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Lower Bound on Testing Membership to a Polyhedron by Algebraic Decision and Computation Trees

We introduce a new method of proving lower bounds on the depth of algebraic d-degree decision (resp. computation) trees and apply it to prove a lower bound (log N) (resp. (log N= log log N)) for testing membership to an n-dimensional convex polyhedron having N faces of all dimensions, provided that N > (nd) (n) (resp. N > n (n) ). This bound apparently does not follow from the methods developed by M. Ben-Or, A. Bj orner, L. Lovasz, and A. Yao B. 83], BLY 93], Y 94] because topological invariants used in these methods become trivial for convex polyhedra.

Introduction

A problem of testing membership to a semialgebraic set was considered by many authors (see, e.g., B 83], B 92], BKL 92], BL 92], BLY 92], GKV 94], MH 85], MMP 96], Y 92], Y 93], YR 80] and the references there). We consider a problem of testing membership to a convex polyhedron P in n-dimensional space R n . Let P have N faces of all the dimensions. In MH 85] it was shown, in particular, that for this problem O(log N)n O(1) upper bound is valid for the depth of linear decision trees. In YR 80] a lower bound (log N) was obtained. A similar question was open for algebraic decision and computation trees. In GKV 94] we proved a lower bound (log N) for the depth of algebraic decision trees testing membership to P, provided that N > (dn) (n 2 ) . In the present paper we weaken the latter assumption to N > (dn) (n) and also prove a lower 1 bound (log N= log log N) for algebraic computation trees, provided that N > n (n) . In this new form the bound looks plausible to be applicable to polyhedra given by 2 O(n) linear constraints (like in \knapsack" problem), thus having 2 O(n 2 ) faces. In the present paper we apply the obtained lower bound to a concrete class of polyhedra given by (n 2 ) linear constraints and with n (n) faces.

In GV 94] the lower bound ( p log N) was proved for the Pfa an computation tree model. This model uses at gates Pfa an functions, the latter include all major elementary transcendental and algebraic functions. Several topological methods were introduced for obtaining lower bounds for the complexity of testing membership to by linear decision trees, algebraic decision trees, algebraic computation trees (the de nitions one can nd in, e.g., B 83]).

In B 83] a lower bound (log C) was proved for the most powerful among the considered in this area computational models, namely algebraic computation trees, where C is the number of connected components of or of the complement of . After that, in BLY 92], a lower bound (log ) for linear decision trees was proved, where is Euler characteristic of , in Y 92] this lower bound was extended to algebraic decision and computation trees. A stronger lower bound (log B) was proved later in BL 92], B 92] for linear decision trees, where B is the sum of Betti numbers of (obviously, C; B). In Y 94] the latter lower bound was extended to the algebraic decision and computation trees. In MMP 96] the lower bound ( p log(B)=n) was proved for parallel complexity model.

Unfortunately, all the mentioned topological tools fail when is a convex polyhedron, because B = 1 in this situation. The same is true for the method developed in BLY 92] for linear decision trees, based on the minimal number of convex polyhedra onto which can be partitioned.

To handle the case of a convex polyhedron, we introduce in Sections 1, 3 another approach which di ers drastically from GKV 94]. Let W be a semialgebraic set accepted by a branch of an algebraic decision tree. In Section 3 we make an \in nitesimal perturbation" of W which transforms this set into a smooth hypersurface. Then we describe the semialgebraic subset of all the points of the hypersurface in which all its principal curvatures are \in nitely large" (the set K 0 in Section 3). We also construct a more general set K i (for each 0 i n 1) of the points with in nitely large curvatures in the intersections with the shifts of a xed (n i)-dimensional plane. Section 1 provides a short system of inequalities for determining K i . It is done by developing an explicit symbolic calculis for principal curvatures.

In Section 2 we introduce some necessary notions concerning in nitesimals and apply them to de ne the \standard part" K i = st(K i ) R n . We show (Corollary to Lemma 5 in Section 3) that to obtain the required bound for the number of i-faces P i of P such that dim(P i \ W) = i it is su cient to estimate the number of faces P i with dim(P i \ K i ) = i. In Section 4 we reduce the latter bound to an estimate of the number of local maxima of a generic linear function L on K i with the help of a Whitney strati cation of K i . To estimate these local maxima we introduce in Section 5 another in nitesimal perturbation of K i and obtain a new smooth hypersurface. At this point a di culty arises due to the fact that K i (and therefore, the related smooth hypersurface) are de ned by systems of inequalities involving algebraic functions, rather than polynomials, because in the expressions for curvatures (in Section 1) square roots of polynomials appear. We represent the set of local maxima of L on the smooth hypersurface by a formula of the rst-order theory of real closed elds with merely existential quanti ers and quanti er-free part . We estimate in Section 5 (invoking Mi 64] in a usual way) the number of the connected components of the semialgebraic set de ned by .

In Section 6 we describe a particular class of polyhedra (dual to cyclic polyhedra MS 71]) having large numbers of faces, for which Theorem 1 provides a nontrivial lower bound.

In Section 7 we give an outline of the proof of the complexity lower bound for testing membership to a polyhedron by a computation (rather than decision) trees; see Theorem 1 0 below. A complete proof is given only for the case of decision trees because for computation trees it's similar with an addition of some extra technical detailes. Now let us formulate precisely the main result. We consider algebraic decision trees of a xed degree d (see, e.g., B 83], Y 93]). Suppose that such a tree T, of the depth k, tests a membership to a convex polyhedron P R n . Denote by N the number of faces of P of all dimensions from zero to n 1. In this paper we agree that a face is \open", i.e., does not contain faces of smaller dimensions.

Theorem 1. k (log N); provided that N (dn) cn for a suitable c > 0.

Let us x a branch of T which returns \yes". Denote by f i 2 R X 1 ; : : : ; X n ]; 1 i k the polynomials of degrees deg(f i ) d, attached to the vertices of T along the xed branch. Without loss of generality, we can assume that the corresponding signs of polynomials along the branch are f 1 = = f k 1 = 0; f k 1 +1 > 0; : : : ; f k > 0: Then the (accepted) semialgebraic set W = ff 1 = = f k 1 = 0; f k 1 +1 > 0; : : : ; f k > 0g lies in P.

Our main technical tool is the following theorem.

Theorem 2. The number of faces P 0 of P such that dim(P 0 ) = dim(P 0 \W) is bounded from above by (knd) O(n) . Let us deduce Theorem 1 from Theorem 2.

For each face P 0 of P there exists at least one branch of the tree T with the output \yes" and having an accepted set W 1 R n such that dim(W 1 \ P 0 ) = dim(P 0 ):

Since there are at most 3 k di erent branches of T, the inequality N < 3 k (knd) O(n) follows from Theorem 2. This inequality and the assumption N > (dn) cn (for a suitable c) imply k (log N), which proves Theorem 1. Note that in the case k 1 = 0 for an open set W and each face P 0 of P we have P 0 \ W = ;. Thus in what follows we can suppose that k 1 1.

Finally we formulate a complexity lower bound for algebraic computation trees. Let k be now the depth of a computation tree, which tests a membership to P. Theorem 1 0 . k (log N= log log N); provided that N n c 1 n for a suitable c 1 > 0.

Computer algebra for curvatures

Let a polynomial F 2 R X 1 ; : : : ; X n ] with deg(F ) < d. Assume that at a point x 2 fF = 0g R n the gradient grad x (F ) = @F @X 1 ; : : : ; @F @X n (x) 6 = 0. Then, according to the implicit function theorem, the real algebraic variety fF = 0g R n is a smooth hypersurface in a neighbourhood of x.

Fix a point x 2 fF = 0g. Consider a linear transformation X ! A x X + x, where A x is an arbitrary orthogonal matrix such that u 1 = A x e 1 + x = grad x (F ) kgrad x (F )k is the normalized gradient and e 1 ; : : : ; e n is the coordinate basis at the origin. Then the linear hull of vectors u j = A x e j + x; 2 j n is the tangent space T x to fF = 0g at x. Denote by U 1 ; : : : ; U n the coordinate variables in the basis u 1 ; : : : ; u n . By the implicit function theorem, there exists a smooth function H x (U 2 ; : : : ; U n ) de ned in a neighbourhood of x on T x such that fF = 0g = fU 1 = H x (U 2 ; : : : ; U n )g in this neighbourhood.

Let grad x (F ) = (~ 1 ; : : : ; ~ n ) with ~ i 0 6 = 0. Take any permutation i 0 of f1; : : : ; ng such that i 0 (1) = i 0 . Denote ( 1 ; : : : ; n ) = (~ i 0 (1) ; : : : ; ~ i 0 (n) ) (thus 1 6 = 0) and i = p 2 1 + + 2 i ; 1 i n. Obviously i > 0 and n = kgrad x (F )k.

As A x one can take the following product of (n 1) orthogonal matrices:

Y 0 k n 2 0 B B B B B B B B B B B @ n k 1 n k 0 0 n k n k 0 0 0 1 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 1 0 0 0 n k n k 0 0 n k 1 n k 0 0 0 0 0 0 1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 1 1 C C C C C C C C C C C A
(in the kth matrix of this product the element n k 1 n k occurs at the positions (1; 1) and (n k; n k)).

Denote F x (U 1 ; : : : ; U n ) = F(A T x (U 1 ; : : : ; U n ) + x). Di erentiating this function twice and taking into the account that F x (H x (U 2 ; : : : ; U n ); U 2 ; : : : ; U n ) = 0 in a neighbourhood of x in T x we get @2 F x @U 1 @U j @H x @U i + @F x @U 1 @ 2 H x @U i @U j + @ 2 F x @U i @U j = 0 (1) for 2 i; j n. Since @H x @U i ? ? ? (U 2 ;:::;U n )=0 = 0 and @F x @U 1 ? ? ? (U 1 ;:::;U n )=0 = kgrad x (F )k 6 = 0; evaluating the equality (1) at x (i.e., substituting (U 1 ; : : : ; U n ) = 0) we obtain (cf. Mi 64]): @ 2 H x @U i @U j ? ? ? (U 2 ;:::;U n )=0 = (kgrad x (F )k)1 @ 2 F x @U i @U j ? ? ? (U 1 ;:::;U n )=0 :

(2)

Introduce the symmetric (n 1) (n 1)-matrix (the matrix of Weingarten map Th 77], Ch.9) H x = @ 2 H x @U i @U j ? ? ? (U 2 ;:::;U n )=0 :

Its eigenvalues 2 ; : : : ; n belong to R and are called the principal curvatures of the hypersurface fF = 0g at x Th 77], Ch.12. Now we describe symbolically the set of all points x with all principal curvatures greater than some parameter .

Denote by (Z) the characteristic polynomial of the matrix H x . The roots of are exactly 2 ; : : : ; n . Due to Sturm theorem, every 2 ; : : : ; n is greater than if and only if l ( ) l+1 ( ) < 0; 0 l n 2, where 0 = ; 1 = 0 0 and 2 ; : : : ; n 1 is the polynomial remainder sequence of 0 ; 1 Lo 82]. Obviously deg Z ( l ) = n l 1.

Observe that every element of the matrix A x can be represented as a fraction 1 = 2 where 2 = 1 1 n n , 1 0; : : : ; n 0 are integers and 1 = ( 1 ; : : : ; n 1 ; X 1 ; : : : ; X n ) is a polynomial in Formula (2) and Habicht's theorem Lo 82] imply that deg( l ) (nd) O(1) . We summarize a description of the set of all points with large principal curvatures in the following lemma. Lemma 1. Fix 1 i 0 n. The set of all points x 2 fF = 0g such that grad x (F ) = (^ 1 ; : : : ; ^ n ) has ^ i 0 6 = 0 and all principal curvatures of the hypersuface fF = 0g at x are greater than can be represented as fF = 0; g 1 > 0; : : : ; g n > 0g. Here g 1 = ^ 2 i 0 ; g 2 ; : : : ; g n are polynomials in of degrees at most 2n with coe cients being quadratic-irrational algebraic functions (see above) of degrees less than (nd) O(1) .

Remark. Observe that a set given by a system of inequalities involving real algebraic functions is semialgebraic. Hence the set introduced in Lemma 1 is semialgebraic.

Calculis with in nitesimals

The de nitions below concerning in nitesimals follow GV 88].

Let F be an arbitrary real closed eld (see, e.g., L 65]) and an element " be in nitesimal relative to elements of F. The latter means that for any positive element a 2 F inequalities 0 < " < a are valid in the ordered eld F("). Obviously, the element " is transcendental over F. For an ordered eld F 0 we denote by F0 its (unique up to isomorphism) real closure, preserving the order on F 0 L 65].

Let us remind some other well-known statements concerning real closed elds. A Puiseux (formal power-fractional) series over F is series of the kind b = X i 0 a i " i = ; where 0 6 = a i 2 F for all i 0, integers 0 < 1 < : : : increase and the natural number 1. The eld F((" 1=1 )) consisting of all Puiseux series (appended by zero) is real closed, hence F((" 1=1 )) g F(") F("). Besides the eld F p 1]((" 1=1 )) is algebraically closed.

If 0 < 0, then the element b 2 F((" 1=1 )) is in nitely large. If 0 > 0, then b is in nitesimal relative to elements of the eld F. A vector (b 1 ; : : : ; b n ) 2 F((" 1=1 )) n is called Fnite if each coordinate b i ; 1 i n is not in nitely large relative to elements of F.

For any Fnite element b 2 F((" 1=1 )) its standard part st(b) is de nable, namely st(b) = a 0 in the case 0 = 0 and st(b) = 0 if 0 > 0. For any Fnite vector (b 1 ; : : : ; b n ) 2 F((" 1=1 )) n its standard part is de ned by the equality st(b 1 ; : : : ; b n ) = (st(b 1 ); : : : ; st(b n )):

For a set W F((" 1=1 )) n we de ne st(W) = fst(w) : w 2 W and w is F niteg:

The following \transfer principle" is true T 51]. If F 0 ; F 00 are real closed elds with F 0 F 00 and P is a closed (without free variables) formula of the rst order theory of the eld F 0 , then P is true over F 0 if and only if P is true over F 00 .

In the sequel we consider in nitesimals " 1 ; " 2 ; : : : such that " i+1 is in nitesimal relative to the real closure R i of the eld R(" 1 ; : : : ; " i ) for each i 0. We assume that R 0 = R.

For an R i -nite element b 2 R i+1 its standard part (relative to R i ) denote by st i (b) 2 R i . For any b 2 R j ; j > i we de ne st i (b) = st i (st i+1 (: : : st j 1 (b) : : :). For a semialgebraic set V F n 1 de ned by a certain formula of the rst order theory of the real closed eld F 1 and for a real closed eld F 2 F 1 we de ne the completion V (F 2 ) F n 2 of V as the semialgebraic set given in F n 2 by the same formula (we say that V (F 2 ) is de ned over F 1 ). We omit super-index (F 2 ) in V (F 2 ) when this does not lead to ambiguity. In a similar way one can de ne completions of polynomials and algebraic functions.

For any quadratic-irrational function (see Section 1) of the form f(X 1 ; : : : ; X n ; p ' 1 ; : : : ; p ' r ) where f 2 R i X 1 ; : : : ; X n ; Z 1 ; : : : ; Z r ]; ' e 2 R i X 1 ; : : : ; X n ]; 1 e r; and a point y 2 R n j ; j i such that st i (y) is de nable and ' e (y) 0; 1 e r, we have st i (f(y)) = f(st i (y)). Indeed, for Puiseux series b (see above) with b > 0 (and therefore with a 0 > 0) its square root Note that one can apply the transfer principle also to a formula containing quadraticirrational functions since any such formula can be replaced by an equivalent formula of rst-order theory. This can be done with replacing each occurrence of p ' e by new variable Z e , adding the quanti er pre x 9Z e and inequalities Z e 0; Z 2 e = ' e ; 1 e r.

Denote by B x (r) the open ball in R n i centered at x and of radius r, and by k k the completion of Euclidean distance function.

The following lemma shows that the standard part of a semialgebraic set coincides with the standard part of its completion.

Lemma 2 Let R m F R j where F is a real closed eld and V F n is a semialgebraic set de ned over F. Then st m (V ) = st m (V (R j ) ). Proof. The inclusion st m (V ) st m (V (R j ) ) is trivial.

To prove the opposite inclusion take a point x 2 st m (V (R j ) ) and consider a semialgebraic set fkx yk 2 : y 2 V g F. This set is a nite union of (either closed, either open or semi-open) intervals. This is obvious for a semialgebraic subset of R, for an arbitrary real closed eld this follows from the transfer principle. Let ! be the left endpoint of the left-most among these intervals. If x = 2 st m (V ) then there exists 0 < r 0 2 R m such that ! > r 2 0 , hence B x (r 0 ) \ V = ;. By the transfer principle the completion of the latter set is also empty: B x (r 0 ) \ V (R j ) = ;. This contradicts to the inclusion x 2 st m (V (R j ) ) and proves the lemma.

For a subset E R n m denote by cl(E) its closure in the topology with the base of all open balls. Denote by @E the boundary fy 2 R n m : for any 0 < r 2 R m ; 6 = B y (r) \ E 6 = B y (r)g: Note that the above de nition of the closure, being applied to a semialgebraic set and written as a formula of rst order theory of the eld R m , involves quanti ers. The following lemma shows that the closure of a semialgebraic set can be described in terms of in nitesimals.

Lemma 3 (cf. Lemma 1 GV 92]). a) Let polynomials ' e 2 R q X 1 ; : : : X n ]; 1 e r and quadratic-irrational functions h 1 ; : : : ; h j ; g 1 ; : : : ; g s 2 R q X 1 ; : : : ; X n ; p ' 1 ; : : : ; p ' r ] and natural numbers q; l; m satisfy inequalities q < l < m. Consider semialgebraic sets V = f' 1 > 0; : : : ; ' r > 0; g 1 0; : : : ; g s 0; h 1 > 0; : : : ; h j > 0g R n q and V = f' 1 > " l ; : : : ; ' r > " l ; g 1 > " m ; : : : ; g s > " m ; h 1 > " l ; : : : ; h j > " l g R n m :

Then cl(V ) = st q (V) = st q (cl(V)): b) @V st q (@V).
Proof.

a) Let x 2 cl(V) and the standard part y = st q (x) be de nable. We prove that y 2 cl(V ).

Consider a point y 1 = st l (x), then ' e (y 1 ) = st l (' e (x)) " l ; 1 e r; g s 1 (y 1 ) = st l (g s 1 (x)) 0; 1 s 1 s; h j 1 (y 1 ) = st l (h j 1 (x)) " l ; 1 j 1 j:

Hence y 1 2 V (R l ) .

If y = 2 cl(V ) then there exists 0 < r 2 R q such that B y (r)\V = ;. Due to the transfer principle the latter relation holds also over the eld R l , namely, B y (r) \ V (R l ) = ;. On the other hand, y 1 2 B y (r) \ V (R l ) since st q (y 1 ) = y. The obtained contradiction proves the inclusion st q (cl(V)) cl(V ). Now let y 2 cl(V ). Consider a semialgebraic set fky zk 2 : z 2 Vg R m . Then this set is a nite union of (either closed, either open or semi-open) intervals (cf. the proof of Lemma 2). Let ! be the left endpoint of the left-most among these intervals. If y = 2 st q (V) then there exists an element r 1 ; 0 < r 1 2 R q such that ! > r 2 1 , i.e., V \ B y (r 1 ) = ;. On the other hand, V \ B y (r 1 ) 6 = ; since y 2 cl(V ). Taking into the account the inclusion V V, we get a contradiction which proves the inclusion cl(V ) st q (V). b) Let x 2 @V and x = 2 st q (@V). Then there exists an element r 2 ; 0 < r 2 2 R q such that B x (r 2 ) \ @V = ; (cf. the proof of a)). Because of a), x 2 st q (V), therefore B x (r 2 ) V.

On the other hand, V \ R n q V , hence B x (r 2 ) \ R n q V , this contradicts to the inclusion x 2 @V .

Lemma is proved.

In the proof of Lemma 3 a) it was actually shown that for any semialgebraic set U R n m we have st q (U) = st q (cl(U)); q < m. Corollary. Using the notations of Lemma 3 let V 0 = f' 1 > 0; : : : ; ' r > 0; h = 0; h 1 > 0; : : : ; h j > 0g R n q ; V 0 = f' 1 > " l ; : : : ; ' r > " l ; h = " m ; h 1 > " l ; : : : ; h j > " l g R n m :

Then st q (V 0 ) cl(V 0 ).

To prove Corollary, in Lemma 3 a) instead of V consider a modi ed set f' 1 > " l ; : : : ; ' r > " l ; 2" m < h < 2" m ; h 1 > " l ; : : : ; h j > " l g V 0 :

Lemma 4 (cf. Lemma 4a) in GV 88]). Let F be a smooth algebraic function de ned on an open semialgebraic set U R n i and determined by a polynomial with coe cients from R i . Then " i+1 is not a critical value of F (i.e., grad y (F ) does not vanish at any point y 2 fF = " i+1 g \ U (R i+1 ) ).

Proof. Sard's theorem Hi 76] and the transfer principle imply the niteness of the set of all critical values of F in U (R i+1 ) , moreover this set lies in R i .

Curved points

For any i-face P i denote by P i the i-plane containing P i . First let us reduce Theorem 2 to the case of compact P. Let t be the minimal dimension of faces of P and P t be a face with dim(P t ) = t. Then P t is a t-plane.

For each i-face P i of P with dim(P i \ W) = i choose a point x P i 2 (P i \ W) such that a suitable neighbourhood of x P i in P i is contained in W.

First consider the case t 1. Choose any hyperplane transversal to P t such that the points x P i for all i-faces P i lie in one of two semi-spaces of R n n , denote this semi-space by ~ . Replace P by (P \ ~ ) reducing t by one. Continue this process while t 1. Now consider the case t = 0.

Observe that there exists a linear form L = 1 X 1 + + n X n with j 2 R; 1 j n such that for every 2 R the intersection fL + 0g \ P is compact. Take such that x P i 2 P 0 = fL + 0g \ P for all P i . The number of all i-faces P 0 i of P 0 such that dim(P 0 i \ W) = i is greater or equal than the number of all i-faces P i of P such that dim(P i \ W) = i. >From now on we assume, without loss of generality, that P is compact.

For an m-plane Q R n j and a point x 2 R n j denote by Q(x) the m-plane parallel to Q and containing x.

Two planes Q 1 ; Q 2 of arbitrary dimensions are called transversal if

dim Q 1 (0) \ Q 2 (0) = maxf0; dim Q 1 (0) + dim Q 2 (0) ng:
For every 0 i < n choose an (n i)-plane n i (de ned over R) transversal to every face of the polyhedron P.

Recall that in the Introduction we have xed a branch of the tree T, denoted by f i ; 1 i k the polynomials attached to vertices along the branch, and assumed that the signs of these polynomials are

f 1 = = f k 1 = 0; f k 1 +1 > 0; : : : ; f k > 0: Denote f = f 2 1 + + f 2 k 1 .
Fix 0 i < n and denote by f (x) the restriction of f on n i (x) (for x 2 R n j ). De nition. A point y 2 ff = " 3 g is called i-curved if grad y (f (y) " 3 ) 6 = 0, all principal curvatures of the variety ff (y) = " 3 g n i (y) at y are greater than " 1 2 and f k 1 +1 (y) > " 2 ; : : : ; f k (y) > " 2 .

Remark. We x an orthogonal basis in n i (0) with coordinates belonging to R. Then in De nition we consider curvatures in n i (y) with respect to the basis obtained from the xed one by the shift Y ! Y + y.

One can consider this de nition as a kind of \localization" of the key concept of an angle point from GV 94]. Denote the set of all i-curved points by K i R n 3 . Observe that K i is semialgebraic due to the remark at the end of Section 1. Denote K i = st 0 (K i ) R n , this set is closed semialgebraic by Lemma 5.1 from RV 94]. Corollary to Lemma 3 implies that K i cl(W).

Lemma 5. Suppose that P i an i-face of P such that dim(W \P i ) = i, then W \P i K i . Proof. Let x 2 W \ P i . Then f j (x) > c; k 1 + 1 j k for a certain 0 < c 2 R. Hence there exists 0 < r 2 R such that for any point y from the open ball B x (r) we have f j (y) > c; k 1 + 1 j k. Due to the transfer principle, f j (y) > c; k 1 + 1 j k for any point y 2 B x (r) \ R n 3 .

Observe that ff = " 3 g \ n i (x) = ff (x) = " 3 g is a smooth hypersurface in n i (x), because x 2 R n and " 3 is not a critical value of the polynomial f (x) by Lemma 4.

Our purpose is to prove that x = st 2 (y) (and a fortiori x = st 0 (y)) for a suitable y 2 ff = " 3 g\ n i (x) such that all principal curvatures of the variety ff = " 3 g\ n i (x) 10 at the point y are greater than " 1 2 . This would imply Lemma 5 since grad y (f (x) " 3 ) 6 = 0 (see De nition).

The point x is a vertex of the polyhedron P = P \ n i (x) because n i is transversal to P i . Note that for each (n i 1)-face of P the normalized orthogonal vector (in n i (x))

to this face has all coordinates in R. The vertex x belongs to at least (n i) among (n i 1)-faces of the polyhedron P.

Choose any (n i 1)-faces T 1 ; : : : ; T n i of this kind. Denote by T n j (x) the closed cone with vertex at x, formed by planes T 1 ; : : : ; T n i and containing P.

Observe that for any point y 2 cl(B x (r=2)) \ R n 3 the inequalities f j (y) > c; k 1 + 1 j k hold, since cl(B x (r=2)) B x (r). Therefore, z ranges over all points from ff = " 3 g \ n i (x) \ cl(B x (r=2)), and 0 is in nitesimal relative to R 2 .

ff = 0; f j > c; k 1 + 1 j kg \ cl(B x (r=2)) = ff = 0g \ cl(B x (r=2)): Denote D = T \ cl(B x (r=2)). For any point z 2 ff = " 3 g \ n i (x) \ cl(B x (r=2)) we have st 2 (z) 2 ff = 0g \ n i (x) \ cl(B x (r=2)) (see Section 2). Hence st 2 (z) 2 W \ n i (x) \ cl(B x ( r=2 
Let us shift (in n i ) each (n i 1)-dimensional plane among T 1 ; : : : ; T n i parallel to itself outward the cone T to the distance 0 . The shifted planes form a new closed cone T 0 with a vertex x 0 . Obviously T T 0 . Observe that the distance kx x 0 k is in nitesimal relative to R 2 . Denote D 0 = T 0 \cl(B x (r=2)). Then ff = " 3 g\ n i (x)\cl(B x (r=2)) D 0 .

In the plane n i (x) choose a hyperplane Q such that the coordinates of the normalized vector orthogonal to Q belong to R, and T 0 \ Q(x 0 ) = fx 0 g. Take a hyperplane Q(y) (in n i (x)) such that its distance from the point x 0 is positive, belongs to R, and

T 0 \ Q(y) 6 = ;. Observe that T 0 \ Q(y) is contained in a certain (n i 1)-dimensional
open ball B Q(y) with the center z such that the radius and the coordinates of the point z x 0 belong to R.

There exists the unique (n i 1)-dimensional sphere S n i (x) containing both the point (x 0 + z)=2 and the (n i 2)-dimensional sphere @B. Then the point x 0 lies outside the (n i)-dimensional open ball B bounded by S. Denote by T 00 n i (x) the closed cone with the vertex at x 0 and with the base S. Then T 0 (T 00 n @T 00 ) because T 0 \ Q(y) B B.

The intersection S \ @T 00 is a (n i 2)-dimensional sphere situated in a certain hyperplane (in n i (x)). Then S \ @T 00 divides S n (S \ @T 00 ) into two connected components S 1 and S 2 . Let S 1 be located in the same half-space (in n i (x)) with the boundary as the point x 0 .

Denote by S 1 ( ) the dilation of S 1 with the coe cient with respect to the point x 0 .

Observe that the open cone T 00 n @T 00 is the disjoint union of the dilations S 1 ( ) over all 0 < 2 R 3 . There exists the minimal 0 > 0 such that S 1 ( 0 ) \ ff = " 3 g \ n i (x) \ cl(B x (r=2)) 6 = ;: Then S 1 ( 0 ) divides the open cone T 00 n @T 00 into two connected components, moreover the set ff = " 3 g \ n i (x) \ cl(B x (r=2)) and all points from T 00 n @T 00 su ciently close to the point x 0 belong to the di erent connected components.

Taking into the account that f(x) = 0, and applying Lemma 3 from GV 88] to the polynomial f (x) , we conclude that there exists a point y 0 2 ff = " 3 g \ n i (x) such that the distance kx y 0 k is in nitesimal relative to R 2 . Evidently, y 0 2 cl(B x (r=2)) and ky 0 x 0 k is also in nitesimal relative to R 2 . Hence 0 is in nitesimal relative to R 2 as well. Therefore, the radius of the sphere S( 0 ) is also in nitesimal relative to R 2 .

Consider a point y 2 S 1 ( 0 ) \ ff = " 3 g \ n i (x) \ cl(B x (r=2)):

Then ky x 0 k is in nitesimal relative to R 2 . Besides, the hypersurfaces S 1 ( 0 ) and ff = " 3 g \ n i (x) (as well as the set ff = " 3 g \ n i (x) \ cl(B x (r=2))) has the same tangent plane T (in n i (x)) at the point y.

Let H y be (n i 1) (n i 1)-matrix introduced in Section 1 (with f (x) playing the role of F and y playing the role of x). For any normalized vector v 2 T the second derivative vH y v of the function H y (see Section 1) in the direction v is greater or equal to the corresponding second derivative for the sphere S( 0 ) (at the point y). The latter second derivative equals to 1= (cf. the proof of Theorem 4 in Ch. 12 Th 77]). In particular, for the principal curvatures of the hypersurface ff (x) = " 3 g = ff = " 3 g\ n i (x) (in n i (x)), the inequalities 2 1= ; : : : ; n i 1= are valid, hence 2 > " 1 2 ; : : : ; n i > " 1 2 . Thus, the point y is i-curved (recall that f j (y) > c > " 2 ; k 1 + 1 j k since y 2 B x (r)).

Finally, st 2 (y) = x, because kx yk is in nitesimal relative to R 2 and x 2 R n , a fortiori st 0 (y) = x, i.e., x 2 K i . The lemma is proved.

Corollary. If dim(W \ P

i ) = i then dim(K i \ P i ) = i.
This Corollary implies that in order to prove Theorem 2 it is su cient to bound the number of i-faces P i for which dim(K i \ P i ) = i. Lemma 6. For any smooth point z 2 K i with the dimension dim z (K i ) i + 1 the tangent plane T z to K i at z is not transversal to n i .

Remark. In the particular case i = 0 Lemma 6 states that K 0 consists of a nite number of points.

Proof of Lemma 6. First let us reduce the proof to the case i = 0 (so assume in the reduction that dim(K 0 ) 0). Thus, let i 1 and suppose that e = dim z (K i ) i + 1.

Assume that T z is transversal to n i , then dim(T z \ n i (z)) = e i. Take any (n e)plane R n i (z) de ned over R for which T z \ R = fzg. Consider the linear orthogonal projection : R n 3 ! R e 3 onto e-subspace along R. Then dim( (T z )) = e. Therefore, by the implicit function theorem, (K i ) R e contains e-dimensional ball B (z) (r) for a certain 0 < r 2 R.

For any point x 2 K i there is a point x 0 2 K i such that st 0 (x 0 ) = x, hence st 0 ( (K i )) B (z) (r).

For any point y 2 R n the set K (y) 0 of 0-curved points of the restriction f (y) coincides with n i (y) \ K i according to De nition. Applying the assumption that the lemma is valid for i = 0 to the polynomial f (y) we obtain the inequality dim st 0 ( n i (y)\K i ) 0 (taking into the account that f (y) is de ned over R).

Let us show that (K i ) does not contain a ball B w (r 1 ) for any 0 < r 1 2 R and w 2 R n 3 . Assume the contrary, then there exists a point w 1 2 B w (r 1 ) \ R e . Let y 1 2 R n be a point such that (y 1 ) = w 1 . Denote 0 = ( n i ), then dim( 0 ) = e i; n i = 1 ( 0 ). Then the following inequalities hold: dimst 0 0 (w 1 ) \ (K i ) dimst 0 0 (w 1 ) \ B w (r 1 ) = e i 1:

On the other hand, 0 (w 1 ) \ (K i ) = (K i \ n i (y 1 )), and, therefore, dimst 0 0 (w 1 ) \ (K i ) dimst 0 K i \ n i (y 1 ) 0;

(the latter inequality was proved above). The obtained contradiction shows that (K i ) does not contain a ball B w (r 1 ) for any 0 < r 1 2 R.

We claim that for any ball B y 2 (r 2 ) B (z) (r) de ned over R 3 such that 0 < r 2 2 R, the intersection B y 2 (r 2 ) \ @ (K i ) 6 = ;. Assume the contrary. Then either B y 2 (r 2 ) (K i ) or B y 2 (r 2 ) \ (K i ) = ;. The inclusion B y 2 (r 2 ) (K i ) is impossible as was shown above. If B y 2 (r 2 ) \ (K i ) = ;, then st 0 (y 2 ) = 2 st 0 ( (K i )), the latter contradicts the inclusions B st 0 (y 2 ) (r 2 =2) B (z) (r) st 0 ( (K i )) of the sets in the space R e . This proves the claim.

Observe that dim @( (K i )) e 1. Applying Lemma 5.1 from RV 94], we get dimst 0 @( (K i )) e 1.

On the other hand we shall now prove that st 0 @( (K i )) B (z) (r). This contradiction would complete the proof of the reduction of the lemma to the case i = 0. Indeed, let y 3 2 B (z) (r). Observe that the set fky y 3 k 2 : y 2 @( (K i ))g is semialgebraic. Hence, this set is a nite union of points and intervals (cf. the proof of Lemma 2). Let ! be the minimal among these points and the endpoints of these intervals. Suppose that y 3 = 2 st 0 @( (K i )) , i.e., there does not exist y 2 @( (K i )) such that st 0 (y) = y 3 . Thus, ! > r 2 3 for a suitable 0 < r 3 2 R. It follows that B y 3 (r 3 )\@( (K i )) = ;.

We get a contradiction with the proved above claim. Now let i = 0. Suppose that the statement of the lemma is wrong and dim(K 0 ) = s 1. There is a linear projection : R n 3 ! R 3 onto one of the coordinates such that (K 0 ) 0 1 ; 0 2 ] for some 0 1 ; 0 2 2 R; 0 1 < 0 2 . Since st 0 ( (K 0 )) 0 1 ; 0 2 ] and 13 (K 0 ) R 3 , being a semialgebraic set, consists of a nite union of intervals and points, there exist 1 ; 2 2 R; 1 < 2 such that (K 0 ) 1 ; 2 ] (R 3 ) .

Our nearest goal is to prove the existence of a semialgebraic curve C 0 K 0 such that the mapping : C 0 ! 1 ; 2 ] (R 3 ) is bijective.

For any point u 2 1 ; 2 ] (R 3 ) take the unique point v u 2 K 0 such that (v u ) = u according to the following rule.

A projection 1 ( 1 (u)) of 1 (u) onto the coordinate X 1 , being a semialgebraic set, is a union of a nite number of points and intervals (with or without endpoints). Let 1 ; 2 be the endpoints of the left-most interval.

Consider four cases. In the rst case 1 ; 2 2 R 3 , then put = ( 1 + 2 )=2. In the second case the interval is given either by inequality X < 2 or by inequality X 2 , we put = 2 1. In the third case the interval is either fX > 1 g or fX 1 g, we put = 1 + 1. In the last case the interval coincides with the whole R 3 , we put = 0.

Note that 2 1 ( 1 (u)). We x the rst coordinate of the point v u under construction equal to .

Consider the projection 2 ( 1 (u) \ fX 1 = g) onto the axis X 2 . Continuing in the similar way, after n steps we obtain a point v u = ( ; : : :) 2 1 (u).

We de ne the semialgebraic curve C 0 to be the set of all the obtained points v u for u 2 1 ; 2 ] (R 3 ) .

The curve C 0 has only a nite number of singular points (this is well-known for algebraic curves over R, for arbitrary real closed elds we use the transfer principle). The curve C 0 with deleted singular points is a nite union of smooth connected semialgebraic curves. Take one of these curves C such that (C) 3 ; 4 ] (R 3 ) for appropriate 3 < 4 ; 3 ; 4 2 R.

Since C K 0 , Theorem 1 from Ch. 9 in Th 77] implies that for any point w 2

C its curvature k(w) is greater or equal to the minimum of principal curvatures of the hypersurface ff = " 3 g at this point w, hence k(w) > " 1 2 (according to De nition).

Consider the Gauss map G : C ! S n 1 where S n 1 is (n 1)-sphere and for a point w 2 C the image G(w) is the normalized vector tangent to C at w.

Let us prove the following statement:

For any reals ; l and any smooth semialgebraic curve C with the projection on a certain coordinate axis greater than l and with the curvature at each point greater than , there exists a hyperplane such that the semialgebraic set \ S n 1 \ G(C) has the dimension zero and contains at least bl = c points.

To prove this statement for a curve C de ned over R observe that the length (with multiplicities) of the image G(C) S n 1 equals to Z w2C k(w) l (cf. Ch. 10 in Th 77]). Observe that the length of a curve C 1 S n 1 equals to the average (with respect to the uniform Borel measure) number of points of intersection C 1 \S n 1 \ over all hyperplanes , multiplied by . This implies the statement for the semialgebraic curves C de ned over R. For curves C de ned over an arbitrary real closed eld this statement follows from the transfer principle (applied for xed and l).

Applying the statement to the curve C with l = 4 3 and xed arbitrary real (taking into the account that for any point w 2 C the curvature k(w) > " 1 2 > ), we conclude that there exists a vector ( 1 ; : : : ; n ) such that C contains at least bl = c points w 1 with the tangent vector t w 1 to C at w 1 satisfying the linear equation t w 1 ( 1 ; : : : ; n ) = 0, and there is a nite number of such points.

One can formulate the condition t w 1 ( 1 ; : : : ; n ) = 0 on a point w 1 2 C as a formula of the rst-order theory of real closed elds (for a xed ). Therefore, there is only a xed nite number (depending on C) of such points w 1 , but since one can take an arbitrary , we get a contradiction. This implies that dim(K 0 ) 0 and completes the proof of the lemma.

Faces of P and Whitney strati cation of K i

Recall that K i , as any semialgebraic set, admits a Whitney strati cation (see, e.g.,

GM 88]). Namely, K i can be represented as a disjoint union K i = S j S j of a nite number of semialgebraic sets, called strata, which are smooth manifolds and such that:

(1) (frontier condition) S j 1 \cl(S j 2 ) 6 = ; if and only if S j 1 cl(S j 2 ) (this de nes a partial order S j 1 S j 2 on the strata);

(2) (Whitney condition A) Let S j 1 cl(S j 2 ) and a sequence of points y m 2 S j 2 tends to a point y 2 S j 1 when m ! 1. Assume that the sequence of tangent planes T y m to S j 2 at points y m tends to a certain plane T. Then T y T where T y is a tangent plane to S j 1 at y. Lemma 7. Suppose that P i is an i-face of P such that dim(K i \ P i ) = i. Assume that S 0 j is a connected component of a stratum S j of K i such that dim cl(S 0 j ) \ K i \ P i = i.

Then S 0 j P i .

Proof. If dim(S j ) = i then S 0 j P i because S 0 j K i cl(W) (see the de nition of K i in Section 3) and cl(W) P, taking into the account that S 0 j is a connected smooth semialgebraic set.

Now let e = dim S j i + 1. We can assume without loss of generality that S j is one of the maximal strata (with respect to the partial order ), otherwise take a maximal stratum containing S j in its closure.

There is a stratum S l such that dim(S l \ cl(S 0 j ) \ K i \ P i ) = i. The property (1) of Whitney strati cation implies that S l cl(S j ). Take a connected component S 0 l of S l for which dim(S 0 l \ cl(S 0 j ) \ K i \ P i ) = i. Then dim(S 0 l ) = i, i.e., dim(S l ) = i because S 0 l is smooth and S 0 l P, hence S 0 l P i arguing as above. Let a point y 2 S 0 l \ cl(S 0 j ) \ K i \ P i be such that for a suitable 0 < r 2 R we have (B y (r) \ P i ) (S 0 l \ cl(S 0 j ) \ K i \ P i ); then T y (S 0 l ) = P i .

There exists a converging sequence y m ! m!1 y; y m 2 S 0 j such that the sequence of e-dimensional tangent planes T y m (S 0 j ) converges when m ! 1 to a certain e-dimensional plane . Due to (2) (Whitney condition A), P i .

Lemma 6 implies that T y m (S 0 j ) is not transversal to n i (taking into the account that y m is a smooth point of K i because S j is a maximal stratum). Therefore, e 0 m = dim(T y m (S 0 j ) \ n i (y m )) e i + 1. Some subsequence T y m q (S 0 j ) \ n j (y m q ) of planes converges when q ! 1 to a certain e 0 -dimensional plane n i (y), where e 0 = e 0 m q e i + 1 for any large enough q.

Choose a basis a 1 ; : : : ; a i of i-plane P i (0) and a basis b 1 ; : : : ; b e 0 of (0). Then vectors a 1 ; : : : ; a i ; b 1 ; : : : ; b e 0 are linearly independent due to transversality of P i and n i . For large enough q 0 , for any q q 0 there exist vectors a (q) 1 ; : : : ; a (q) i ; b (q) 1 ; : : : ; b (q) e 0 2 T y m q (S 0 j ) (0) situated su ciently close to vectors a 1 ; : : : ; a i ; b 1 ; : : : ; b e 0 , respectively, so that the vectors a (q) 1 ; : : : ; a (q) i ; b (q) 1 ; : : : ; b (q) e 0 are also linearly independent. Hence dim(T y m q (S 0 j )) e 0 + i e + 1. This leads to a contradiction with the equality dim(S j ) = e and proves the lemma. Denote g = f k 1 +1 f k . Choose 0 < 2 R satisfying the following properties: (a) is less than the absolute values of all critical values of the restrictions of g on i-faces P i (note that Sard's theorem implies the niteness of the number of all critical values, moreover they all belong to R due to Lemma 4); (b) for any P i such that dim(K i \ P i ) = i the dimension dim fg = g \ cl(S 0 j ) \ K i \ P i i 2 for every connected component S 0 j of a stratum S j such that S 0 j is not contained in P i . Observe that due to Lemma 7 there exists at most nite number of violating this condition because dim(cl(S 0 j ) \ K i \ P i ) i 1, together with (a) this justi es the existence of the required .

Denote K 0 i = K i \ fg = g. Lemma 8.

K 0 i = st 0 (K i \ fjg j < " 1 g):

Proof. We rst prove the inclusion . Denote by F the real closure of the eld R(" 2 ; " 3 ). Since K i is de ned over F we have K i = (K i \ F n ) (R 3 ) . Apply Lemma 2 to the elds R F R 3 taking the set K i \ F n as V . Then st 0 (K i \ F n ) = st 0 (K i ) = K i . Let x 2 K 0 i . It follows that there exists a point y 2 K i \ F n such that st 0 (y) = x. Hence st 0 (g(y)) = g(st 0 (y)) = g(x) = . Then (g(y) ) 2 F is in nitesimal relative to R. Taking into the account the representation of g(y) as a Puiseux series in " 3 with the coe cients being, in their turn, Puiseux series in " 2 (see Section 2), we deduce that jg(y) j < " 1 . Thus y 2 K i \ fjg j < " 1 g, which proves the inclusion .

To prove the inclusion take a point x 2 st 0 (K i \fjg j < " 1 g). Then, in particular, x 2 st 0 (K i ) = K i . There exists a point y 2 K i \ fjg j < " 1 g such that st 0 (y) = x. Then = st 0 (g(y)) = g(st 0 (y)) = g(x). The lemma is proved. Lemma 9. Let for an i-face P i of P the dimension dim(W \ P i ) = i. The following equality of the varieties holds: K 0 i \ P i = fg = g \ ff k 1 +1 > 0; : : : ; f k > 0g \ P i and, moreover, this variety is a nonempty smooth compact hypersurface in P i . Besides, dim cl(K 0 i n P i ) \ K 0 i \ P i i 2:

Proof. First we prove the inclusion (K 0 i \ P i ) fg = g \ ff k 1 +1 > 0; : : : ; f k > 0g \ P i :

We have ff k 1 +1 > 0; : : : ; f k > 0g \ P i = ff = 0; f k 1 +1 > 0; : : : ; f k > 0g \ P i = W \ P i since dim(W \ P i ) = i. By Lemma 5, (ff = 0; f k 1 +1 > 0; : : : ; f k > 0g \ P i ) (K i \ P i ): Intersecting both sides with the variety fg = g, we obtain the inclusion.

To prove the inclusion observe that f j is nonnegative everywhere on K i for each k 1 + 1 j k because K i cl(W) (see Section 3).

On the other hand, f j is nonzero everywhere on K 0 i for k 1 + 1 j k since f k 1 +1 f k = . Thus, K 0 i ff k 1 +1 > 0; : : : ; f k > 0g which proves inclusion. Now let us prove that K 0 i \P i is a nonempty smooth hypersurface in P i . Observe that K 0 i \ P i is bounded because P is compact, besides K 0 i \ P i is closed since its closure K 0 i \ cl(P i ) = K 0 i \ P i ff k 1 +1 > 0; : : : ; f k > 0g \ P i = W \ P i = W \ P i P i : Since dim(ff k 1 +1 > 0; : : : ; f k > 0g\P i ) = i, each connected component of the set ff k 1 +1 > 0; : : : ; f k > 0g\P i contains a connected component of the smooth hypersurface fg = g\P i (in P i ) due to Morse theory (see Hi 76]) and in view of (a). Moreover, each connected component of the hypersurface fg = g \ P i either lies completely in the set ff k 1 +1 > 0; : : : ; f k > 0g \ P i or does not intersect this set.

Finally, the inequality dim cl(K 0 i n P i ) \ K 0 i \ P i i 2 immediately follows from (b). The lemma is proved.

The next section is dedicated to the proof of the following lemma.

Lemma 10. The number of i-faces P i of P such that K0 i \ P i is a nonempty compact smooth hypersurface in P i and dim cl(K 0 i n P i ) \ K 0 i \ P i i 2;

does not exceed (nkd) O(n) . Theorem 2 immediately follows from Lemmas 9 and 10.

5. Extremal points of a linear function on K 0 i Take a linear form L = 1 X 1 + + n X n with generic coe cients 1 ; : : : ; n 2 R.

Fix P i satisfying the conditions of Lemma 10 and denote by L (P i ) the restriction of L on P i . Then L (P i ) attains its maximal value, say (P i ) 0 , on the compact set K 0 i \ P i . Since L (P i ) is a generic linear form on P i as well, the following two properties are ful lled: (i) L (P i ) attains the value (P i ) 0 at a unique point v 2 K 0 i \ P i (cf. Hi 76]);

(ii) the point v does not belong to cl(K 0 i n P i ) (cf. the conditions of Lemma 10).

Indeed, the semialgebric set of linear forms on P i for which the properties (i), (ii) fail, has dimension less than the dimension of the set of all linear forms on P i , and thus for the generic form L the properties (i), (ii) are valid.

Denote by V a connected component of K 0 i \ P i which contains v. The property (ii)

implies that there exists 0 < r 2 R such that B v (r) \ K 0 i = B v (r) \ V . Thus, L attains a local isolated maximum on K 0 i at the point v by the property (i). Hence, there exists an element 0 < (P i ) 2 R such that the values of L on the set @B v (r=2) \ K 0 i are less than (P i ) 0

(P i ) .
Lemma 11. The linear form L attains its maximal value (P i ) on the set cl(K i \ fjg j < " 1 g) \ B v (r=2)

(say, at a point w) and the values of L on the set cl(K i \ fjg j < " 1 g) \ @B v (r=2) are less than st 0 ( (P i ) ) (P i ) . Moreover, st 0 ( (P i ) ) = (P i ) 0 and st 0 (w) = v 2 P i .

Proof. Due to Lemma 8 and the Remark after Lemma 3 from Section 2, we have: st 0 cl(K i \ fjg j < " 1 g) = K 0 i :

By the transfer principle, L attains its maximum (P i ) on the closed bounded set cl(K i \ fjg j < " 1 g) \ cl(B v (r=2)) at some point w. Then st 0 ( (P i ) ) = (P i )

Proof. Because of Lemma 14, the number of local maxima of L on U (i 0 ) does not exceed the number of connected components of the semialgebraic set M = f0 = q " 6 = i @q @X j j @q @X i ; 1 i < j ng R n 6 (by the Lagrange multiplier theorem, see, e.g., Ch. 4 in Th 77] and taking into the account the transfer principle).

Replace each occurrence of the square root q u 2 i 0 + u 2 i 0 (2) + + u 2 i 0 (m) ; 1 m n i in q by a new variable Z m . Denote the resulting polynomial by Q 2 R 5 X 1 ; : : : ; X n ; Z 1 ; : : : ; Z n i ] (cf. Section 1).

Introduce the semialgebraic set M = f0 = Q " 6 = i @Q @X j j @Q @X i ; 1 i < j n; Z m > 0; Z 2 m = u 2 i 0 + u 2 i 0 (2) + + u 2 i 0 (m) ; 1 m n ig R 2n i 6 : Consider the linear projection : R 2n i 6 ! R n 6 ; (X 1 ; : : : ; X n ; Z 1 ; : : : ; Z n i ) = (X 1 ; : : : ; X n ): Then (M) = M. Hence the number of connected components of M is less or equal to the number of connected components of M.

Observe that the degrees of polynomias occuring in M can be bounded from above by This completes the proof of the lemma.

Lemma 15 together with Corollary to Lemma 13 imply Lemma 10 and thereby Theorems 2 and 1.

Lower bounds for concrete polyhedra

In this section we give an application of the lower bound from Theorem 1 to a concrete class of polyhedra. We follow the construction of cyclic polyhedra (see MS 71]), used in the analysis of the simplex method.

Take any m > (n 2 ) points in R n of the form (t j ; t 2 j ; : : : ; t n j ) for pairwise distinct t j ; 1 j m. Consider the convex hull of these points and denote by P n;m R n its dual polyhedron MS 71]. Then P n;m has m faces of the highest dimension n 1 and the number of faces of all dimensions N > m bn=2c bn=2c > m (n) (see MS 71]). Therefore, Theorem 1 implies that the complexity of testing membership to P n;m is bounded by (log N) > (n log m).

We would like to mention that Section 4 of GKV 94] provides a weaker bound (log m) even for algebraic computation trees.

Complexity lower bound for algebraic computation trees

Now we show how to extend the obtained complexity lower bound from decision to computation trees and thereby, to prove Theorem 1 0 .

Let an algebraic computation tree T of the depth k test membership to a polyhedron P. Fix some branch in T with the output \yes", and denote by f 1 ; : : : f k 2 R X 1 ; : : : X n ] the testing polynomials along this branch. Then there is a sequence of polynomials h 1 ; : : : ; h k such that h i 2 R X 1 ; : : : ; X n ; Z 1 ; : : : ; Z i 1 ] with deg(h i ) 2 and f i = h i (X 1 ; : : : X n ; f 1 ; : : : ; f i 1 ) for 1 i k. (In fact the polynomials h i correspond the elementary arithmetic operations and have a simple structure, but we use only that deg(h i ) 2). For this branch a semialgebraic set W = ff 1 1 0; : : : ; f k k 0g P of the accepted points is assigned, where 1 ; : : : ; k 2 f=; >g (see Introduction).

Consider a semialgebraic set W = fZ i = h i (X 1 ; : : : ; X n ; Z 1 ; : : : ; Z i 1 ); 1 i k; Z 1 1 0; : : : ; Z k k 0g R n+k which can be treated as the \graph" of the branch. Denote by : R n+k ! R n the natural projection and by : R n ! R n+k the (graph) mapping (x) = x; f 1 (x); : : : ; f k (x) .

Then (W) = W and (W ) = W, therefore the semialgebraic sets W and W are polynomially isomorphic. By the same token, the polyhedron P is isomorphic to its -image P = (P ). Actually, P satis es the following de nition. De nition. A subset P 1 R m is called a distorted (closed) polyhedron if there exist polynomials g 1 ; : : : ; g s 2 R X 1 ; : : : ; X m ] such that:

(1) zero is a noncritical value of g i for every 1 i s;

(2) the smooth hupersurfaces fg i = 0g intersect transversally, i.e., at any point x 2 R m the gradient vectors grad(g i j )(x) are linearly independent for all i j such that g i j (x) = 0. Finally, P 1 = fg 1 0; : : : g s 1 0; g s 1 +1 = = g s = 0g: A (distorted) face of P 1 is a connected component of a (nonempty) semialgebraic set of the form fg i = 0; i 2 I; g j > 0; j 6 2 I; g s 1 +1 = = g s = 0g P 1 for a subset of indices I f1; : : : ; s 1 g.

  p st(b) is 0 if 0 > 0 and equals to p a 0 if 0 = 0.

  )) P \ cl(B x (r=2)) D; in particular, the distance (z; D) from z to D is in nitesimal relative to R 2 (the distance from a point to a bounded set closed in the topology with the base of all open balls, does exist because it is true over the eld R, over arbitrary real closed eld use the transfer principle). Since the set ff = " 3 g \ n i (x) \ cl(B x (r=2)) is bounded and closed in the topology with the base of all open balls, there exists 0 = max (z; D) (sf. the above arguing) where

(

  knd) O(1) due to Lemma 1 and De nition. Therefore, the number of connected components of M does not exceed (knd) O(n) by Mi 64].

(X 1 ; : : : ; X n ); : : : ; n 1 (X 1 ; : : : ; X n ); X 1 ; : : : ; X n with

R Z 1 ; : : : ; Z n 1 ; X 1 ; : : : ; X n ]. Moreover, 1 + + n 2(n 1) and deg( ) d(n 1). Hence all elements of A x are algebraic functions in X 1 ; : : : ; X n of quadraticirrational type. By the degree of such quadratic-irrational function we mean maxfdeg( ); 1 + + n g: Since an inequality for fraction one could rewrite as a system of inequalities for its numerator and denominator, in what follows we deal with more special algebraic functions in X 1 ; : : : ; X n , namely of the type 1 .

and st 0 (w) = v (due to (i)).
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Since st 0 cl(K i \ fjg j < " 1 g) \ @B v (r=2) K 0 i \ @B v (r=2)

we obtain the second statement of the lemma from the de ning property of (P i ) . Lemma is proved.

Lemma 11 states that L attains a local maximum on the set cl(K i \ fjg j < " 1 g) at a point w such that st 0 (w) 2 P i . In order to estimate the number of such local maximum values of L we shall now construct a smooth hypersurface which is in nitely close to cl(K i \ fjg j < " 1 g). After that it will be su cient to bound the number of local maxima of L on this smooth hypersurface.

For a point y denote the coordinates of the gradient grad y (f (y) " 3 ) = (u 1 ; : : : ; u n i ) (cf. De nition). The set K i \fjg j < " 1 g of the points y = (y 1 ; : : : ; y n ) can be represented as a union of n i semialgebraic sets of the form U (i 0 ) = ff " 3 = 0; u 2 i 0 > 0; p 1 > 0; : : : ; p s > 0g R n 3 ; 1 i 0 n i for some algebraic functions p 1 ; : : : ; p s of the quadratic-irrational type introduced in Section 1, i.e., polynomials (with coe cients from R 2 ) in y 1 ; : : : ; y n and in q u 2 i 0 ;

q u 2 i 0 + u 2 i 0 (2) ; : : : ; q u 2 i 0 + u 2 i 0 (2) + + u 2 i 0 (n i)

(3) (see Lemma 1). Here i 0 is a permutation of f1; 2; : : : ; n ig such that i 0 (1) = i 0 (cf.

Section 1). Denote q = " 2 5 (f " 3 ) 2 (u 2 i 0 " 4 )(p 1 " 4 ) (p s " 4 ): Introduce semialgebraic sets U (i 0 ) 0 = f" 2 5 > (f " 3 ) 2 ; u 2 i 0 > " 4 ; p 1 > " 4 ; : : : ; p s > " 4 g R n 5 and U (i 0 ) = fq = " 6 g \ U (i 0 ) 0 (R 6 ) R n 6 : Lemma 12 (cf. Lemmas 1, 4 in GV 92]). st 3 (U (i 0 ) ) = cl(U (i 0 ) ):

Proof. Let us rst show that to prove the lemma it is su cient to establish the equality st 5 (U (i 0 ) ) = @U (i 0 ) 0 :

(4) Indeed, due to Lemma 3a), st 3 (@U (i 0 ) 0 ) st 3 (cl(U (i 0 ) 0 )) = cl(U (i 0 ) ); thus, due to (4), st 3 (U (i 0 ) ) cl(U (i 0 ) ).

On the other hand, cl(U (i 0 ) ) = @(U (i 0 ) ) because U (i 0 ) ff = " 3 g and thereby U (i 0 ) contains no internal points. Hence, Lemma 3b) implies that cl(U (i 0 ) ) st 3 (@U (i 0 ) 0 ). It follows from (4) that cl(U (i 0 ) ) st 3 (U (i 0 ) ). This would prove the lemma, provided that (4) holds. Now we prove (4) starting with the inclusion .

Let a point y 2 U (i 0 ) and the standard part x = st 5 (y) be de nable. Then q(x) = 0 and " 2 5 (f " 3 ) 2 ; u 2 i 0 " 4 ; p 1 " 4 ; : : : ; p s " 4 : Suppose that x = 2 @U (i 0 ) 0 . Therefore there exists 0 < r 0 2 R 5 such that either B x (r 0 ) U (i 0 ) 0 or B x (r 0 ) \ U (i 0 ) 0 = ;. If B x (r 0 ) U (i 0 ) 0 we get a contradiction with q(x) = 0.

If B x (r 0 ) \ U (i 0 ) 0 = ; we conclude that the intersection B x (r 0 ) \ (U (i 0 ) 0 ) (R 6 ) = ;. Since y belongs to this intersection we again get a contradiction which proves the inclusion in (4).

To prove the inclusion in (4) take a point x 2 @U (i 0 ) 0 . Observe that q is positive everywhere on U (i 0 ) 0 and q vanishes everywhere on @U (i 0 ) 0 , in particular q(x) = 0. Suppose that x = 2 st 5 (U (i 0 ) ). Then there exists 0 < r 1 2 R 5 such that B x (r 1 )\U (i 0 ) = ; (cf. the proof of Lemma 2). Consider the decomposition of the intersection B x (r 1 ) \ U (i 0 ) 0 = j U j into its connected components (which are also semialgebraic sets and there is a nite number of them, see e.g. GV 88]). Since x 2 cl(B x (r 1 ) \ U (i 0 ) 0 ) there is j 0 for which x 2 cl(U j 0 ). Observe that in the set U (i 0 ) 0 fu 2 i 0 > 0g all the square roots (3) are positive. Therefore, by the transfer principle, all quadratic-irrational functions p 1 ; : : : ; p s are continuous in U (i 0 ) 0 , hence q is continuous. All the values of the continuous function q on U j 0 form a connected semialgebraic subset R 5 . So, is an interval (or a point) with endpoints 1 ; 2 2 R 5 ; 1 2 , the set could be either closed, either open, or semi-open. Observe that 1 0 because U j 0 U (i 0 ) 0 . On the other hand, 1 = 0 since q(x) = 0 and x 2 cl(U j 0 ). Obviously, 2 > 0. Due to the transfer principle, q attains on the set U (R 6 ) j 0 all the values from the interval (0; 2 ) (R 6 ) . In particular, there exists a point y 2 U (R 6 ) j 0 such that q(y) = " 6 . Then y 2 B x (r 1 ) \ U (i 0 ) . The obtained contradiction completes the proof of the lemma.

Lemma 13. For a certain 1 i 0 n i the linear form L attains its maximal value

1 on the set cl(U (i 0 ) ) \ B v (r=2) at a certain point w 1 , and the values of L on the 20 set cl(U (i 0 ) ) \ @B v (r=2) are less than st 0 ( (P i ) 1 ) (P i ) . Moreover, st 3 ( (P i ) 1 ) = (P i ) and st 0 (w 1 ) = v 2 P i .

Proof. Since K i \ fjg j < " 1 g =

there is 1 i 0 n i such that w 2 cl(U (i 0 ) ) (see Lemma 11). The linear form L attains its maximum (P i ) 1 on the bounded closed set cl(U (i 0 ) ) \ cl(B v (r=2)) at a point w 1 . Using Lemma 12 and the equaliy st 3 (U (i 0 ) ) = st 3 (cl(U (i 0 ) )) (see the Remark in Section 2), we get: st 3 ( (P i ) 1 ) = (P i ) . Due to (i), st 0 (w 1 ) = v.

The values of L on the set cl(U (i 0 ) ) \ @B v (r=2) are less than (P i ) 0 (P i ) due to the similar statement in Lemma 11, taking into the account that st 3 (cl(U (i 0 ) ) \ @B v (r=2)) @B v (r=2):

Lemma is proved.

Since w 1 is a local maximum of L on the set cl(U (i 0 ) ) we obtain the following corollary.

Corollary. The number of i-faces P i satisfying the conditions of Lemma 10 does not exceed the number of all the values of local maxima of the linear form L on the set 1 i 0 n i cl(U (i 0 ) ): Lemma 14. U (i 0 ) is a smooth closed hypersurface, namely for each point x 2 U (i 0 ) there is a neighborhood of x in which U (i 0 ) is de ned by the equation q = " 6 and the gradient grad x (q " 6 ) does not vanish.

Proof. First we prove that cl(U (i 0 ) ) = U (i 0 ) . Let a point x 2 cl(U (i 0 ) ). Then q(x) = " 6 ; " 2 5 (f(x) " 3 ) 2 ; u 2 i 0 (x) " 4 ; p 1 (x) " 4 ; : : : ; p s (x) " 4 :

Neither among the latter inequalities could convert into an equality because q(x) = " 6 6 = 0, hence x 2 U (i 0 ) .

Since in the open semialgebraic set fu 2 i 0 > 0g all the square roots (3) are positive, all algebraic functions p 1 ; : : : ; p s occuring in U (i 0 ) 0 are smooth, hence q is smooth as well (sf. proof of Lemma 12). Because of Lemma 4, " 6 is not a critical value of q in the set fu 2 i 0 > 0g. Lemma is proved.

Finally, let us prove the following lemma.

Lemma 15. The number of local maxima of L on U (i 0 ) does not exceed (nkd) O(n) .

We say that a semialgebraic set W 1 = ff 0 1 = = f 0 t 1 = 0; f 0 t 1 +1 > 0; : : : ; f 0 t > 0g P 1 with deg(f 0 j ) d touches a (distorted) face p 1 of P 1 if dim(p 1 \ W 1 ) = dim(p 1 ). Similar to the proof of the Theorem 2 one could prove the following bound.

Theorem 2 0 . The number of the faces of P 1 touched by W 1 does not exceed (dtm) O(m) .

Observe that P R n+k is a distorted polyhedron. We apply Theorem 2 0 to P and the set W, taking into the account that a face p of P is touched by W if and only if the (distorted) face (p) of P = (P ) is touched by (W ) = W. Therefore, the number of touched by W faces of P does not exceed 4k(n + k) O(n+k) (kn) O(n+k) . Finally, as in the introduction, we get the upper bound N < 3 k (kn) O(n+k) (kn) O(n+k) on the number N of the faces of P which implies the lower bound k (log N= log log N) provided that N > n c 1 n for a suitable c 1 , and thus, Theorem 1 0 . Note, that if the restriction N > n c 1 n is not ful lled, the bound log N= log log N grows slower than O(n).

An interesting open problem is to get rid of the denominator log log N in the lower bound.