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The complexity lower bound (log N) is proved for randomized computation trees (over reals with branching signs f ; >g) for recognizing an arrangement or a polyhedron with N faces. A similar lower bound is proved for randomized computation trees over any zero-characteristic eld with branching signs f=; 6 =g for recognizing an arrangement.

As consequences, this provides in particular, the randomized lower bound (n 2 ) for the KNAPSACK problem (which was proved in case of the randomized computation trees over reals in 11]) and also the randomized lower bound (n log n)

for the DISTINCTNESS problem (which is thereby the sharp bound). The technical core of the paper is a lower bound on the multiplicative complexity of a polynomial in terms of its singularities.

Introduction.

The complexity lower bounds for deterministic algebraic computation trees were obtained in 26], 2], 4], 29], 30], [START_REF] Montana | Lower bounds for arithmetic networks[END_REF] where the topological methods were developed. In particular, these methods provide the lower bound (log N) for recognizing a union of planes (of di erent dimensions) with N faces, under a face we mean any nonempty intersection of several among these planes. As consequences we obtain the lower bound (n log n) for the DISTINCTNESS prob- problem remained to obtain non-linear complexity lower bounds for recognizing natural problems by RCT. [START_REF] Grigoriev | Randomization and the computational power of analytic and algebraic decision trees[END_REF] for the rst time the nonlinear lower bound was obtained for somewhat weaker computational model of the randomized algebraic decision trees in which the testing polynomials in the branching nodes are of a xed degree, rather than the computation trees in which the testing polynomials are computed along the path of the computation, so they could have in principle an exponential degree. The approach of 13] provides the lower bound (log N) for recognizing an arrangement, i.e. a union of hyperplanes, and for recognizing a polyhedron, where N is again the number of faces. In particular, this leads to the lower bound (n log n) for the DISTINCTNESS problem and (n 2 ) for the KNAPSACK problem. For the EQUALITY SET problem a complexity lower bound on a randomized algebraic decision tree seems to be an open question.

But the method of 13] does not provide a lower bound for more interesting model of RCT. Only in 11] a method was developed which gives in particular, a lower bound (n 2 ) for the KNAPSACK problem on RCT. This method relies on the obtained in 11] lower bound on the multiplicative border complexity of polynomials. The lower bound (log N) of 11] holds for arrangements or polyhedra which satisfy some special conditions which fail, for example, for the DIS-TINCTNESS problem.

In this paper we consider RCT over an arbitrary zerocharacteristic eld F with branching signs f=; 6 =g and also more customary RCT over reals with branching signs f ; >g. We remind (see e.g. 24], 19], 13]) that RCT T = fT g is a collection of computation trees T which are chosen with the probabilities p 0; P p = 1 such that T gives for any input a correct output with a probability greater than 1 for a certain < 1=2 which is called the error probability of RCT.

Let H1; : : : ; Hm F n be a family of hyperplanes, denote by S = H1 Hm the arrangement. Under k-face of S we mean any nonempty intersection Hi 1 \ \Hi n k of the dimension dim(Hi 1 \ \ Hi n k ) = k. Theorem 1. Assume that for a certain constant c0 < 1 any subarrangement S1 = Hi 1 Hi q of S where q > c0m, has at least N (0) faces of all the dimensions. Then the depth of any RCT over F recognizing S, is greater than (log 2 N (0) 2n log 2 n). In case of more customary RCT over reals IR with the branching signs f ; >g we consider recognizing either an arrangement S = 1 i m Hi IR n or a polyhedron S + = \ 1 i m H + i IR n , where H + i is a half-space bounded by the hyperplane Hi; 1 i m. We say that = Hi 1 \ \Hi n k is k-face of S + if dim( \ S + ) = k.

Theorem 2. Let for some positive constants c;c1 and k (1 c1)n an arrangement S = S = 1 i m Hi or a polyhedron S = S + = \ 1 i m H + i have at least (m c(n k) ) kfaces. Then for any RCT recognizing S, its depth is greater than (n log m). Let us also mention the paper 12] where a complexity lower bound was established for the randomized analytic de-cision trees (rather than for more customary algebraic ones) and also the paper 6] where a lower bound was ascertained for a randomized parallel computational model (rather than a sequential model considered in the quoted papers including the present one).

1 RCT over zero characteristic elds. In this section we give a sketch of the proof of theorem 1 (the complete proof one can nd in 7]).

Assume for the time being that the eld F = F is algebraically closed. Denote by N0 the number of 0-faces (in other words, vertices) of the arrangement S = H1 Hm.

Similar to 27], 17] consider the graph of the gradient map of a polynomial 0 6 g 2 F X1; : : : ; Xn] G = f(x = (x1; : : : ; xn); @g @X1 (x); : : : ; @g @Xn (x))g F 2n

The main technical tool in the proof of theorem 1 is the following lower bound on the degree deg G (de ned as the degree of the projective closure of G 23], 25]).

Lemma

1.1. deg G N 0 2 2n
Denote by C(g) the multiplicative complexity of g. The results from 27], 1] imply the inequality deg G 2 3C(g) which together with lemma 1.1 entail the following lower bound on the multiplicative complexity of g. Proposition 1. If a polynomial 0 6 g 2 F X1; : : : ; Xn] vanishes on the arrangement S with N0 vertices then C(g)

1 3 (log 2 N0 2n).
We remark that if Nl denotes the number of l-faces of S then one obtains the similar lower bound 1 3 (log 2 Nl 2(n l)) by means of intersecting S with a (n l)-dimensional plane. Now let F be an arbitrary zero characteristic eld. To complete the proof of theorem 1 observe that if RCT T = fT g recognizes S with an error probability < 1=2, then for every CT T possesses the unique "thick" path (from the root to a leaf), along which all the testing polynomials f1; : : : ; fk 2 F X1; : : : ; Xn] have the branching sign 6 =. One can prove that with a probability greater than 1 2 > 0 the product f1 fk vanishes on at least q > 1 2 1+2 m of hyperplanes among H1; : : : ; Hm. Taking into account that could be made as close to zero as desired at the expense of increasing the depth of RCT by a suitable constant factor 19], we apply proposition 1 and the remark just after it to the polynomial f1 fk (notice that the multiplicative complexity of the latter product does not exceed 2k 1), and get a lower bound on k. Since the complexity of RCT under consideration is greater or equal to k, one completes the proof of theorem 1.

RCT over reals

In this section we give a sketch of the proof of theorem 2 (the complete proof one can nd in 8]).

Again let F be a zero characteristic eld and = Hi 1 \ \Hi n k be k-face of the arrangement S = H1 \ \Hm. which could be viewed as a polynomial on the hyperplane Hi n k . Observe that mn k depends only on Hi n k and not on Z1; : : : ; Zk; Y1; : : : ; Yn k 1, since a linear transformation of the coordinates Z1; : : : ; Zk, Y1; : : : ; Yn k 1 changes the coe cients (being the polynomials from F Z1; : : : ; Zk; Y1; : : : ; Yn k 1]) of the expansion of f in the variable Yn k, and a coe cient vanishes identically if and only if it vanishes identically after the transformation. Then f (1) is the coe cient of the expansion of f at the power Y m n k n k .

Second, take the minimal integer mn k 1 such that Y m n k 1 n k 1 occurs in the terms of f (1) . In other words, Y m n k 1 n k 1 is the minimal power of Yn k 1 occurring in the terms of f in which occurs the power Y m n k n k . Therefore, mn k, mn k 1 depend only on the hyperplanes Hn k, Hn k 1 and not on Z1; : : : ; Zk, Y1; : : : ; Yn k 2, since (as above) a linear transformation of the coordinates Z1; : : : ; Zk, Y1; : : : ; Yn k 2 changes the coe cients (being the polynomials from F Z1; : : : ; Zk, Y1; : : : ; Yn k 2]) of the expansion of f in the variables Yn k, Yn k 1 and a coe cient vanishes identically if and only if it vanishes identically after f (l) Y m n k l n k l (Z1; : : : ; Zk; Y1; : : : ; Yn k l 1; 0) Thus, f (l) depends only on Hi n k ; : : : ; Hi n k l and not on Z1; : : : ; Zk, Y1; : : : ; Yn k l 1. One could view f (l) as a polynomial on the (n l) dimensional plane Hi n k \ \Hi n k l+1 .

Continuing, we de ne also m 0 k ; : : : ; m 0 1 .

Finally, the leading term lm(f

) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k
n k is the minimal term of f in the lexicographical ordering with respect to the ordering Z1 > > Zk > Y1 > > Yn k. The leading term lm(f (l) 

) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k l
n k l , we refer to this equality as the maintenance property (see also 13], 11]).

From now on the construction and the de nitions di er from the ones in 13], 11].

For any polynomial g 2 F X1; : : : ; Xn] one can rewrite it in the coordinates g(Z1; : : : ; Zk; Y1; : : : ; Yn k) and expand g = gs + gs+1 + + gs 1 , where gj 2 F Z1; : : : ; Zk; Y1; : : : ; Yn k], s j s1 is homogeneous with respect to the variables Y1; : : : ; Yn k of degree j and gs = g (0) s 6 0. Consider the leading term lm(gs

) = Z m 0 1 1 Z m 0 k k Y m 1 1 Y m n k n k
and denote by Var ( ) (g) = Var (H i 1 ;:::;H i n k ) (g) the number of positive (in other words, nonzero) integers among mn k; : : : ; m1, note that s = m1 + + mn k. As we have shown above Var (H i 1 ;:::;H i n k ) (g) is independent from the coordinates Z1; : : : ; Zk of . Obviously, Var (H i 1 ;:::;H i n k ) (g) coincides with the number of 1 l n k such that Yn k ljg (l) s , the latter condition is equivalent to that the variety fg (l) s = 0g\Hi n k \ \Hi n k l+1 contains the plane Hi n k \ \ Hi n k l+1 \ Hi n k l (being a hyperplane in Hi n k \ \ Hi n k l+1 ).

It is convenient (see also 13], 11]) to reformulate the introduced concepts by means of in nitesimals in case of a real closed eld F (see e.g. 18]). We say that an element " transcendental over F is an in nitesimal (relative to F) if 0 < " < a for any element 0 < a 2 F. This uniquely induces the order on the eld F(") of rational functions and further on the real closure g F(") (see 18]).

One could make the order in g F(") clearer by embedding it in the larger real closed eld F((" 1=1 )) of Puiseux series (cf. e.g. 16]). A nonzero Puiseux series has the form b = P i i 0 i" i= , where 1 < i0 < 1 is an integer, i 2 F for every integer i; i 0 6 = 0 and the denominator of the rational exponents 1 is an integer. The order on F((" 1=1 )) is de ned as follows: sgn(b) = sgn( i 0 ). When i0 1, then b is called an in nitesimal, when i0

1, then b is called in nitely large. For any not in nitely large b we de ne its standard part st(b) = st"(b) 2 F as follows: when i0 = 0, then st(b) = i 0 , when i0 1, then st(b) = 0. In the natural way we extend the standard part to the vectors from (F((" 1=1 ))) n and further to subsets in this space. Now let "1 > "2 > "n+1 > 0 be in nitesimals, where "1 is an in nitesimal relative to IR; then "i+1 is an innitesimal relative to IR("1;:::;"i) for all 0 i n. Denote the real closed eld IRi = IR g ("1; : : : ; "i), in particular, IR0 = IR. For an element b 2 IRn+1 for brevity denote the standard part sti(b) = st" i+1 (st" i+2 (st" n+1 (b) )) 2 IRi (provided that it is de nable).

Also we will use the Tarski's transfer principle 28].

Namely, for two real closed elds F1 F2 a closed (so, without free variables) formula in the language of the rstorder theory of F1 is true over F1 if and only if this formula is true over F2.

An application of Tarski's transfer principle is the concept of the completion. Let F1 F2 be real closed elds and be a formula (with quanti ers and, perhaps, with n free variables) of the language of the rst-order theory of the eld F1. Then determines a semialgebraic set V F n 1 . The completion V (F 2 ) F n 2 is a semialgebraic set determined by the same formula (obviously, V V (F 2 ) ).

One could easily see that for any point (z1; : : : ; zk) 2 IR k k and a polynomial g 2 IR X1; : : : ; Xn] such that g (n k) s (z1; : : : ; zk) 6 = 0 (we utilize the introduced above notations) the following equality for the signs m 1 1 : : : m n k n k sgn(g (n k) s (z1; : : : ; zk)) = sgn(g(z1; : : : ; zk; 1"k+1"n+1; : : : ; n k"n"n+1)) [START_REF] Baur | The complexity of partial derivatives[END_REF] holds for any 1; : : : ; n k 2 f 1; 1g. For any 1 i n k such that mi = 0 (1) holds also for i = 0, agreeing that 0 0 = 1. Moreover, the following polynomial identity holds: g (n k) s (Z1; : : : ; Zk) = stk g(Z1; : : : ; Zk; "k+1"n+1; : : : ; "n"n+1)

" m 1 k+1 " m n k n " s n+1 Now let F be an algebraically closed eld of zero characteristic. Take a certain 0 < 1 (it will be speci ed later). We call k-face = Hi 1 \ \ Hi n k of the ar- rangement S strongly singular (with respect to a polynomial g 2 F X1; : : : ; Xn]) if Var (H i 1 ;:::;H i n k ) (g) (n k). Denote by N the number of strongly singular k-faces of S with respect to g (since g will be xed for the time being, in the sequel we omit mentioning of g in this context).

The following lower bound on the degree of the graph G of the gradient map of g (see section 1) strengthens lemma 1.1, being the main technical tool in the proof of theorem 2. Lemma 2.1 deg G (N=(m (1 )(n k) 2 4n )) Similar to proposition 1 from section 1 this lemma implies the following proposition.

Proposition 2. Let a polynomial g 2 F X1; : : : ; Xn] have N strongly singular k-faces in an arrangement H1 Hm F n . Then the multiplicative complexity C(g) 1=3(log N (n k)(1 ) log m 4n const).

For a family of polynomials f1; : : : ; ft 2 IR X1; : : : ; Xn] we de ne Var ( ) (f1; : : : ; ft) to be the number of the variables among Y1; : : : ; Yn k which occur in at least one of the leading terms lm(f1;s 1 ); : : : ; lm(ft;s t ), where Hi 1 ; : : : ; Hi n k are the coordinate hyperplanes of the coordinates Y1; : : : ; Yn k, respectively; f j (Z1; : : : ; Zk; Y1; : : : ; Yn k) = fj(X1; : : : ; Xn) and f j = fj;s j +fj;s j +1 + , herewith fj;l is homogeneous with respect to the variables Y1; : : : ; Yn k of degree l and fj;s j 6 0, 1 j t. Because the expansion into the homogeneous components f 1 f t = (f1;s 1 ft;s t ) + starts with f1;s 1 ft;s t , we have lm(f1;s 1 ft;s t ) = lm(f1;s 1 ) lm(ft;s t ) and hence Var (H i 1 ;:::;H i n k ) (f1 ft) = Var ( ) (f1 ft) = Var ( ) (f1; ; ft).

For any CT T1 we denote by Var ( ) (T1) = Var (H i 1 ;:::;H i n k ) (T1) the maximum of the Var ( ) (f1 ft) taken over all the paths of T1, whose f1; : : : ; ft are testing polynomials along the path.

The proof of the following "local" (i.e. concerning a single face) lemma relies on the relation (1) and is similar to lemma 1 13], 11], but di ers from it due to the di erent de nition of the leading term lm. Lemma 2.2. Let T = fT g be an RCT recognizing a) an arrangement S = 1 i m Hi such that = Hi 1 \ \ Hi n k is k-face of S, or b) a polyhedron S + = \ 1 i m H + i such that = \ 1 j n k Hi j is k-face of S + with error probability < 1 2 . Then Var (H i 1 ;:::;H i n k ) (T ) (1 2 ) 2 (n k) forx a fraction of 1 2 2 2 of all T 's.

The following "global" (i.e, concerning the set of all faces) lemma is similar to lemma 2 from 13], 11], but its proof is considerably simpler. Lemma 2.3. Let S = S or S = S + satisfy the conditions of the theorem 2. Assume that CT T 0 for some constant > 1 c, satis es the inequality Var ( ) (T 0 ) (n k) for at least M (m c(n k) ) of k-faces of S. Then the depth t of T 0 is greater than (n log m).

Proof of lemma 2.3: To each k-face of S satisfying the inequality Var ( ) (T 0 ) (n k), we correspond a path in T 0 with the testing polynomials f1; : : : ; ft 0 2 IR X1; : : : ; Xn]; t0 t such that Var ( ) (f1 ft 0 ) Var ( ) (T 0 ) (in other words, is strongly singular k-face for f1 ft 0 , see section 1). Denote f = f1 ft 0 .

Assume that 3 t O(m ( 1+c)(n k)=2 ), otherwise we are done. Then there exists a path of T 0 (let us keep the notation f1; : : : ; ft 0 for the testing polynomials along this path) which corresponds to at least N = (m (c +1)(n k)=2 ) of strongly singular k-faces for f (because there are most 3 t paths in T 0 ). Proposition 2 implies that the multiplicative complexity C(f) 1 3 (( 1 + c)(n k) log m 4n const). Obviously C(f) t + t0 1 2t 1 (cf. the proof of theorem 1 in section 1). Hence t (n log m) that proves lemma 2.3.

Finally we show how to deduce the theorem 2 from lemmas 2.2 and 2.3. Consider RCT fT g recognizing S with error probability < 1 2 . Lemma 2.2 and counting imply the existence of T 0 such that the inequality Var ( ) (T 0 ) (1 2 ) 2 (n k) is true for M = 1 2 2(1 ) (m c(n k) ) of k-faces of S. Apply lemma 2.3 to CT T 0 = T 0 with = (1 2 ) 2 .

Since the error probability could be made a positive constant as close to zero as desired at the expense of increasing by a constant factor the depth of RCT 19], take such that > 1 c. Then lemma 2.3 entails that t (n log m), which proves theorem 2.

3 Deterministic computation trees Treating a deterministic computation tree (CT) as a particular case of RCT one can release the restriction on s ubarrangements in theorem 1 and obtain the following result.

Corollary 1.3 If a CT (over a zero characteristic eld) recognizes an arrangement with N faces (of all the dimensions ) then its depth exceeds (log N).

For CT over reals in a similar way one can release the restriction on the number of faces in theorem 2.

Corollary 2.3 If a CT (over reals) recognizes either an arrangement or a polyhedron S with N faces (of all the d imensions) then its depth exceeds (log N).

In case of an arrangement one could deduce corollary 2.3 from 2], in case of a polyhedron the corolla ry strengthens the result from 15].

  IR n , EQUALITY SET problem f(x1; : : : ; xn, y1; : : : ; yn) : (x1; : : : ; xn) is a permutation of (y1; : : : ; yn)g IR 2n and the lower bound (n 2 15] a di erential-geometric approach for recognizing polyhedra (to which the mentioned topological methods are not applicable) was proposed which gives the lower bound (log N= log log N) where N is the number of faces of the polyhedron.The rst results on the randomized computation trees (RCT) appeared in 24], 19], 9], 10] but for decade an open 1 Supported by NSF Grant CCR-9424358.

Corollary 2. 1 .

 1 Any RCT over reals solving the DIS-TINCTNESS problem, has the complexity greater than (n log n). Similar to the case of RCT over a zero-characteristic eld (cf. corollary 1.1) the complexity bound is sharp since one can (deterministically) sort the input real numbers x1; : : : ; xn with the complexity O(n log n). Corollary 2.2. (see also 11]). Any RCT over reals solving the KNAPSACK problem, has the complexity greater than (n 2 ). For the similar to the DISTINCTNESS problem SET DISJOINTNESS f(x1; : : : ; xn; y1; : : : ; yn) : xi 6 = yjg IR 2n (being a complement to an arrangement) one obtains (almost literally as in the corolla ries 1.1, 2.1) the lower bound (n log n) and the upper bound O(n log 2 n) (relying on the computin g of the resultant 20], 27]) on the randomized complexity. In the next two sections we give sketches of the proofs of theorems 1,2. The construction from 5] of RCT with the linear complexity O(n) for the EQUALITY SET problem (which is the union of n-dimensional planes in 2n-dimensional space, see above) shows that the consideration just of hyperplanes in theorems 1,2 is crucial, and the non-linear randomized complexity lower bounds cannot be directly extended to unions of planes of arbitrary dimensions. In 3] deterministic computation trees with the branching signs f=; 6 =g over algebraically closed elds of positive characteristics were considered, and the complexity lower bound (log C) for recognizing an algebraic variety was established, where C is the degree of the Zeta-function of the variety. It is an open question to obtain non-linear complexity lower bounds for randomized computation trees over the elds of positive characteristics.

Fix

  arbitrary coordinates Z1; : : : ; Zk in . Then treating Hi 1 ; : : : ; Hi n k as the coordinate hyperplanes of the coor- dinates Y1; : : : ; Yn k, one gets the coordinates Z1; : : : ; Zk, Y1; : : : ; Yn k in F n . The next construction of the leading terms of a polynomial is similar to 13], 11].For any polynomial f(Z1; : : : ; Zk; Y1; : : : ; Yn k) 2 F Z1; : : : ; Zk; Y1; : : : ; Yn k] following 13], 11] de ne its lead-2 F (with respect to the coordinate system Z1; : : : ; Zk; Y1; : : : ; Yn k) as follows. First take the minimal integer mn k such that Y m n k n k occurs in the terms of f = f (0) . : : : ; Zk; Y1; : : : ; Yn k 1; 0) 2 F Z1; : : : ; Zk; Y1; : : : ; Yn k 1]

1 (

 1 the transformation. Denote by 0 6 f (2) 2 F Z1; : : : ; Zk, Y1; : : : ; Yn k 2] the coe cient of the expansion of f the monomial Y Z1; : : : ; Zk; Y1; : : : ; Yn k 2; 0) One could view f (2) as a polynomial on the (n 2)-dimensional plane Hi n k \ Hi n k 1 .Continuing in the similar way, we obtain consecutively the (non-negative) integers mn k, mn k 1; : : : ; m1 and the polynomials 0 6 f (l) 2 F Z1; : : : ; Zk; Y1; : : : ; Yn k l] 1 l n k, by induction on l. Herewith, Y m n k l+1 n k l+1 is the minimal power of Yn k l+1 occurring in the terms of f, in which occurs the monomial Y m n k n k. Notice that mn k; : : : ; mn k l depend only on the hyperplanes Hi n k ; : : : ; Hi n k l and not on Z1; : : : ; Zk, Y1; : : : ; Yn k l 1. Then f(l) is the coe cient of the expansion of f at the monomial Y m n
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