D Grigoriev 
email: dima@maths.univ-rennes1.fr
  
Randomized Complexity Lower Bound for Arrangements and Polyhedra

 where the randomized lower bound Ω(n 2 ) was ascertained for the KNAPSACK problem. The core of the method is an extension of the lower bound from [8] on the multiplicative complexity of a polynomial.

Introduction.

The complexity lower bounds for deterministic algebraic computation trees were obtained in [START_REF] Steele | Lower bounds for algebraic decision trees[END_REF], [START_REF] Ben-Or | Lower bounds for algebraic computation trees[END_REF], [START_REF] Bjorner | Linear decision trees: volume estimates and topological bounds[END_REF], [START_REF] Yao | Algebraic decision trees and Euler characteristic[END_REF], [START_REF] Yao | Decision tree complexity and Betti numbers[END_REF], [START_REF] Montana | Lower bounds for arithmetic network II: sum of Betti numbers[END_REF] where the topological methods were developed. In particular, these methods provide the lower bound Ω(log N ) for recognizing (a membership to) a union of planes (of different dimensions) with N faces, under a face we mean any nonempty intersection of several among these planes. As consequences we obtain the lower bound Ω(n log n) for the DISTINCTNESS problem 1≤i<j≤n {X i = X j } ⊂ IR n , EQUALITY SET problem {(x 1 , . . . , x n , y 1 , . . . , y n ) : (x 1 , . . . , x n ) is a permutation of (y 1 , . . . , y n )} ⊂ IR 2n and the lower bound Ω(n 2 ) for the KNAP-1 SACK problem I⊂{1,...,n} i∈I x i = 1 ⊂ IR n . In [START_REF] Grigoriev | Improved Lower Bound on Testing Membership to a Polyhedron by Algebraic Decision Trees[END_REF], [START_REF] Grigoriev | Lower bound on testing membership to a polyhedron by algebraic decision and computation trees[END_REF] a differentialgeometric approach for recognizing polyhedra (to which the mentioned topological methods are not applicable) was proposed which gives the lower bound Ω(log N/ log log N ) where N is the number of faces of the polyhedron.

The first results on the randomized computation trees (RCT) appeared in [START_REF] Manber | Probabilistic, Nondetemrinistic and Alternating Decision Trees[END_REF], [START_REF] Meyer | Simulating probabilistic by deterministic algebraic computation trees[END_REF], [START_REF] Grigoriev | Lower Bounds on Complexity of Testing Membership to a Polygon for Algebraic and Randomized Computation Trees[END_REF], [START_REF] Grigoriev | Lower Bound for Randomized Linear Decision Tree Recognizing a Union of Hyperplanes in a Generic Position[END_REF] but for decade an open problem remained, to obtain nonlinear complexity lower bounds for recognizing natural problems by RCT. In [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF] for the first time the nonlinear lower bound was obtained for somewhat weaker computational model of the randomized algebraic decision trees in which the testing polynomials in the branching nodes are of a fixed degree, rather than the computation trees in which the testing polynomials are computed along the path of the computation, so they could have in principle an exponential degree. The approach of [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF] provides the lower bound Ω(log N ) for recognizing an arrangement, i.e. a union of hyperplanes, and for recognizing a polyhedron, where N is again the number of faces. In particular, this leads to the lower bound Ω(n log n) for the DISTINCTNESS problem and Ω(n 2 ) for the KNAPSACK problem. For the EQUALITY SET problem a complexity lower bound on a randomized algebraic decision tree seems to be an open question.

But the method of [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF] does not provide a lower bound for more interesting model of RCT. Only in [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] a method was developed which gives in particular, a lower bound Ω(n 2 ) for the KNAPSACK problem on RCT. This method relies on the obtained in [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] lower bound on the multiplicative border complexity of polynomials. The lower bound Ω(log N ) of [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] holds for arrangements or polyhedra which satisfy some special conditions which fail, for example, for the DISTINCTNESS problem.

In [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF] the proposed lower bound Ω(log N ) was proved for the randomized algebraic computation trees over an arbitrary field of zero characteristic, here the computation branches according to the signs {=, =} unlike the more customary computation trees over the reals, studied in all previously mentioned papers including the present one, which branch according to the signs {≤, >}. The core of the method of [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF] was the lower bound Ω(log N ) on the multiplicative complexity of a polynomial (see e.g. [START_REF] Strassen | Die Berechnungskomplexitaet von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten[END_REF]), where N is the number of the faces of an arrangement on which the polynomial vanishes.

In the present paper the latter lower bound Ω(log N 1 ) on the multiplica-tive complexity of a polynomial is extended (see the corollary in section 2) to a modified invariant N 1 of an arrangement, namely, the number of so-called strongly singular faces (see section 1) of the arrangement (now the polynomial does not necessary vanish on the arrangement). Relying on this lower bound on the multiplicative complexity, the proof of the complexity lower bound Ω(log N ) for RCT recognizing an arrangement or a polyhedron with N faces (see the theorem in section 3) becomes much simpler than the related ones in [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF]. In particular, this gives the lower bound Ω(n log n) for RCT recognizing the DISTINCTNESS problem. The construction of RCT with the linear complexity O(n) for the EQUALITY SET problem from [START_REF] Buergisser | On randomized algebraic test complexity[END_REF] shows that the condition imposed in the present paper (as well as in [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF]) that the recognized set is an arrangement, so a union of hyperplanes, rather than a union of planes of greater than 1 codimensions as in the EQUALITY SET problem, is essential. In the last section 4 we generalize the construction of [START_REF] Buergisser | On randomized algebraic test complexity[END_REF] and design a RCT for recognizing the following problem {(x 1 , . . . , x n , y 1 , . . . , y m ) : each of the both differences of the multisets {x 1 , . . . , x n } and {y 1 , . . . , y m } contains at most k elements } ⊂ IR n+m which has a linear complexity when k is a constant. For arbitrary n, m the randomized complexity of this problem remains to be an open question.

Let us also mention the paper [START_REF] Grigoriev | Randomization and the computational power of analytic and algebraic decision trees[END_REF] where a complexity lower bound was established for the randomized analytic decision trees (rather than for more customary algebraic ones) and also the paper [START_REF] Grigoriev | Nearly sharp complexity bounds for multiprocessor algebraic computations[END_REF] where a lower bound was ascertained for a randomized parallel computational model (rather than a sequential model considered in the quoted papers including the present one).

1 Strongly singular faces of an arrangement with respect to a polynomial.

By F we denote a field of zero characteristic. Let H 1 , . . . , H m ⊂ F n be hyperplanes and let Γ =

H i 1 ∩ • • • ∩ H i n-k have the dimension dim Γ = k, so Γ is k-face of the arrangement S = H 1 ∪ • • • ∪ H m . Fix arbitrary coordinates Z 1 , . . . , Z k in Γ. Then treating H i 1 , . . . , H i n-k as the coordinate hyperplanes of the coordinates Y 1 , . . . , Y n-k , one gets the coordinates Z 1 , . . . , Z k , Y 1 , . . . , Y n-k in F n .
The next construction of the leading terms of a polynomial is similar to [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF]. [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] define its leading term

For any polynomial

f (Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ) ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ] following
αZ m 1 1 • • • Z m k k Y m 1 1 • • • Y m n-k n-k 0 = α ∈ F with respect to the coordinate system Z 1 , . . . , Z k , Y 1 , . . . , Y n-k as the minimal term in the lexicographical ordering Z 1 > • • • > Z k > Y 1 > • • • > Y n-k , namely as follows. First take the minimal integer m n-k such that Y m n-k n-k occurs in the terms of f = f (0) . Consider the polynomial 0 ≡ f (1) = f Y m n-k n-k (Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-1 , 0) ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-1 ]
which could be viewed as a polynomial on the hyperplane

H i n-k . Observe that m n-k depends only on H i n-k and not on Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-1 , since a linear transformation of the coordinates Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-1 changes the coefficients (being the polynomials from F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-1 ]
) of the expansion of f in the variable Y n-k , and a coefficient vanishes identically if and only if it vanishes identically after the transformation. Then f (1) is the coefficient of the expansion of f at the power Y

m n-k n-k . Second, take the minimal integer m n-k-1 such that Y m n-k-1
n-k-1 occurs in the terms of f (1) . In other words, Y 

≡ f (2) ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-2 ] the coefficient of the expansion of f at the monomial Y m n-k-1 n-k-1 Y m n-k n-k . Obviously f (2) = f (1) Y m n-k-1 n-k-1 (Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-2 , 0)
One could view f (2) as a polynomial on the (n -2)-dimensional plane

H i n-k ∩ H i n-k-1 .
Continuing in the similar way, we obtain consecutively the (non-negative) integers m n-k , m n-k-1 , . . . , m 1 and the polynomials

0 ≡ f (l) ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-l ] 1 ≤ l ≤ n -k, by induction on l. Herewith, Y m n-k-l+1 n-k-l+1
is the minimal power of Y n-k-l+1 occurring in the terms of f , in which occurs the monomial Y

m n-k-1+2 n-k-l+2 • • • Y m n-k n-k for each 1 ≤ l ≤ n -k. Notice that m n-k , . . . , m n-k-l depend only on the hyperplanes H i n-k , . . . , H i n-k-l and not on Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-l-1 . Then f (l) is the coefficient of the expansion of f at the monomial Y m n-k-l+1 n-k-l+1 • • • Y m n-k n-k and f (l+1) = f (l) Y m n-k-l n-k-l (Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-l-1 , 0) Thus, f (l) depends only on H i n-k , . . . , H i n-k-l and not on Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-l-1 . One could view f (l) as a polynomial on the (n -l) dimensional plane H i n-k ∩ • • • ∩ H i n-k-l+1
. Continuing, we define also m k , . . . , m 1 . Observe that the leading term lm(f (l) ) = αZ

m 1 1 • • • Z m k k Y m 1 1 • • • Y m n-k-l
n-k-l , we refer to this equality as the maintenance property (see also [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF]).

From now on the construction and the definitions differ from the ones in [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF].

For any polynomial g ∈ F [X 1 , . . . , X n ] one can rewrite it in the coordinates g(Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ) and expand g = g s + g s+1 + • • • + g s 1 , where g j ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ], s ≤ j ≤ s 1 is homogeneous with respect to the variables Y 1 , . . . , Y n-k of degree j and g s = g (0) s ≡ 0. Consider the leading term lm(g s ) = αZ

m 1 1 • • • Z m k k Y m 1 1 • • • Y m n-k n-k
and denote by Var (H i 1 ,...,H i n-k ) (g) the number of positive (in other words, nonzero) integers among m n-k , . . . , m 1 , note that s = m 1 + • • • + m n-k . Although Var (H i 1 ,...,H i n-k ) (g) depends on the order of the hyperplanes H i 1 , . . . , H i n-k , we will denote it sometimes by Var (Γ) (g) for brevity when no ambiguity could happen. As we have shown above Var

(H i 1 ,...,H i n-k ) (g) is independent from the coordinates Z 1 , . . . , Z k of Γ. Obviously, Var (H i 1 ,...,H i n-k ) (g) coincides with the number of 1 ≤ l ≤ n -k such that Y n-k-l |g (l)
s , the latter condition is equivalent to that the variety {g (l)

s = 0} ∩ H i n-k ∩ • • • ∩ H i n-k-l+1 contains the plane H i n-k ∩• • •∩H i n-k-l+1 ∩H i n-k-l (being a hyperplane in H i n-k ∩• • •∩H i n-k-l+1 ).
It is convenient (see also [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF]) to reformulate the introduced concepts by means of infinitesimals in case of a real closed field F (see e.g. [START_REF] Lang | Algebra[END_REF]). We say that an element ε transcendental over F is an infinitesimal (relative to F ) if 0 < ε < a for any element 0 < a ∈ F . This uniquely induces the order on the field F (ε) of rational functions and further on the real closure F (ε) (see [START_REF] Lang | Algebra[END_REF]).

One could make the order in F (ε) clearer by embedding it in the larger real closed field F ((ε 1/∞ )) of Puiseux series (cf. e.g. [START_REF] Grigoriev | Solving Systems of Polynomial Inequalities in Subexponential Time[END_REF]). A nonzero Puiseux series has the form b = i≥i 0 β i ε i/δ , where -∞ < i 0 < ∞ is an integer, β i ∈ F for every integer i; β i 0 = 0 and the denominator of the rational exponents δ ≥ 1 is an integer. The order on F ((ε 1/∞ )) is defined as follows:

sgn(b) = sgn(β i 0 ). When i 0 ≥ 1, then b is called an infinitesimal, when i 0 ≤ -1, then b is called infinitely large. For any not infinitely large b we define its standard part st(b) = st ε (b) ∈ F as follows: when i 0 = 0, then st(b) = β i 0 , when i 0 ≥ 1, then st(b) = 0.
In the natural way we extend the standard part to the vectors from (F ((ε 1/∞ ))) n and further to subsets in this space.

Now let

ε 1 > ε 2 • • • > ε n+1 > 0 be infinitesimals, where ε 1 is an infinitesi- mal relative to IR; in general ε i+1 is an infinitesimal relative to IR(ε 1 , . . . , ε i ) for all 0 ≤ i ≤ n. Denote the real closed field IR i = IR (ε 1 , . . . , ε i ), in particu- lar, IR 0 = IR. For an element b ∈ IR n+1 for brevity denote the standard part st i (b) = st ε i+1 (st ε i+2 • • • (st ε n+1 (b) • • •)) ∈ IR i (provided that it is definable).
Also we will use the Tarski's transfer principle [START_REF] Tarski | A Decision Method for Elementary Algebra and Geometry[END_REF]. Namely, for two real closed fields F 1 ⊂ F 2 a closed (so, without free variables) formula in the language of the first-order theory of F 1 is true over F 1 if and only if this formula is true over F 2 .

An application of Tarski's transfer principle is the concept of the completion. Let F 1 ⊂ F 2 be real closed fields and Ψ be a formula (with quantifiers and, perhaps, with n free variables) of the language of the first-order theory of the field F 1 . Then Ψ determines a semialgebraic set

V ⊂ F n 1 . The com- pletion V (F 2 ) ⊂ F n 2 is a semialgebraic set determined by the same formula Ψ (obviously, V ⊂ V (F 2 ) ).
One could easily see that for any point (z

1 , . . . , z k ) ∈ IR k k and a polynomial g ∈ IR[X 1 , . . . , X n ] such that g (n-k) s (z 1 , . . . , z k ) = 0 (
we utilize the introduced above notations) the following equality for the signs

σ m 1 1 . . . σ m n-k n-k sgn(g (n-k) s (z 1 , . . . , z k )) = sgn(g(z 1 , . . . , z k , σ 1 ε k+1 ε n+1 , . . . , σ n-k ε n ε n+1 )) (1) 
holds for any σ 1 , . . . , σ n-k ∈ {-1, 1}. For any 1 ≤ i ≤ nk such that m i = 0 (1) holds also for σ i = 0, agreeing that 0 0 = 1. Moreover, the following polynomial identity holds:

g (n-k) s (Z 1 , . . . , Z k ) = st k g(Z 1 , . . . , Z k , ε k+1 ε n+1 , . . . , ε n ε n+1 ) ε m 1 k+1 • • • ε m n-k n ε s n+1
Now let F be an algebraically closed field of zero characteristic. Take a certain 0 < η ≤ 1 (it will be specified later). We call k-face

Γ = H i 1 ∩ • • • ∩ H i n-k of the arrangement S strongly singular (with respect to a polynomial g ∈ F [X 1 , . . . , X n ]) if Var (H i 1 ,...,H i n-k ) (g) ≥ η(n -k).
Denote by N the number of strongly singular k-faces of S with respect to g (since g will be fixed for the time being, in the sequel we omit mentioning of g in this context).

2 Multiplicative complexity and strongly singular faces.

Consider the graph (cf. [START_REF] Strassen | Die Berechnungskomplexitaet von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten[END_REF], [START_REF] Lickteig | On semialgebraic decision complexity[END_REF]) of the gradient map G = {(x, grad g (x)) :

x ∈ F n } ⊂ F 2n = {(x 1 , . . . , x n , v 1 , . . . , v n )}, so v i = ∂g ∂X i (x), 1 ≤ i ≤ n.
The notion of the degree deg was extended in [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF] to constructible sets in an affine space from the usual case of closed projective sets ( [START_REF] Shafarevich | Basic algebraic geometry[END_REF], [START_REF] Mumford | Algebraic geometry[END_REF]). We are now able to formulate the main technical tool of this section (cf. theorem 1 [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF]).

Lemma 1 For any 0 ≤ k ≤ n, 0 < η ≤ 1 and an arrangement S = H 1 ∪ • • • ∪ H m having N strongly singular k-faces with respect to a polynomial g ∈ F [X 1 , . . . , X n ] over an algebraically closed zero-characteristics field F , the following bound holds: deg G ≥ Ω(N/(m (1-η)(n-k) 2 4n ))
Proof. w.l.o.g. we assume that N ≥ 1, otherwise the lemma is trivial. We introduce a linear projection ϕ :

F 2n → F n where ϕ(X 1 , . . . , X n , V 1 , . . . , V n ) = (X 1 , . . . , X n ).
Also we introduce a rational map ψ : F 2n → IP n 2 +n-1 where IP n 2 +n-1 is the projective space with the coordinates {W i } 1≤i, ≤n : {W } 1≤ ≤n , herewith ψ is given by the formulae

W i = X i V , W = V , 1 ≤ i, ≤ n.
Thus, ψ is defined for any point (x, v) ∈ F 2n such that v = 0. In fact, ψ could be viewed as the composition of the following natural rational maps

F 2n → F n × (F n -0) → F n × IP n-1 → IP n × IP n-1 → IP n 2 +n-1
, where the latter one is the Segre embedding ( [START_REF] Shafarevich | Basic algebraic geometry[END_REF], [START_REF] Mumford | Algebraic geometry[END_REF]). Finally, we denote by σ : IP n 2 +n-1 → IP n-1 the linear projection, where σ({W i } : {W }) = {W }. The role of σ is to distinguish the coordinates of the gradient.

For the time being fix a strongly singular k-face

Γ = H i 1 ∩ • • •∩ H i n-k of g. We recall that for any point ν from Γ the chosen coordinates Y 1 , . . . , Y n-k van- ish at ν, herewith H i 1 , . . . , H i n-k are the coordinate hyperplanes for Y 1 , . . . , Y n-k . We have an expansion g = g s + g s+1 + • • • + g s 1 , where the polyno- mial g j ∈ F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ], s ≤ j ≤ s 1 is homogeneous of degree j with respect to the variables Y 1 , . . . , Y n-k , and g s ≡ 0. Let Y 1 , . . . , Y p , p ≥ η(n -k) occur in lm(g s ) = αZ m 1 1 • • • Z m k k Y m 1 1 • • • Y m n-k n-k .
We remind that m 1 , . . . , m n-k do not depend on the coordinates Z 1 , . . . , Z k , thereby on a particular point ν from Γ; also

g (n-k) s ∈ F [Z 1 , . . . , Z k ] is the coefficient at Y m 1 1 • • • Y m n-k n-k of the expansion of g s , herewith lm(g (n-k) s ) = αZ m 1 1 • • • Z m k k .
For the sake of simplifying the notations, we make a linear transformation of the coordinates X 1 , . . . , X n into Z 1 , . . . , Z k , Y 1 , . . . , Y n-k and the same linear transformation we apply also to the coordinates V 1 , . . . , V n (keeping for them the same notation). Then in the new coordinates G = {(z 1 , . . . , z k , y 1 , . . . , y n-k , v 1 , . . . , v n ) : v i = ∂g ∂Z i (z 1 , . . . , z k , y 1 , . . . , y n-k ), 1 ≤ i ≤ k; v j+k = ∂g ∂Y j (z 1 , . . . , z k , y 1 , . . . , y n-k ), 1 ≤ j ≤ n -k} and ψ is given by the same formulae

W i = Z i V , W j+k, = Y j V , W = V as above.
For a fixed point ν = (z 1 , . . . , z k , 0, . . . , 0) ∈ Γ consider (n-1)-dimensional plane P = P ν = ψ(ϕ -1 (ν)) ⊂ IP n 2 +n-1 . The following lemma is similar to lemma 1 [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF].

Lemma 2 It holds dim(σ(ψ(G) ∩ P)) ≥ η(n -k) -1.
Moreover, the linear (coordinate) functions W 1 , . . . , W p are algebraically independent on ψ(G) ∩ P.

Proof. Take a point (z 1 , . . . , z k , y 1 , . . . , y n-k ) ∈ F n and consider a line

{t λ = (z 1 , . . . , z k , λy 1 , . . . , λy n-k )} λ∈F ⊂ F n . Then ∂g ∂Y (t λ ) = ∂gs ∂Y + ∂g s+1 ∂Y + • • • + ∂gs 1 ∂Y (t λ ) = λ s-1 ( ∂gs ∂Y (z 1 , . . . , z k , y 1 , . . . , y n-k )+λ g ( ) )
, where

g ( ) ∈ F [λ, z 1 , . . . , z k , y 1 , . . . , y n-k ], 1 ≤ ≤ n -k. Similar, ∂g ∂Z i (t λ ) = λ s g (i) , where g (i) ∈ F [λ, z 1 , . . . , z k , y 1 , . . . , y n-k ]. Denote grad = ( ∂g ∂Z 1 , . . . , ∂g ∂Z k , ∂g ∂Y 1 , . . . , ∂g ∂Y n-k ).
Hence the point

ψ(t λ , grad(t λ )) = λ s-1 (• • • : ∂g s ∂Y (z 1 , . . . , z k , y 1 , . . . , y n-k ) + λ g ( ) : • • •) ∈ ψ(G) ∩ P t λ
(provided that the point of the projective space is defined, i.e. grad(t λ ) = 0). Divide all the coordinates of this point over their common factor λ s-1 and after that plug λ = 0. Then the resulting point (• • • : ∂gs ∂Y (z 1 , . . . , z k , y 1 , . . . , y n-k ) :

• • •) ∈ ψ(G) ∩ P ν (provided that not all ∂gs ∂Y (z 1 , . . . , z k , y 1 , . . . , y n-k ) vanish). For each 1 ≤ j ≤ ρ the leading term of the polynomial ∂gs ∂Y j (z 1 , . . . , z k , Y 1 , . . . , Y n-k ) equals to g (n-k) s (z 1 , . . . , z k )m j Y m 1 1 • • • Y m j -1 j -1 Y m j -1 j Y m j +1 j +1 • • • Y m n-k n-k , provided that g (n-k) s (z 1 , . . . , z k ) = 0 (recall that m j ≥ 1).
First we establish lemma 2 in case ρ = 1, then it suffices to verify that ψ(G) ∩ P ν = ∅ because ρ ≥ η(nk). Moreover, we prove that for any point w 0 ∈ F n we have ψ(G) ∩ P w 0 = ∅. Indeed, take any point w 1 ∈ F n for which the gradient grad(w 1 ) = 0. Then grad does not vanish almost everywhere on the line {w λ = w 0 + λ(w 1w 0 )} λ∈F . Since (cf. above) the point ψ(w λ , grad(w λ )) ∈ ψ(G) ∩ P w λ , provided that grad(w λ ) = 0, we conclude that the limit of these points when λ → 0, belongs to ψ(G) ∩ P w 0 , which is thereby, nonempty. Now let ρ ≥ 2. If the statement of the lemma were wrong, there would exist a homogeneous polynomial h

= K h K W K 1 1 • • • W Kρ ρ ∈ F [W 1 , .
. . , W ρ ] vanishing on ψ(G) ∩ P ν (or by the same token on σ(ψ(G) ∩ P ν )). Therefore, h( ∂gs

∂Y 1 (z 1 , . . . , z k , Y 1 , . . . , Y n-k ), . . . , ∂gs ∂Y ρ (z 1 , . . . , z k , Y 1 , . . . , Y n-k )) = 0. De- note Y M = Y m 1 1 • • • Y m n-k n-k . The leading monomial of the product ( ∂gs ∂Y 1 (z 1 , . . . , z k , Y 1 , . . . , Y n-k )) K 1 • • • ( ∂gs ∂Y ρ (z 1 , . . . , z k , Y 1 , . . . , Y n-k )) Kρ equals to Y M Y 1 K 1 • • • Y M Y ρ Kρ . For any two distinct integer multiindices (K 1 , . . . , K ρ ) = (Q 1 , . . . , Q ρ ) we have Y M Y 1 K 1 • • • Y M Y ρ Kρ = Y M Y 1 Q 1 • • • Y M Y ρ Qρ . Indeed, otherwise Y M Y 1 K 1 -Q 1 • • • Y M Y ρ Kρ-Qρ = 1, i.e. Y M (K 1 -Q 1 +•••+Kρ-Qρ) = Y K 1 -Q 1 1 • • • Y Kρ-Qρ ρ , therefore the multiindices (K 1 -Q 1 , . . . , K ρ -Q ρ ) = (K 1 -Q 1 +• • •+ K ρ -Q ρ )(m 1 , . . . , m ρ ) coincide, in particular, K 1 -Q 1 + • • • + K ρ -Q ρ = 0,
but the sums of the coordinates in both multiindices differ by the factor of

m 1 + • • • + m ρ ≥ ρ ≥ 2.
The obtained contradiction proves lemma 2 for the points ν = (z 1 , . . . , z k , 0, . . . , 0) such that g (n-k) s (z 1 , . . . , z k ) = 0. Now observe that for any point u ∈ IP n 2 +n-1 the set ϕ(ψ -1 (u)) consists of a single point when u ∈ ψ(F 2n ) or else is empty. Thus, ϕψ -1 : ψ(F 2n ) → F n is a rational surjective map [START_REF] Shafarevich | Basic algebraic geometry[END_REF]. Finally, applying the theorem on dimension of fibers [START_REF] Shafarevich | Basic algebraic geometry[END_REF] to the restriction of the rational map ϕψ -1 : ψ(G) ∩ (ϕψ -1 ) -1 Γ → Γ being surjective as was shown above, we complete the proof of lemma 2. 2

Now we come back to the proof of lemma 1. Observe that ψ(G) ∩ P ⊂ IP n 2 +n-1 (where P = P ν for an arbitrary point ν ∈ Γ, see above) is a closed projective variety and the projection σ is defined everywhere on this variety, so being a regular map, hence σ(ψ(G) ∩ P) ⊂ IP n-1 is a closed projective variety (see [START_REF] Shafarevich | Basic algebraic geometry[END_REF], [START_REF] Mumford | Algebraic geometry[END_REF]).

There exists a subspace B ⊂ IP n-1 with the dimension dim

B = n-η(n- k) such that dim(ψ(G) ∩ σ -1 (B)) ≤ n -η(n -k) + 1 (
actually, almost any subspace satisfies this property). This follows from the theorem of dimension of fibres [START_REF] Mumford | Algebraic geometry[END_REF] applying it to the rational dominating map σ : ψ(G) → σ(ψ(G)) and taking into account that dim ψ(G) = dim G = n.

Since the intersection of two closed projective varieties of the complement dimensions (see lemma 2) B ∩σ(ψ(G)∩P) is not empty [START_REF] Shafarevich | Basic algebraic geometry[END_REF], [START_REF] Mumford | Algebraic geometry[END_REF], we conclude that σ -1 (B) ∩ ψ(G) ∩ P = ∅, for any point ν from any strongly singular kface Γ. Varying P = P ν for different points ν from Γ, the latter implies in particular, that dim(σ -1 (B) ∩ ψ(G)) ≥ k.

Therefore, the constructible set

U = ϕ(ψ -1 (σ -1 (B) ∩ ψ(G))) ⊂ F n con- tains all strongly singular k-faces Γ. Observe that dim U ≤ dim(σ -1 (B) ∩ ψ(G)) ≤ n -η(n -k) + 1 since ϕψ -1 is a rational map (cf. above).
For each strongly singular k-face

Γ = H i 1 ∩ • • • ∩ H i n-k successively choose j 1 , j 2 , . . . ∈ {i 1 , . . . , i n-k }, such that for every ≥ 0 we have dim(U ∩H j 1 ∩• • •∩ H j ∩ H j +1 ) ≤ dim(U ∩ H j 1 ∩ • • • ∩ H j ) -1 while dim(U ∩ H j 1 • • • ∩ H j ) > k. After at most q ≤ n -η(n -k) + 1 -k steps we reach j 1 , . . . , j q for which dim(U ∩ H j 1 ∩ • • • ∩ H jq ) = k, thus Γ is an irreducible component of U ∩ H j 1 ∩ • • •∩ H jq .
Take also a (nk)-dimensional plane Q ⊂ F n transversal to all k 1 -faces of S for all 0 ≤ k 1 ≤ n and to all irreducible components of U ∩H j 1 ∩. . .∩H jq for all j 1 , . . . , j q . Then the point Q∩Γ, being an irreducible component of 0-dimensional variety

U ∩ H j 1 ∩ • • • ∩ H jq ∩ Q, does not belong to other k-faces except Γ.
Consider constructible sets

H i = ψ(ϕ -1 (H i )), Q = ψ(ϕ -1 (Q)) ⊂ IP n 2 +n-1 , 1 ≤ i ≤ m. Consider also U = U j 1 ,...jq = σ -1 (B) ∩ ψ(G) ∩ H j 1 ∩ • • • ∩ H jq ∩ Q. ( 2 
)
Then

ϕ(ψ -1 (U )) = U ∩ H j 1 ∩ • • • ∩ H jq ∩ Q = {u 1 , . . . , u κ } ⊂ F n is a finite collection of points. Therefore, every irreducible component of U is contained in one of the pairwise disjoint (n -1)-dimensional planes ψ(ϕ -1 (u 1 )), . . . , ψ(ϕ -1 (u κ )) ⊂ IP n 2 +n-1
, since the image of this irreducible component under the rational map ϕψ -1 : ψ(F 2n ) → F n , being a subset of {u 1 , . . . , u κ }, should be a point; moreover each of these planes contains a certain component of U . Thus, deg (U ) = deg (U j 1 ,...,jq ) ≥ κ; we define the degree of a constructible set as the degree of its projective closure U [START_REF] Mumford | Algebraic geometry[END_REF], [START_REF] Shafarevich | Basic algebraic geometry[END_REF], i.e. the sum of the degrees of irreducible components of U .

Taking the sum of the latter inequalities over all 1 ≤ j 1 , . . . , j q ≤ m, q ≤ (nk)(1η) + 1 and observing that each strongly singular k-face Γ gives a contribution into the right side of one of these inequalities, we conclude that

1≤j 1 ,...,jq≤m;q≤(n-k)(1-η)+1 deg (U j 1 ,...,jq ) ≥ N (3) 
Another method for bounding from below the degree of a variety passing through a given set of points one can find in [START_REF] Strassen | Computational complexity over finite fields[END_REF], but this method is not applicable here. To bound deg (U j 1 ,...,jq ) from above, we rely on the following lemma.

Lemma 3 Let an affine

Zariski closed set V ⊂ F 2n . Then deg (ψ(V)) ≤ 2 2n deg (V).
Proof. (cf. the proof of theorem 1 [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF]). First, one can reduce lemma to the case of an irreducible

V. Since dim(ψ(V) -ψ(V)) < dim(ψ(V)), there is a subspace R ⊂ IP n 2 +n-1 with dim R = n 2 + n -1 -dim ψ(V) for which R∩ψ(V) consists of deg ψ(V) = deg ψ(V)
points (in fact, almost any subspace has deg ψ(V) common points with ψ(V), and almost any subspace has an empty intersection with ψ(V)ψ(V)). Because ψ(ψ -1 (R) ∩ V) = R ∩ ψ(V), the degree deg ψ(V) does not exceed the number of irreducible components of the variety ψ -1 (R) ∩ V, which in its turn is less or equal to deg (ψ -1 (R) ∩ V).

Then we apply the Bezout inequality deg (ψ -1 (R)∩V) ≤ deg (ψ -1 (R))•deg V which was proved for locally closed sets in [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF], rather than for the usual case of projective closed varieties with the complete intersection [START_REF] Mumford | Algebraic geometry[END_REF], [START_REF] Shafarevich | Basic algebraic geometry[END_REF]. The local closedness of ψ -1 (R) follows from the next paragraph.

It remains to bound deg (ψ -1 (R)). If R is determined by several linear equations of the form 1≤i,

≤n α i W i + 1≤ ≤n β W = 0, then ψ -1 (R) is determined by the quadratic equations 1≤i, ≤n α i X i V + 1≤ ≤n β V = 0 out of the plane L = {V 1 = • • • = V n = 0} on which ψ is not defined. One can choose 2n suitable linear combination of these equations ζ 1 , . . . , ζ 2n ∈ F [X 1 , . . . , X n , V 1 , . . . , V n ] such that the irreducible components of the locally closed set {ζ 1 = • • • = ζ 2n = 0} -L ⊂ F 2n contain
all the irreducible components of ψ -1 (R) and in addition, perhaps, few points, being its 0dimensional components (cf. also [START_REF] Chistov | Solving systems of algebraic equations in subexponential time I, II[END_REF]). Hence deg (ψ -1 (R)) ≤ 2 2n again due to the Bezout inequality. This completes the proof of lemma 3.

Coming back to bounding deg (U j 1 ,...,jq ) from above, we note that 

H j 1 ∩ • • • ∩ H jq ∩ Q = ψ(ϕ -1 (H j 1 ∩ • • • ∩ H jq ∩ Q)) (cf. (2)) and H = ϕ -1 (H j 1 ∩ • • • ∩ H jq ∩ Q) ⊂ F 2n
A = ∪ 1≤ ≤n A . Observe that σ -1 (B) ⊂ A is closed in A.
Let us also show that

H j 1 ∩ • • • ∩ H jq ∩ Q = ψ(H) ⊂ ψ(F 2n ) ⊂ A is closed in A.
Indeed, H is given by a system of linear equations {h t = 1≤i≤n γ ti X i + γ t0 = 0} t which depend only on X 1 , . . . , X n . We claim that

ψ(H) = A ∩    1≤i≤n γ ti W i + γ t0 W = 0    t,1≤ ≤n ∩ {W i 1 W 2 = W i 2 W 1 } 1≤i, 1 , 2 ≤n
The inclusion ⊂ is obvious. To prove the inverse inclusion take a point {w i } i, : {w } from the set at the right side. Then w 0 = 0 for a cer-tain 1 ≤ 0 ≤ n. From the equalities w i 1 w 2 = w i 2 w 1 we get that

{w i } i, : {w } = ψ w 1 0 w 0 , • • • , w n 0 w 0
, w 1 , . . . , w n . Finally, the equalities

1≤i≤n γ ti w i 0 + γ t0 w 0 = 0 t entail that w 1 0 w 0 , • • • , w n 0 w 0 , w 1 , . . . , w n ∈ H,
which proves the inverse inclusion of the claim and thereby the closedness of ψ(H) in A.

Let

U = σ -1 (B)∩ψ(G)∩ψ(H) = ∪ j U j ⊂ A (cf. ( 2 
)
) be the decomposition of U , being the intersection of three Zariski closed in A subsets as was just proved, into its irreducible components U j . For every 1 ≤ i ≤ n we have the induced decomposition of the intersection

(σ -1 (B) ∩ A i ) ∩ (ψ(G) ∩ A i ) ∩ (ψ(H) ∩ A i ) = ∪ j (U j ∩ A i ) of three Zariski closed affine sets (in A i ) into its irreducible components U j ∩ A i , provided that U j ∩ A i = ∅. Moreover, in the latter case the closure U j ∩ A i = U j ⊂ IP n 2 +n-1 because A i is open in IP n 2 +n-1 , in particular deg (U j ∩ A i ) = deg U j .
Applying the affine version of the Bezout inequality [START_REF] Heintz | Definability and fast quantifier elimination in algebraically closed fields[END_REF], we obtain

j deg U j ≤ deg (σ -1 (B) ∩ A i )deg (ψ(G) ∩ A i ). deg (ψ(H) ∩ A i ) ≤ deg ψ(G) • deg ψ(H)
where the summation ranges over j for which U j ∩ A i = ∅. Summing up these inequalities for all 1 ≤ i ≤ n, we conclude

deg U = j deg U j ≤ n • deg ψ(G) • deg ψ(H)
which together with the bounds (3), (4) gives the inequality

N ≤ m (n -k)(1 -η) + 1 • (n -k)(1 -η)n • deg ψ(G) • 2 2n , hence taking into account the inequality deg ψ(G) ≤ 2 2n deg G following from lemma 3, we finally get deg G ≥ Ω N m (n-k)(1-η) 2 4n ,
that completes the proof of lemma 1.

Corollary. (cf. corollary 1 [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF]). Let a polynomial g ∈ F [X 1 , . . . , X n ] have N strongly singular k-faces in an arrangement

H 1 ∪ • • • ∪ H m ⊂ F n . Then the multiplicative complexity C(g) ≥ 1/3(log N -(n -k)(1 -η) log m -4n- const).
The results from [START_REF] Strassen | Die Berechnungskomplexitaet von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten[END_REF], [START_REF] Baur | The complexity of partial derivatives[END_REF] imply that deg G ≤ 2 3C(g) , then make use of lemma 1.

Lower bound for randomized computation trees

Recall (see e.g. [START_REF] Ben-Or | Lower bounds for algebraic computation trees[END_REF]) that in the computation tree (CT) testing polynomials are computed along paths using the elementary arithmetic operations. In particular, for a testing polynomial f i ∈ IR[X 1 , . . . , X n ] at the level i (assuming that the root has the zero level) we have the obvious bound on its complexity, a fortiori multiplicative complexity C(f i ) ≤ i. Under RCT (cf. [START_REF] Manber | Probabilistic, Nondetemrinistic and Alternating Decision Trees[END_REF], [START_REF] Meyer | Simulating probabilistic by deterministic algebraic computation trees[END_REF]) we mean a collection of CT T = {T α } and a probabilistic vector p α ≥ 0, α p α = 1 such that CT T α is chosen with the probability p α . The depth of an RCT (treated as its complexity) is defined as the maximum of the depths of all T α 's (actually the equivalent complexity classes one gets if to define the depth of RCT as the expectation of the depths of T α 's, [START_REF] Manber | Probabilistic, Nondetemrinistic and Alternating Decision Trees[END_REF]). The main requirement is that for any input RCT gives a correct output with the probability 1γ > 1 2 (γ is called the error probability of RCT). For a hyperplane H ⊂ IR n by H + ⊂ IR n denote the closed halfspace {L H ≥ 0}, where L H is a certain linear function with the zero set H. For a family of hyperplanes H 1 , . . . , H m the intersection

S + = ∩ 1≤i≤m H + i is called a polyhedron. An intersection Γ = H i 1 ∩ • • • ∩ H i n-k is called k-face of S + if for each 1 ≤ l ≤ n -k + 1 we have dim(H i l ∩ • • • ∩ H i n-k ) = dim(H i l ∩ • • • ∩ H i n-k ∩ S + ) = k + l -1 (then clearly H i l ∩ • • •∩ H i n-k is (k + l -1)-face of S + ). Recall (see section 1) that Γ is k-face of the arrangement S = ∪ 1≤i≤m H i if dim Γ = k.
Now we are able to formulate the main result of this paper.

Theorem. For any positive constants c, c 1 , c 2 there exists c 0 > 0 satisfying the following. Let for some k ≤ (1c 1 )n an arrangement S = S = ∪ 1≤i≤m H i or a polyhedron S = S + = ∩ 1≤i≤m H + i have at least c 2 (m c(n-k) ) k-faces. Then for any RCT recognizing S, its depth is greater than c 0 (n log m).

For a family of polynomials f 1 , . . . , f t ∈ IR[X 1 , . . . , X n ] we define Var (Γ) (f 1 , . . . , f t ) to be the number of the variables among Y 1 , . . . , Y n-k (we utilize the notations introduced in section 1) which occur in at least one of the leading terms lm(f 1,s 1 ), . . . , lm(f t,st ), where H i 1 , . . . , H i n-k are the coordinate hyperplanes of the coordinates Y 1 , . . . , Y n-k , respectively; f j (Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ) = f j (X 1 , . . . , X n ) and f j = f j,s j + f j,s j +1 + • • •, herewith f j,l is homogeneous with respect to the variables Y 1 , . . . , Y n-k of degree l and f j,s j ≡ 0, 1 ≤ j ≤ t. Because the expansion into the homogeneous components

f 1 • • • f t = (f 1,s 1 • • • f t,st ) + • • • starts with f 1,s 1 • • • f t,st , we have lm(f 1,s 1 • • • f t,st ) = lm(f 1,s 1 ) • • • lm(f t,st ) and hence Var (H i 1 ,...,H i n-k ) (f 1 • • • f t ) = Var (Γ) (f 1 • • • f t ) = Var (Γ) (f 1 , • • • , f t ).
For any CT T 1 we denote by Var (Γ) (T 1 ) = Var (H i 1 ,...,H i n-k ) (T 1 ) the maximum of the Var (Γ) (f 1 • • • f t ) taken over all the paths of T 1 , whose f 1 , . . . , f t are testing polynomials along the path.

The following lemma is similar to lemma 1 [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF], but differs from it due to the different definition of the leading term lm.

Lemma 4 Let T = {T α } be an RCT recognizing a) an arrangement S = ∪ 1≤i≤m H i such that Γ = H i 1 ∩• • •∩H i n-k is k-face of S, or b) a polyhedron S + = ∩ 1≤i≤m H + i such that Γ = ∩ 1≤j≤n-k H i j is k-face of S + (so, see above, for each 1 ≤ l ≤ n -k + 1 we have dim(∩ l≤j≤n-k H i j ) = dim(∩ l≤j≤n-k H i j ∩ S + ) = k + l -1)
with error probability γ < 1 2 . Then Var (H i 1 ,...,H i n-k ) (T α ) ≥ (1-2γ) 2 (n-k) for a fraction of 1-2γ 2-2γ of all T α 's.

Proof of Lemma 4: Choose the coordinates Z 1 , . . . , Z k , Y 1 , . . . , Y n-k such that Z 1 , . . . , Z k are the coordinates in Γ and H i 1 , . . . , H i n-k are the coordinate hyperplanes of Y 1 , . . . , Y n-k , respectively (cf. section 1), which satisfy the following properties. The origin (0, . . . , 0) n of this coordinates system Z 1 , . . . , Z k , Y 1 , . . . , Y n-k does not lie in any l-face with l < k and besides, in the case b) (0, . . . , 0) belongs to the polyhedron S + . Also we require that for any testing polynomial f from any CT T α the inequality f

(n-k) s (0, . . . , 0) k = 0 holds (recall that f (n-k) s ≡ 0 depends only on H i 1 , . . . , H i n-k and f = f s + f s+1 + • • •
where f j is homogeneous with respect to the variables Y 1 , . . . , Y n-k of degree j, see section 1).

Observe that RCT T treated over the field IR n+1 recognizes the completion S (IR n+1 ) ⊂ (IR n+1 ) n (respectively, S +(IR n+1 ) ) due to the Tarski transfer principle (see section 1). For the sake of simplicity of the notations we keep the notations S (respectively, S + ) for the completions.

a) Consider the point E = (0, . . . , 0 k , ε k+1 ε n+1 , . . . , ε n ε n+1 ) and the points

E (0) i = (0, . . . , 0 k , ε k+1 ε n+1 , . . . , ε k+i-1 ε n+1 , 0, ε k+i+1 ε n+1 , . . . , ε n ε n+1 ), 1 ≤ i ≤ n -k. Then the point E / ∈ S (because of the choice of the origin of the coordinates system Z 1 , . . . , Z k , Y 1 , . . . , Y n-k ) and E (0) i ∈ S, 1 ≤ i ≤ n -k.
We show that there is a fraction of 1-2γ 2(1-γ) of all T α 's that give the correct outputs for E and for at least (1 -2γ) 2 (nk) many among E (0) i , 1 ≤ i ≤ n-k. Indeed, assuming the contrary we partition all T α 's into three (disjoint) pieces. In the first one the output for E is incorrect (its fraction is at most γ). In the second one (which is desirable for our goal) the fraction of correct outputs for E

(0) i , 1 ≤ i ≤ n -k is at least (1 -2γ) 2 (its fraction is at most 1-2γ
2(1-γ) by the assumption). The rest of T α 's comprise the third piece. Thus, the total fraction of correct outputs for all

E (0) i , 1 ≤ i ≤ n -k together does not exceed (γ + 1-2γ 2(1-γ) ) + (1 -2γ) 2 (1 -γ -1-2γ 2(1-γ) ) = 1 -2γ + 4γ 2 -4γ 3 < 1 -γ, that 
contradicts to the requirement on the error probability γ.

Take such T α 0 and some 1 ≤ i 0 ≤ nk for which T α 0 gives the correct output. Denote by f 1 , . . . , f t the testing polynomials along the path in T α 0 followed by the input E. We claim that Y i 0 occurs in one of the leading terms lm(f 1,s 1 ), . . . , lm(f t,st ) (thereby, Y i 0 occurs in lm(f 1,s 1 . . . f t,st ) = lm(f 1,s 1 ) . . . lm(f t,st ), see above).

Suppose the contrary. Let lm(f l,s l ) = βZ

m 1 1 • • • Z m k k Y m 1 1 • • • Y m n-k
n-k , then m i 0 = 0 for each 1 ≤ l ≤ t by the supposition. Then (1) from section 1 implies that sgn(f l (E (0)

i 0 )) = sgn(f (n-k) l,s l (0, . . . , 0) k ) = 0 because of the choice of the origin of the coordinates system Z 1 , . . . , Z k , Y 1 , . . . , Y n-k . By the same token sgn(f l (E)) = sgn(f (n-k) l,s l (0, . . . , 0) k ). Therefore, E (0) 
i 0 satisfies all the tests along the path under consideration in T α 0 followed by the input E, hence the output of T α 0 for the input E (0) i 0 is the same as for the input E, so incorrect, that contradicts the choice of i 0 .

b) First we show that E ∈ S + . Take any hyperplane

H l = {κ 1 Z 1 + . . . + κ k Z k + β 1 Y 1 + . . . + β n-k Y n-k + β 0 = 0}, 1 ≤ l ≤ m
given by linear function L H l with the coefficients κ i , β j ∈ IR. We need to show that L H l (E) ≥ 0. Let 0 ≤ j 0 ≤ nk be the uniquely defined index such that β 0 = . . . = β j 0 -1 = 0, β j 0 = 0 (if all β 0 = . . . = β n-k = 0 then L H l (E) = 0). We prove that β j 0 > 0, this would entail that sgn(L H l (E)) = sgn(β j 0 ) > 0. Because dim(H i n-k ∩ • • • ∩ H i j 0 +1 ∩ S + ) = k + j 0 and dim(H i n-k ∩ • • • ∩ H i j 0 +1 ∩ H i j 0 ) = k + j 0 -1 (see the beginning of this section), there exists a point v n-j 0 ∈ (H i n-k ∩ • • • ∩ H i j 0 +1 ∩ S + ) -H i j 0 , notice that in the chosen coordinate system v n-j 0 = (0, . . . , 0 k , y

(n-j 0 ) 1 , . . . , y (n-j 0 ) j 0 , 0, . . . , 0). Then y (n-j 0 ) j 0 = 0, therefore y (n-j 0 ) j 0 > 0 since v n-j 0 ∈ S + . Hence 0 < sgnL H l (v n-j 0 ) = sgn(β j 0 • y (n-j 0 ) j 0

), this implies that sgn(β j 0 ) > 0. Thus E ∈ S + .

Notice that the points E )) = sgn(f l (E)) = 0 again because of (1) from section 1. Lemma 4 is proved. An analogue of lemma 2 from [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] is the following lemma.

Lemma 5 For any positive constants c, c 1 , c 2 , c 3 there exists c 4 > 0 satisfying the following. Let S = S or S = S + fulfill the conditions of the theorem. Assume that CT T for some constant η > 1c, satisfies the inequality Var (Γ) (T ) ≥ η(nk) for at least M ≥ c 3 (m c(n-k) ) of k-faces Γ of S. Then the depth t of T is greater than c 4 (n log m).

The proof of lemma 5 differs from the proof of the analogous lemma 2 from [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF] proved for d-decision trees, in which the degrees of the testing polynomials do not exceed d, rather than computation trees (considered in the present paper), in which the degrees of the testing polynomials could be exponential in the depth t of CT. Also it differs from the proof of lemma 2 [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] where the main tool was the lower bound on the border complexity. Here the The linear O(n) complexity RCT from [START_REF] Buergisser | On randomized algebraic test complexity[END_REF] for the SET EQUALITY problem {(x 1 , . . . , x n , y 1 , . . . , y n ) : {x 1 , . . . , x n } is a permutation of {y 1 , . . . , y n }} ⊂ IR 2n provides an evidence that the lower bound from the theorem could not be directly extended even to such quite natural sets like the unions of planes.

Generalizing the construction of [START_REF] Buergisser | On randomized algebraic test complexity[END_REF] we design RCT for recognizing the following set: ∆ (k) n,m = {(x 1 , . . . , x n , y 1 , . . . , y m ) : each of the both differences of the multisets {x 1 , . . . , x n } and {y 1 , . . . , y m } contains at most k elements} ⊂ IR n+m . Evidently, k ≥ |n -m|. Denote the polynomials f (X) = (Xx 1 ) • • • (Xx n ), g(X) = (Xy 1 ) • • • (Xy m ). First compute (deterministically) f (z i ), g(z i ) at 2k + 1 random points, 0 ≤ i ≤ 2k with the complexity O(k(n + m)). Then (deterministically) interpolate the rational function h = f /g, being (presumably) a quotient of two monic polynomials both of degrees at most k by means of its values (f /g)(z i ), 1 ≤ i ≤ 2k with the complexity O(k log 2 k) [START_REF] Bini | Polynomial and matrix computations[END_REF]. Finally, (deterministically) check whether the value of the obtained rational function h(z 0 ) coincides with f (z 0 )/g(z 0 ). The complexity O(k(n + m)) of the designed RCT is better than the complexity O((n + m) log(n + m)) of an obvious CT based on a sorting algorithm when k is small enough.

m n-k- 1 n

 1 -k-1 is the minimal power of Y n-k-1 occurring in the terms of f in which occurs the power Y m n-k n-k . Therefore, m n-k , m n-k-1 depend only on the hyperplanes H n-k , H n-k-1 and not on Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-2 , since (as above) a linear transformation of the coordinates Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-2 changes the coefficients (being the polynomials from F [Z 1 , . . . , Z k , Y 1 , . . . , Y n-k-2 ]) of the expansion of f in the variables Y n-k , Y n-k-1 and a coefficient vanishes identically if and only if it vanishes identically after the transformation. Denote by 0

4 )

 4 being a plane, so of degree 1. Applying lemma 3 we obtain the bound deg (ψ(H)) ≤ 2 2n . (For every 1 ≤ i ≤ n consider a principle affine Zariski open chart A = {W = 0} ⊂ IP n 2 +n-1 and denote

  . . . , 0 k , ε k+1 ε n+1 , . . . , ε k+i-1 ε n+1 , -ε k+i ε n+1 , ε k+i+1 ε n+1 , . . . , ε n ε n+1 ) / ∈ S + , 1 ≤ i ≤ nk.The rest of the proof is similar as in a), with replacing the role of the points E i . In a similar way if m i 0 = 0 then sgn(f l (E
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proof of lemma 5 is much easier than in [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF], [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF] and relies on the corollary (see section 2) in which the multiplicative complexity of a polynomial is bounded from below in terms of the number of strongly singular faces of an arrangement.

Before proving lemma 5 we show how to deduce the theorem from lemmas 4 and 5. Consider RCT {T α } recognizing S with error probability γ < 1 2 . Lemma 4 and counting imply the existence of T α 0 such that the inequality 2 . Since the error probability γ could be made a positive constant as close to zero as desired at the expense of increasing by a constant factor the depth of RCT [START_REF] Meyer | Simulating probabilistic by deterministic algebraic computation trees[END_REF], take γ such that η > 1c. Then lemma 5 entails that t ≥ Ω(n log m), which proves the theorem. Thus, it remains to prove lemma 5.

Proof of lemma 5: To each k-face Γ of S satisfying the inequality Var (Γ) (T ) ≥ η(nk), we correspond a path in T with the testing polynomials f 1 , . . . ,

), otherwise we are done. Then there exists a path of T (let us keep the notation f 1 , . . . , f t 0 for the testing polynomials along this path) which corresponds to at least N = Ω(m (c-η+1)(n-k)/2 ) of strongly singular k-faces Γ for f (because there are most 3 t paths in T ). Corollary from section 2 implies that the multiplicative complexity C(f

the proof of theorem 2 [START_REF] Grigoriev | Complexity lower bounds for randomized computation trees over algebraically closed fields[END_REF]). Hence t ≥ Ω(n log m) that proves lemma 5.

Applications and open problems

As a consequence of the theorem from the previous section we deduce the complexity lower bound Ω(n log n) for any RCT, recognizing the DISTINCT-NESS problem ∪ 1≤i<j≤n {X i = X j } ⊂ IR n (for the necessary in the theorem estimation of the number of n 2 -faces see [START_REF] Grigoriev | A lower bound for randomized algebraic decision trees[END_REF]). Also we get the lower bound Ω(n 2 ) for the KNAPSACK problem ∪ I⊂{1,...,n} { i∈I x i = 1}, this result was already obtained in [START_REF] Grigoriev | Randomized quadratic lower bound for knapsack[END_REF]. It would be interesting to extend the obtained bound to other types of sets, rather than considered in the theorem polyhedra and the unions of hyperplanes.