 (w 2 ) < " 1 holds. Since w 0 2 @W there exists a point w 3 2 W such that kw 0 w 3 k r, then 0 < g 2 (w 3 ) 2 IR and we get a contradiction with the supposition, and that proves the claim. Furthermore, since w 0 2 IR k and st 0 (z 1 ; : : : ; z k ) = w 0 , there exists 0 < r 1 2 IR such that the norm kz 1 ; : : : ; z k k r 1 , a fortiori kz 1 ; : : : ; z k k 2 1 " 1 .

Consider a semialgebraic set V 0 = n (z 1 ; : : : ; z k ) 2 IR k 1 : g 2 (z 1 ; : : : ; z k ) = " 1 o Denote by N 1 the number of the connected components of V 0 containing a point w 4 with the square of the euclidean norm kw 4 k 2 1 " 1 . The proved above claim states that the number N 0 does not exceed N 1 , taking into account that

V 0 IR k fg = 0g (IR 1 ) = IR k 1 (fg = 0g) (IR 1 )
On the other hand, B 0 (H 1 ; : : : ; H m ) N 0 , since u 1 i m L H i j g (evidently, in every connected component, being an open set in the euclidean topology, of the complement of the arrangement IR k S 1 i m H i IR k fg = 0g , there exists a point at which g does not vanish).

Obviously, N 1 is less than or equal to the number N 2 of the connected components of the set V 1 = V 0 \ (z 1 ; : : : ; z k ) 2 IR k 1 : kz 1 ; : : : ; z k k 2 1 " 1 In its turn V 1 = Q 0 (V ), where Q 0 : IR k+1 1 ! IR k 1 is the projection along the coordinate Z 0 . Hence N 2 N 3 .

Gathering the obtained chain of inequalities B 0 (H 1 ; : : : ; H m ) N 0 N 1 N 2 N 3 N 4 for the numbers of the connected components, we conclude that B 0 (H 1 ; : : : ; H m ) does not exceed the number of connected components of V. The latter is less than 2 O(s+k) according to W68] and Tarski's transfer principle (see above).

The proposition is proved.

Lower bounds for randomized computation trees

Recall (see e.g. B83]) that in the computation tree (CT ) testing polynomials are computed along paths using the elementary arithmetic operations.

In particular, for a testing polynomial f i 2 IR X 1 ; : : : ; X n ] at the level i (assuming that the root has the zero level) we have C(f i ) i. Under RCT (cf.

MT82], S83], M85a,b,c]) we mean a collection of CT T = fT g and a probabilistic vector p 0, P p = 1 such that T is chosen with the probability p . The main requirement is that for any input RCT gives a correct output with the probability 1 > 1 2 ( is called the error probability of RCT). For a hyperplane H IR n by H + IR n denote the closed halfspace fL H 0g, where L H is a certain linear function with the zero set H. For a family of hyperplanes H 1 ; : : : ; H m the intersections S + = \ 1 i m H + i is called a polyhedron. An intersection = H i 1 \ \ H i n k is called k-face of S + if dim = dim( \ S + ) = k. By k (S + ) we denote the number of k-faces of S + . Similary (and even simpler) for the arrangement S = 1 i m H i its k-face is any k-dimensional intersection of the form = H i 1 \ \ H i n k .

By k (S) we denote the number of k-faces of S.

Now we are able to formulate the main result of this paper.

Theorem: Let there exist positive constants c 1 ; c 2 ; c 3 ; c 4 such that c 3 (1 c 1 ) < c 2 and an arrangement S = S = 1 i m H i or a polyhedron S = S + = \ 1 i m H + i satisfy the following properties: 1. c 1 n] (S) (m c 2 n ); 2. for any k-face of S with k c 1 n and any subfamily H i 1 ; : : : ; H iq of H 1 ; : : : ; H m with at least q m c 3 hyperplanes such that H i j 6 for each 1 j q and the hyperplanes H i 1 \ ; : : : ; H iq \ in are pairwise distinct, the number of the connected components B ( ) 0 (H i 1 \ ; : : : ; H iq \ ) of the complement in of the arrangement 1 j q (H i j \

) is greater than (m c 4 n ).

Then for any RCT recognizing S, its depth is greater than (n log m).

Before proceeding to the proof of the theorem, we need some preparation. First we x the canonical representation of k-face in two cases: namely, of S and of S + , respectively (see GKMS96]). In the case of S take the maximal i n k m such that H i n k , then the maximal i n k 1 such that H i n k 1 and dim(H i n k \ H i n k 1 ) = n 2 (obviously i n k 1 < i n k ) and so on we produce the indices i n k > i n k 1 > > i 1 such that = H i n k \ \ H i 1 . As the representation of we take the ag of planes:

H i n k H i n k \ H i n k 1 H i n k \ \ H i 1 = .
Now consider the case of S + . W.l.o.g. one could assume that dim S + = n. Under a hyperplane of a l-dimensional polyhedron we mean a (l 1)-plane which is (l 1)-face of the polyhedron. W.l.o.g. one could assume that all hyperplanes H 1 ; : : : ; H m are hyperfaces of S + .

Take the maximal i n k m such that H i n k . Denote the polyhedron S + 1 = H i n k \S + . Obviously, is its k-face and dim S + 1 = n 1. By H 1 denote the family of all hyperplanes H i such that H i and (H i n k \H i ) is a hyperface of S + 1 (thereby, it is (n 2)-face of S + ). Then H 1 fH 1 ; : : : ; H i n k 1 g because of the choice of i n k . Since S + 1 is a convex polyhedron, any of its faces is an intersection of some of its hyperfaces, in particular, any of its face 1 which contains 1 , could be represented as 1 = H i n k \ ( T

H i 2H 0 1 H i )
for a suitable subfamily H 0 1 H 1 .

Assume that by recursion on l it is already produced a sequence of indices i n k > > i n k l+1 , 1 l n k 1 such that H i n k \ \H i n k l 1 +1 is (n l 1 )-face of S + for every 1 l 1 l. Denote (l) = H i n k \ \H i n k l+1 and the polyhedron S + l = (l) \S + . In addition, a family H l fH 1 ; : : : ; H i n k l+1 1 g is produced such that for any H i 2 H l (l) \H i contains and is a hyperface of S + l , and vice versa any hyperface of S + l has the form (l) \H i for a certain H i 2 H l . Hence any face 1 of S + l has the form 1 = (l) \ ( T

H i 2H 0 l H i )
for a suitable subfamily H 0 l H l .

To carry out the recursive step, take as i n k l the maximal index such that H i n k l 2 H l (obviously, i n k l < i n k l+1 ). Then (l+1) = (l) \ H i n k l is a hyperface of S + l (and thereby is (n l 1)-face of S + ). Denote the polyhedron S + l+1 = H i n k l \ S + l . Take as H l+1 the family of all H i 2 H l such that (l+1) \H i is a hyperface of S + l+1 (evidently, (l+1) \H i since H i n k l ; H i 2 H l ). Due to the choice of i n k l we have H l+1 fH 1 ; : : : ; H i n k l 1 g.

It remains to prove that for any hyperface 2 of S + l+1 such that 2 , there exists H i 2 H l+1 for which 2 = (l+1) \H i . According to the property of H l there exist H j 1 ; H j 2 2 H l such that 2 = (l) \ H j 1 \ H j 2 . Since (l+1) 2 and dim (l+1) = dim 2 + 1 = n l 1, either 2 = (l+1) \ H j 1 or 2 = (l+1) \ H j 2 is valid. In the former case H j 1 2 H l+1 , in the latter case H j 2 2 H l+1 . This completes the recursive step. Thus, at the end of recursion we obtain a ag, which we treat as the claimed canonical representation of the k-face :

H i n k H i n k \ H i n k 1 H i n k \ \ H i 1 = such that for each 1 l k H i n k \ \ H i n k l+1 is (n l)-face of S + (the recursion on l implies that dim(H i n k \ \ H i n k l+1 ) = n l).
Fix k-face of S, where either S = S or S = S + . Let H i n k H i n k \ H i n k 1 H i n k \ \ H i 1 = be a ag which represents as described above. For a family of polynomials f 1 ; : : : ; f s 2 IR X 1 ; : : : ; X n ] we de ne V ar ( ) (f 1 ; : : : ; f s ) to be the number of the variables among Y 1 ; : : : ; Y n k (we utilize the notations introduced in section 1) which occur in at least one of lm(f 1 ); : : : ; lm(f s ), where H i 1 ; : : : ; H i n k are the coordinate hyperplanes of the coordinates Y 1 ; : : : ; Y n k , respectively. Since lm(f 1 f s ) = lm(f 1 ) lm(f s ) we get that V ar (H i 1 ;:::;H i n k ) (f 1 f s ) = V ar ( ) (f 1 f s ) = V ar ( ) (f 1 ; : : : ; f s ).

For any CT T 1 we denote by V ar ( ) (T 1 ) = V ar (H i 1 ;:::H i n k ) (T 1 ) the maximum of V ar ( ) (f 1 f s ) taken over all the paths of T 1 , where f 1 ; : : : ; f s are testing polynomials along the path.

The following lemma was proved in GKMS96].

Lemma 1: Let T = fT g be an RCT recognizing a) an arrangement S = 1 i m H i such that = \ 1 j n k H i j is k-face of S, or b) a polyhedron S + = \ 1 i m H + i such that for each 1 l n k \ l j n k H i j is (k + l 1)-face of S + (denote = \ 1 j n k H i j )

with error probability < 1 2 . Then V ar (H i 1 ;:::;H i n k ) (T ) (1 2 ) 2 (n k) for a fraction of 1 2 2 2 of all T 's.

Remark: Notice that the conditions in a), b) are ful lled if ; " k+3 ; : : : ; " k+i+1 ; 0; " k+i+3 ; : : : ; " n+2 ), 1 i n k. Then the point E 6 2 S (because of the choice of the origin of the coordinates system Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k ) and E (0) i 2 S, 1 i n k.

H i n k H i n k \ H i n k 1 H i n k \ \ H i 1 =
Easy counting yields that there is a fraction of 1 2 2(1 ) of all T 's that give the correct outputs for E and for at least (1 2 ) 2 (n k) many among E (0) i , 1 i n k. Take such T 0 and some 1 i 0 n k for which T 0 gives the correct output.

Denote by f 1 ; : : : ; f s the testing polynomials along the path in T 0 followed by the input E. We claim that Y i 0 occurs in one of the leading terms lm(f 1 ); : : : ; lm(f s ) (thereby, Y i 0 occurs in lm(f 1 f s ) = lm(f 1 ) lm(f s ), see above).

Suppose the contrary. Let lm

(f l ) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k n k
, then m i 0 = 0 by the supposition. Then (1) from section 1 implies that sgn(f l (E (0) i 0 )) = sgn(f (n k) )). Therefore, E (0) i 0 satis es all the tests along the path under consideration in T 0 followed by the input E, hence the output of T 0 for the input E (0) i 0 is the same as for the input E, so incorrect, that contradicts the choice of i 0 .

b) First we show that E 2 S + . Take any hyperplane H l = f 1 Z 1 + : : : + k Z k + 1 Y 1 + : : : + n k Y n k + 0 = 0g, 1 l m given by a linear function L H l with the coe cients i ; j 2 IR. We need to show that L H l (E) 0. Let 0 j 0 n k be the uniquely de ned index such that 0 = : : : = j 0 1 = 0, j 0 6 = 0 (if all 0 = : : : = n k = 0 then L H l (E) = 0). We prove that j 0 > 0, this would entail that sgn(L H l (E)) = sgn( j 0 ) > 0. Pick out an arbitrary point v n j 0 = (0; : : : ; 0 | {z } k ; y (n j 0 ) 1 ; : : : ; y (n j 0 ) j 0 ; 0; : : : ; 0) 2 ((H in \ : : : \ H i j 0 +1 ) \ S + ) H i j 0 . Then y (n j 0 ) j 0 6 = 0, therefore y (n j 0 ) j 0 > 0 since v n j 0 2 S + . Hence 0 < sgn L H l (v n j 0 ) = sgn( j 0 y (n j 0 ) j 0

), this implies that sgn( j 0 ) > 0. Thus E 2 S + .

Notice that the points E (+) i = (0; : : : ; 0; " k+3 ; : : : ; " k+i+1 ; " k+i+2 ; " k+i+3 ; : : : ; " n+2 ) 6 2 S + , 1 i n k.

The rest of the proof is similar as in a), with replacing the role of the points E (0) i by E (+) i . In a similar way if m i 0 = 0 then sgn(f l (E (+) i 0 )) = sgn(f (n k) l (0; : : : ; 0 | {z } k

)) = sgn(f l (E)) 6 = 0 again because of (1) from section 1.

Lemma 1 is proved. An analogue of lemma 2 from GKMS96] is the following lemma.

Lemma 2: Let S = S or S = S + satisfy the condition 2. of the the-orem. Assume that CT T 0 for some constant c > 0, satis es the inequality V ar ( ) (T 0 ) c(1 c 1 )n for at least M dc 1 ne-faces of S. Then the depth t of T 0 ful ls either t (n log m) or M O(3 t m (1 c+c 3 + )(1 c 1 )n ), where a constant > 0 could be made as close to zero as desired.

The proof of lemma 2 di ers from the proof of the analogous lemma 2 from GKMS96] proved for d-decision trees, in which the degrees of the testing polynomials do not exceed d, rather than computation trees (considered in the present paper), in which the degrees of the testing polynomials could be exponential in the depth t of CT. Therefore the main tool in the proof of lemma 2 is the lower bound on the border complexity from the proposition (see section 1).

Before proving lemma 2 we show how to deduce the theorem from lemmas 1 and 2. Consider RCT fT g recognizing S with error probability < 1 2 .

Denote k = dc 1 ne. Lemma 1, condition 1. of the theorem and counting imply the existence of T 0 such that the inequality V ar ( ) (T 0 ) (1 2 ) 2 (n k) is true for M = 1 2 2(1 ) (m c 2 n ) k-faces of S. Apply lemma 2 to CT T 0 = T 0 with c = (1 2 ) 2 . If t (n log m) the theorem is proved, else since the error probability could be made a positive constant as close to zero as desired at the expence of increasing by a constant factor the depth of RCT M85a,c], take such that (1 c + ) < c 2 c 3 (1 c 1 ) 1 c 1 . Then lemma 2 entails that t

(n log m), which proves the theorem. Thus, it remains to prove lemma 2.

Proof of lemma 2: To each k-face of S satisfying the inequality V ar ( ) (T 0 ) c(n k), we correspond a path in T 0 with the testing polynomials f 1 ; : : : ; f s 2 IR X 1 ; : : : ; X n ] such that V ar ( ) (f 1 f s ) V ar ( ) (T 0 ). Denote f = f 1 f s . Consider a canonical representation of by a ag (see above)

H i n k H i n k \ H i n k 1 : : : H i n k \ : : : \ H i 1 =
Fix this path of T 0 for the time being and consider all k-faces to which corresponds this path. We arrange the representing ags of all these k-faces in a tree T which we call the tree of ags (cf. the proof of lemma 2 from GKMS96]). T has a root with the zero level, each its path has the same length n k (such trees are called regular), some of its vertices are labeled.

We construct T by induction on the level of its vertices. The base of induction. For each k-face to which corresponds the xed path of T 0 , construct a vertex, being a son of the root of T , and to this vertex (of level 1) attach the hyperplane H i n k (we utilize inroduced above notations). Thus, to di erent sons of the root di erent hyperplanes are attached. We label the constructed vertex if and only if Y n k jf (the latter means that the linear function or the variable Y n k gives a contribution into V ar ( ) (f)). Besides, we assign to the constructed vertex the polynomial f (1) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k 1 ] (see section 1). Now assume by induction on l that l < n k levels of T are already constructed. Consider any vertex v of T at l-th level. To the vertex v leads the partially labeled path (from the root), to whose vertices the beginning elements of a ag are attached successively: H i n k H i n k \ H i n k 1 : : : H i n k \ : : : \ H i n k l+1 = 1 (4) Finally, the polynomial f (l) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l ] is assigned to the vertex v. Recall (see section 1) that f (l) is de ned on (n l)-plane 1 . Besides, v is either labeled or not labeled.

Thus, to di erent vertices at the level l are attached the di erent beginnings of ags.

At the inductive step we construct the sons of v. Namely, for any k-face with the same beginning (4) of its representing ag consider the next element of its ag, let it be 1 \H i n k l . Construct a son of v to which we attach 1 \ H i n k l and assign the polynomial f (l+1) 2 IR Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k l 1 ]. We label this vertex if and only if Y n k l jf (l) (recall that due to the maintainance property, see section 1, the latter condition means that the linear form or the variable Y n k l gives a contribution into V ar ( ) (f)). This completes the inductive construction of T . The leaves (or paths) of T correspond bijectively to k-faces of S to which the xed path of T 0 corresponds. To each leaf (or path) of T which corresponds to k-face the ag representing H i n k H i n k \ H i n k 1 : : : H i n k \ : : : \ H i 1 = is attached along the path (which is partially labeled).

Now we proceed to estimating the number of leaves of T . For a vertex v consider all its labeled sons (we utilize the introduced above notations). Each labeled son corresponds to a hyperplane H i such that the linear function L 1 \H i jf (l) , where L 1 \H i is a certain linear function on (n l)-plane 1 with the zero set 1 \ H i , being a hyperplane in 1 , and to di erent sons correspond di erent hyperplanes 1 \ H i . Consider the family H of all such hyperplanes H i . First assume that it contains at least m c 3 hyperplanes. Then the condition 2. of the theorem implies that the number of the connected components b = B ( 1 ) 0 (fH i \ 1 g H i 2H ) of the complement in 1 of the arrangement S H i 2H (H i \ 1 ) is greater than (m c 4 n ). On the other hand the proposition (see section 1) entails that b 2 O(s+n l) 2 O(s+n) , taking into account that the complexity C(f) = C(f 1 f s ) 2s 1. This provides the lower bound on the depth of T 0 , namely, t s (n log m), that proves lemma 2. Thus, we can assume that any vertex v of T has less than m c 3 labeled sons. Besides the labeled sons, each vertex could have at most m unlabeled sons. Furthermore, due to the maintenance property, along each path of T at least c(1 c 1 )n vertices are labeled (see the inductive step above).

To estimate the number of leaves in T introduce an auxiliary magnitude M(R; Q) to be the maximal possible number of the leaves in a regular tree (actually, we could stick with subtrees of T , so they are partially labeled)

with the length of any path equal to R and with at most Q unlabeled vertices along the path. One can assume w.l.o.g. that Q R m (if Q > R then set M(R; Q) = 0, the inequality R m holds since we consider the subtrees of T , and to each path of T a ag of the length at most m is attached).

Considering such a tree and its subtrees with the roots being the sons (both unlabeled and labeled) of the root of the tree, we get the following inductive inequality:

M(R; Q) m M(R 1; Q 1) + m c 3 M(R 1; Q)
For the base of induction, obviously M(0; 0) = 1. By induction on R we obtain the bound M(R; Q) m Q m (c 3 + 1 )R for arbitrary 1 > 0 and a suitable > 0.

Substituting R = n dc 1 ne, Q = (1 c)(n dc 1 ne), we conclude that the number of the leaves of T is less than O(m (1 c)(1 c 1 )n+(c 3 + )(1 c 1 )n ) for arbitrary > 0.

To complete the proof of lemma 2 it remains to notice that the tree of ags T was constructed for a xed path of CT T 0 ; there are at most 3 t paths of T 0 . On the other hand, every k-face of S, satisfying the inequality V ar ( ) (T 0 ) c(1 c 1 )n, corresponds to one of the leaves of a tree of ags constructed for one of the paths of T 0 . Hence the number of such k-faces M O(3 t m (1 c+c 3 + )(1 c 1 )n ).

3 Quadratic complexity lower bound for RCTs solving the restricted integer programming

The restricted integer programming is the arrangement L n;j = a2f0;:::;j 1g n faX = 1g IR n of m = j n hyperplanes for some j 2 (see e.g. M85b]). For j = 2 L n;2 is the knapsack problem.

As an application of the theorem we prove the following corollary.

Corollary: For any RCT solving the restricted integer programming L n;j , its depth is greater than (n 2 log j).

To check the conditions 1., 2. of the theorem rst take 3 4 < c 1 < 1. Any k = dc 1 ne-face of L n;j can be given by n k linear equations g 1 ; : : : ; g n k of the form aX = 1 from L n;j . If other linear equations g 0 1 ; : : : ; g 0 n k from the family L n;j give the same k-face then their linear hulls coincide: L(g 1 ; : : : ; g n k ) = L(g 0 1 ; : : : ; g 0 n k ).

Take a prime j p < 2j. Let us show that the linear hull L(g 1 ; : : : ; g n k )

contains at most p n k linear equations from the family L n;j . Consider the linear equations from (L(g 1 ; : : : ; g n k ) \ L n;j ) mod p (we treat the linear equations as their vectors of the coe cients). Then the results are pairwise distinct vectors, they constitute a family F IF n+1 p , choose among the elements from F a basis over IF p , it contains at most n k elements (otherwise, the preimages of F prior taking modp would be linear independent as well).

All the vectors from F are the linear combinations over IF p of the elements of the basis, therefore, F contains at most p n k elements, thus the cardinality jL(g 1 ; : : : ; g n k ) \ L n;j j = jFj p n k .

Any (n k)-tuple of the linearly independent linear equations from L n;j provides a k-face. Therefore, any k-face is provided by less or equal to p n k n k ! p (n k) 2 (2j 1) (n k) 2 number of (n k)-tuples because of the shown above. On the other hand, denote by I l , 1 l n the number of linearly independent l-tuples from L n;j . Obviously, I 1 = j n 1. By induction on l for l n 1 we have I l+1 I l (j n p l ) l+1 again because of the shown above. Hence, I l (j n 1)(j n p)(j n p 2 ) (j n p l 1 ) 1 l! > (j n 1)(j n 2j)(j n (2j) 2 ) (j n (2j) l 1 ) 1 l! > j nl 1 1 + (2j) + (2j) 2 + + (2j) l 1 j n ! 1 l! = j nl 1 (2j) l 1 (2j 1)j n ! 1 l! If l n 2 we have (2j) l 1 (2j 1)j n 1 3 , i.e. I l > ( j nl l! ). Substituting l = n k, we conclude that the number of k-faces k (L n;j ) is greater than j (1 c 1 1 )n 2 (2j) (1 c 1 ) 2 n 2 ! j ((1 c 1 )(2c 1 1) 1 )n 2

for arbitrary 1 > 0. Thus, to satisfy the condition 1. in the theorem one can take c 2 = (1 c 1 )(2c 1 1) 1 .

To justify the condition 2. in the theorem take any k 1 -face of L n;j where k 1 k given by n k 1 linear equations g 1 ; : : : ; g n k 1 from L n;j , and besides, q j c 3 n linear equations h 1 ; : : : ; h q from L n;j . Take a certain 0 < c 5 < 1 which will be speci ed later. Denote k 2 = dc 5 ne. There are q k 2 (j c 5 (c 3 )n 2 ) k 2 -tuples from h 1 ; : : : ; h q for arbitrary > 0. If two k 2 -tuples h i 1 ; : : : ; h i k 2 and h l 1 ; : : : ; h l k 2 give the same face in (i.e. a face of L n;j , being a subset of ), the linear hulls coincide: L(g 1 ; : : : ; g n k 1 ; h i 1 ; : : : ; h i k 2 ) = L(g 1 ; : : : ; g n k 1 ; h l 1 ; : : : ; h l k 2 ) (cf. above). Therefore, for any face in there are at most p n k 1 +k 2 k 2 (2j) c 5 (n k 1 +c 5 n)n such k 2 -tuples (since the latter linear hull contains at most p n k 1 +k 2 linear equations from L n;j , see above). Furthermore, (2j) c 5 (n k 1 +c 5 n)n j 2c 5 (1 c 1 +c 5 )n 2 . Thus, the number of faces in of the subarrangement S ( ) = S 1 i q ( \ fh i = 0g) is greater than j c 5 (c 3 2+2c 1 2c 5 )n 2 . Now take c 3 = 1 2 , then the requirement c 3 (1 c 1 ) < c 2 is ful lled for small enough 1 > 0. Since c 3 2 + 2c 1 > 0, one could choose c 5 > 0 and > 0 small enough to provide c 0 4 = c 5 (c 3 2 + 2c 1 2c 5 ) > 0. Thus, we have proved so far that the number of faces in in the subarrangement S ( ) is greater than (j c 0 4 n 2 ). Take any 0 < c 4 < c 0 4 . The required bound 2. of the theorem on the number of the connected components of the complement in of the subarrangement S ( ) B ( ) 0 ( \fh 1 = 0g; : : : ; \fh q = 0g) (j c 4 n 2 ) (and thereby the corollary) follows from the following general remark (this can be deduced also from B92], but for the sake of selfcontainess we give a short and elementary proof of it).

Remark: For any arrangement S = S 1 i m H i IR n and 0 k n 1 the number of k-faces in the arrangement k (S) < B 0 (H 1 ; : : : ; H m ).

Proof: Intersecting S with a generic (n k)-plane, we reduce the remark to the case k = 0.

Thus k = 0. Choose a generic hyperplane H and shift it parallel to itself. When it contains a vertex v of S we show that there \appears" a new (in other words, not yet swept) connected component of the complement IR n S with a vertex v and situated completely on one side of H. Indeed, let v = T 1 j n H i j for some H i 1 ; : : : ; H in . Take the coordinates system with the coordinate hyperplanes H i 1 ; : : : ; H in . Let H have an equation in these coordinates 1 X 1 + + n X n = 0, each i 6 = 0, 1 i n, since H is generic. Then the \orthant" f i X i 0; 1 i ng (which is situated completely on one side of H) contains a connected component of the complement IR n S with a vertex in v.

So, to each vertex v of S corresponds a connected component of the complement IR n S. In addition, to the rst (in the order of shifting H) vertex v 1 corresponds also at least one more connected component situated in the \orthant" f i X i 0; 1 i ng (so on the other side of H) with a vertex in v 1 , this implies the strict inequality in the remark.

Lower bound on the complexity of deterministic computation trees

For CT T 0 which recognizes either an arrangement S = S or a polyhedron S = S + given by the hyperplanes H 1 ; : : : ; H m , we can give the similar com-plexity lower bound (log N) as in the theorem, where N is the number of k-faces of S, without the restriction N m (n) imposed in the theorem. Theorem 2: Let CT T 0 with the depth t recognize S with N k-faces, and S satisfy the following condition. For any k 1 -face of S with k 1 k and any subset H i 1 ; : : : ; H is with s N c 3 =(n k) for a certain c 3 < 1 such that the planes H i 1 \ ; : : : ; H is \ are pairwise distinct from , the number of connected componets of the complement in of the arrangement B ( ) 0 (H i 1 \ ; : : : ; H is \ ) N c 4 for a suitable c 4 > 0. Then t (log N).

The proof follows the proof of the theorem with considerable simpli cations. Namely, in lemma 1 one states that V ar ( ) (T 0 ) = n k. In lemma 2 we have either the bound 2 t N (c 4 ) or the bound N 3 t N c 3 due to the estimation M(n k; 0) N c 3 .

Notice that the Theorem 2 in case of an arrangement S = S follows from SY82], B83] without the condition in the Theorem 2. In case of a polyhedron S = S + a weaker complexity lower bound (log N= log log N) was proved in Theorem 2 from GKV96] without the condition of Theorem 2.

Open Problem

We were not able to prove any superlinear lower bound or a linear upper bound on the Element Distinctness(cf. M85a], GKMS96]) for randomized computational trees. Note that the corresponding lower bound for randomized decision trees is (n log n), GKMS96].

n

  of this coordinates system Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k does not lie in any l-face with l < k and besides, in the case b) (0; : : : ; 0) belongs to the polyhedron S + . Also we require that for any testing polynomial f from any CT T f (n k) (0; : : : ; recall that f (n k) 6 0 depends only on H i 1 ; : : : ; H i n k , see section 1). a) Consider the point E = (0; : : : ; 0 | {z } k ; " k+3 ; : : : ; " n+2 ) and the points E (0) i = (0; : : : ; 0 | {z } k

  of the choice of the origin of the coordinates system Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k . By the same token sgn(f l (E)) = sgn(f(

  is the canonical ag representation of in both cases of S and S + (see above).

Proof of Lemma 1: Choose the coordinates Z 1 ; : : : ; Z k ; Y 1 ; : : : ; Y n k such that Z 1 ; : : : ; Z k are the coordinates in and H i 1 ; : : : ; H i n k are the coordinate hyperplanes of Y 1 ; : : : ; Y n k , respectively (cf. section 1), which satisfy the following properties. The origin (0; : : : ; 0)

| {z }

i n fX i = 0g or the \orthant" T 1 i n fX i 0g was proved
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