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Ordinal Non-negative Matrix Factorization for Recommendation

Olivier Gouvert 1 Thomas Oberlin 2 Cédric Févotte 1

Abstract
We introduce a new non-negative matrix factor-
ization (NMF) method for ordinal data, called
OrdNMF. Ordinal data are categorical data which
exhibit a natural ordering between the categories.
In particular, they can be found in recommender
systems, either with explicit data (such as ratings)
or implicit data (such as quantized play counts).
OrdNMF is a probabilistic latent factor model that
generalizes Bernoulli-Poisson factorization (Be-
PoF) and Poisson factorization (PF) applied to
binarized data. Contrary to these methods, Ord-
NMF circumvents binarization and can exploit a
more informative representation of the data. We
design an efficient variational algorithm based on
a suitable model augmentation and related to vari-
ational PF. In particular, our algorithm preserves
the scalability of PF and can be applied to huge
sparse datasets. We report recommendation ex-
periments on explicit and implicit datasets, and
show that OrdNMF outperforms BePoF and PF
applied to binarized data.

1. Introduction
Collaborative filtering (CF) is a popular recommendation
technique based only on the feedbacks of users on items.
These feedbacks can be stored into a matrix Y of size
U × I , where U and I are the number of users and items
respectively. Matrix factorization (MF) methods (Hu et al.,
2008; Koren et al., 2009; Ma et al., 2011) aim to approxi-
mate the feedback matrix Y by a low-rank structure WHT

where W ∈ RU×K+ corresponds to user preferences and
H ∈ RI×K+ to item attributes.

Poisson factorization (PF) (Canny, 2004; Cemgil, 2009;
Gopalan et al., 2015) is a non-negative matrix factorization
(NMF) model (Lee & Seung, 1999; 2001; Févotte & Idier,
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2011) which aims to predict future interactions between
users and items in order to make recommendations. For
this purpose, PF is often applied to a binarized version of
the data, i.e., Y ∈ {0, 1}U×I , containing only the infor-
mation that a user is interacting with an item or not. A
variant of PF, called Bernoulli-Poisson factorization (Be-
PoF) (Acharya et al., 2015), has been proposed to explicitly
model binary data. However, for both PF and BePoF, the
binarization stage induces a loss of information, since the
value associated to an interaction is removed. Although
several attempts in the literature tried to directly model raw
data, both for explicit (Hernandez-Lobato et al., 2014) and
implicit data (Basbug & Engelhardt, 2016; Zhou, 2017;
Gouvert et al., 2019), this remains a challenging problem.

In an attempt to keep as much information as possible, we
propose in this paper to consider ordinal rather than binary
data. Ordinal data (Stevens, 1946) are nominal/categorical
data which exhibit a natural ordering (for example: cold
≺ warm ≺ hot). This type of data is encountered in rec-
ommender systems with explicit data such as ratings. It
can also be created by quantizing implicit data such as play
counts. Such a pre-processing remains softer than binariza-
tion and stays closer to the raw data, as soon as the number
of classes is chosen big enough. In this paper, without loss
of generality, we will work with ordinal data belonging to
{0, . . . , V }. Note that for this type of data, the notion of
distance between the different classes is not defined. For
example, this implies that the mean is not adapted to these
data, unlike the median.

There are two naive ways to process ordinal data. The first
one consists in applying classification methods. The scale
of the ordering relation which links the different categories
is then ignored. The second way considers these data as
real values in order to apply regression models. By doing
this, it artificially creates a distance between the different
categories. These two naive methods do not fully consider
the specificity of ordinal data, since they remove or add in-
formation to the data. Threshold models (McCullagh, 1980;
Verwaeren et al., 2012) are popular ordinal data processing
methods that alleviate this issue. They assume that the data
results from the quantization of continuous latent variables
with respect to (w.r.t.) an increasing sequence of thresholds.
The aim of these models is then to train a predictive model
on the latent variables and to learn the sequence of thresh-
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olds. Threshold models can thus be seen as an extension of
naive regression models, where the distances between the
different classes are learned through quantization thresholds.
For a comprehensive and more detailed review on ordinal
regression methods, we refer to (Gutierrez et al., 2015).

In this paper, we develop a new probabilistic NMF frame-
work for ordinal data, called ordinal NMF (OrdNMF). Ord-
NMF is a threshold model where the latent variables have an
NMF structure. In other words, this amounts to defining the
approximation Y ≈ G(WHT ), where Y is the ordinal data
matrix, W and H are non-negative matrices and G(·) is a
link function. OrdNMF allows us to work on more informa-
tive class of data than classical PF method by circumventing
binarization. Contrary to ordinal MF (OrdMF) models (Chu
& Ghahramani, 2005; Koren & Sill, 2011; Paquet et al.,
2012; Hernandez-Lobato et al., 2014), OrdNMF imposes
non-negativity constraints on both W and H. This implies
a more intuitive part-based representation of the data (Lee &
Seung, 1999), and were shown to improve results in recom-
mendation (Gopalan et al., 2015). OrdNMF can efficiently
take advantage of the sparsity of Y, scaling with the num-
ber of non-zero observations. Thereby, it can be applied to
huge sparse datasets such as those commonly encountered
in recommender systems. As opposed to learning-to-rank
models, the aim of OrdNMF is to model ordinal data, via a
generative probabilistic model, in order to predict the class
of future interactions. Learning-to-rank models do not seek
to predict a class but to rank items relatively to each other.
For example, Bayesian personalized ranking (Rendle et al.,
2009) is based on binary pairwise comparisons of the users’
preferences and not on the raw matrix Y. Although such
models can also be used for recommendation, they are not
generative.

The contributions of this paper are the following.

•We propose a new NMF model for ordinal data based on
multiplicative noise. In particular, we study an instance of
this model where the noise is assumed to be drawn from
an inverse-gamma (IG) distribution. We show that this
instance is an extension of BePoF (Acharya et al., 2015) and
PF (Gopalan et al., 2015) applied to binarized data.

•We use a model augmentation trick to design an efficient
variational algorithm, both for the update rules of the latent
factors W and H, and for those of the thresholds b. In
particular, this variational algorithm scales with the number
of non-zero values in Y.

• We report the results of OrdNMF on recommendation
tasks for two datasets (with explicit and implicit feedbacks).
Moreover, posterior predictive checks (PPCs) demonstrate
the excellent flexibility of OrdNMF and its ability to repre-
sent various kinds of datasets.

The rest of the paper is organized as follows. In Section 2,
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Figure 1. Graphical model of OrdMF. A latent variable X is intro-
duced to make the link between the factorization term WHT and
the ordinal data Y.

we present important related works on cumulative link mod-
els and on BePoF. In Section 3, we present our general
OrdNMF model and detail a particular instance. In Sec-
tion 4, we develop an efficient VI algorithm which scales
with the number of non-zero values in the data. In Section 5,
we test our algorithm on recommendation tasks for explicit
and implicit datasets. Finally, in Section 6, we conclude and
discuss the perspectives of this work.

2. Related Works
2.1. Cumulative Link Models (CLMs)

CLMs were one of the first threshold models proposed for
ordinal regression (Agresti & Kateri, 2011). These models
have been adapted to deal with the MF problem, leading to
OrdMF models. They amount to finding the approximation
Y ≈ G(WHT ), where Y ∈ {0, . . . , V }U×I is an ordinal
data matrix, W ∈ RU×K and H ∈ RI×K are latent factors,
and G(·) is a parametrized link function described subse-
quently. OrdMF has been applied mainly to explicit data in
order to predict users feedbacks (Chu & Ghahramani, 2005;
Paquet et al., 2012).

The idea behind threshold models is to introduce a continu-
ous latent variable xui ∈ R that is mapped to the ordinal data
yui. This is done by considering an increasing sequence of
thresholds b−1 = −∞ < b0 < · · · < bV−1 < bV = +∞,
denoted by b, which fully characterize the following quanti-
zation function, illustrated in Figure 2, by:

Gb : R → {0, . . . , V }
x 7→ v such as x ∈ [bv−1, bv).

(1)

Therefore, ordinal data result from the quantization of the
variable xui by the step function Gb, i.e., yui = Gb(xui).
The latent variable xui corresponds to the variable λui =
[WHT ]ui ∈ R perturbed by an additive noise εui, whose
cumulative density function (c.d.f.) is denoted by Fε : R→
[0, 1]. Thus, we obtain the following generative model,
illustrated in Figure 1:

xui = λui + εui, (2)
yui = Gb(xui). (3)
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Figure 2. Example of a quantization function x 7→ Gb(x).

The goal of MF models for ordinal data is therefore to jointly
infer the latent variables W and H as well as the sequence
of thresholds b.

Cumulative distribution function. The c.d.f. associated
with the random variable yui in Eqs. (2)-(3) can be calcu-
lated as follows:

P[yui ≤ v|λui] = P[Gb(xui) ≤ v|λui] (4)
= P[λui + εui < bv] (5)
= P[εui < bv − λui] (6)
= Fε (bv − λui) . (7)

It follows that the function v 7→ P[yui ≤ v|λui] is increas-
ing since the sequence of thresholds is itself increasing.
Moreover, the probability mass function (p.m.f.) associated
to the ordinal data can be written as:

P[yui = v|λui] = P[yui ≤ v|λui]− P[yui ≤ v − 1|λui]
= Fε (bv − λui)− Fε (bv−1 − λui) . (8)

Some examples. If the c.d.f. is strictly increasing, we can
rewrite Eq. (7) as:

F−1
ε (P[yui ≤ v|λui]) = bv − λui. (9)

Hence the name of CLM, since the factorization model is re-
lated to the c.d.f. of the ordinal data through a link function
F−1
ε : [0, 1] → R. Various choices of noise (equivalently,

of link function F−1
ε ) have been considered in the literature.

We present some of these choices in what follows.

• Logit function. The use of the logit function was first
proposed in (Walker & Duncan, 1967). This model was pop-
ularized and renamed as "proportional odds model" by (Mc-
Cullagh, 1980). The model can be rewritten as:

logit P[yui ≤ v|λui] = log
P[yui ≤ v|λui]
P[yui > v|λui]

= bv − λui

(10)

• Probit function. A common choice for the additive noise
is εui ∼ N (0, σ2) (Chu & Ghahramani, 2005; Paquet et al.,
2012; Hernandez-Lobato et al., 2014). In that case the link
function F−1

ε is the probit function. Inference can be carried
out with an EM algorithm based on the latent variable xui.

• Other choices like log-log or cauchit functions have
also been considered (Agresti & Kateri, 2011). The sur-
vey (Ananth & Kleinbaum, 1997) recaps some of these
choices.

2.2. Bernoulli-Poisson Factorization (BePoF)

In this section, we present BePoF (Acharya et al., 2015)
which is a variant of PF for binary data (not directly related
to the CLMs introduced above). It employs a model aug-
mentation trick for inference that we will use in our own
algorithm presented in Section 4.

The Poisson distribution can easily be “augmented” to fit
binary data yui ∈ {0, 1}. Indeed, it suffices to introduce a
thresholding operation that binarizes the data. The corre-
sponding generative hierarchical model is therefore given
by:

nui ∼ Poisson([WHT ]ui), (11)
yui = 1[nui > 0], (12)

where nui ∈ N is a latent variable and 1 is the indicator func-
tion. We denote by N ∈ NU×I the matrix such that [N]ui =
nui. This variable can easily be marginalized by noting that
P[yui = 0] = Poisson(0|[WHT ]ui) = e−[WHT ]ui . We
obtain:

yui ∼ Bern(1− e−[WHT ]ui) (13)

where Bern refers to the Bernoulli distribution. The condi-
tional distribution of the latent variable nui is given by:

nui|yui ∼

{
δ0, if yui = 0,

ZTP([WHT ]ui), if yui = 1.
(14)

where ZTP refers to the zero-truncated Poisson distribution
and δ0 to the Dirac distribution located in 0. The latent
variable N can be useful to design Gibbs or variational
inference (VI) algorithms for binary PF (Acharya et al.,
2015) and we will employ a similar trick in Section 4.

Remark. The generative model presented in Eq. (13)
is in the form yui ∼ Bern(G([WHT ]ui)) where G :
R (or R+) → [0, 1]. When [WHT ]ui ∈ R, the function
G can be the inverse of the probit (Consonni & Marin,
2007) or of the logit function for example. They are special
cases of the model presented in Section 2.1 with V = 1.
Mean-parametrized Bernoulli MF models have also been
considered (Lumbreras et al., 2018). They correspond to
G = Id and require additional constraints on the latent
factors W and H in order to satisfy [WHT ]ui ∈ [0, 1].
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3. Ordinal NMF (OrdNMF)
In this section, we introduce OrdNMF which is a NMF
model pecially designed for ordinal data. A difference with
Section 2.1 is that we impose that both matrices W and
H are non-negative. Thus, we now have [WHT ]ui ∈ R+

instead of [WHT ]ui ∈ R. We denote λuik = wukhik so
that λui =

∑
k λuik = [WHT ]ui.

3.1. Quantization of the Non-negative Numbers

Our model works on the same principle as OrdMF (see
Section 2.1) and seeks to quantize the non-negative real
line R+. For this, we introduce the increasing sequence
of thresholds b given by b−1 = 0 < b0 < · · · < bV−1 <
bV = +∞ (the thresholds are here non-negative). Moreover,
we define the quantization functionGb : R+ → {0, . . . , V }
like in Eq. (1) but with support R+.

As compared to Section 2.1, we now assume a non-negative
multiplicative noise on xui. This ensures the non-negativity
of xui and it seems well suited for modeling over-dispersion,
a common feature of recommendation data. Let εui be a non-
negative random variable with c.d.f. Fε, we thus propose
the following generative model:

xui = λui · εui, (15)
yui = Gb(xui). (16)

Like before, our goal is to jointly infer the latent variables
W and H as well as the sequence of the thresholds b. In our
model, the c.d.f. associated to the ordinal random variable
yui becomes:

P[yui ≤ v|λui] = P[Gb(xui) ≤ v|λui] (17)
= P[λui · εui < bv] (18)

= P

[
εui <

bv
λui

]
(19)

= Fε

(
bv
λui

)
. (20)

Therefore, we can deduce that the p.m.f. is given by:

P[yui = v|λui]
= P[yui ≤ v|λui]− P[yui ≤ v − 1|λui] (21)

= Fε

(
bv
λui

)
− Fε

(
bv−1

λui

)
. (22)

Various functions Fε can be used which determine the exact
nature of the multiplicative noise. Figure 3 displays the
function λ 7→ Fε(λ

−1) for the examples considered next.

• Gamma noise: εui ∼ Gamma(α, 1).1 The c.d.f. is given

1The rate parameter β is fixed to 1 because of a scale invariance
with λui.
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Figure 3. Functions λ 7→ Fε(λ
−1) for gamma (left) and inverse-

gamma (right) noises.

by Fε(x) = γ(α,x)
Γ(α) where γ(α, x) =

∫ x
0
tα−1e−tdt is the

lower incomplete gamma function. If α = 1, we recover an
exponential noise εui ∼ Exp(1) whose c.d.f. is Fε(x) =
1− e−x.

• Inverse-gamma (IG) noise: εui ∼ IG(α, 1).1 The
c.d.f. is given by Fε(x) = Γ(α,x−1)

Γ(α) where Γ(α, x) =∫∞
x
tα−1e−tdt is the upper incomplete gamma function.

If α = 1, we obtain the c.d.f. Fε(x) = e−1/x.

• Any increasing function Fε : R+ → [0, 1] defines a non-
negative random variable which can be used in OrdNMF.

3.2. OrdNMF with IG Noise (IG-OrdNMF)

In the rest of the paper, we focus on the special case where
εui is a multiplicative IG noise with shape parameter α = 1,
i.e., εui ∼ IG(1, 1)2. We use the acronym IG-OrdNMF for
this particular instance of OrdNMF.

For convenience we write θv = b−1
v . The sequence θ corre-

sponds to the inverse of the thresholds and is therefore de-
creasing, i.e., θ−1 = +∞ > θ0 > · · · > θV−1 > θV = 0.
Moreover, we denote by ∆ the positive sequence of decre-
ments defined by ∆v = θv−1 − θv for v ∈ {1, . . . , V }. We
have θv =

∑V
l=v+1 ∆l and, in particular, θV−1 = ∆V .

Interpretation. In IG-OrdNMF model, the c.d.f. associ-
ated with an ordinal data yui is given by:

P[yui ≤ v|λui] = e−λuiθv , (23)

or P[yui > v|λui] = 1− e−λuiθv , (24)

with v ∈ {0, . . . , V }. Therefore, BePoF (see Section 2.2) is
a particular case of IG-OrdNMF with V = 1 and θ0 = 1.

This formulation allows for a new interpretation of IG-
OrdNMF. As a matter of fact, the event {yui > v} is a
binary random variable which follows a Bernoulli distribu-
tion: {yui > v} ∼ Bern(1−e−λuiθv ). Then, we can see IG-
OrdNMF as the aggregation of V dependent BePoF models
for different thresholds of binarization v ∈ {0, . . . , V − 1}.

2The expectation of a IG variable is not defined for α ≤ 1,
however the model is still well-defined.
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Probability mass function. The p.m.f. of an observation
is given by:

P[yui = v|λui] =


e−λuiθ0 , for v = 0,

e−λuiθv − e−λuiθv−1 , for 1 ≤ v < V,

1− e−λuiθV −1 , for v = V.

(25)

Then, the log-likelihood of λui can be written as:

log P[yui = v|λui] =

{
−λuiθ0, if v = 0,

−λuiθv + log(1− e−λui∆v ), else.
(26)

This expression brings up a linear term in λui and a non-
linear term of the form x 7→ log(1 − e−x), similar to the
function used in Section 2.2.

Moreover, the expectation of the observations is well-
defined and given by :

E(yui|λui) = V −
V−1∑
v=0

e−λuiθv . (27)

Note that, in the context of ordinal data processing, the
expectation is not a good statistic since it implicitly implies
a notion of distance between classes. However, this quantity
will be useful to build lists of recommendations. Indeed, the
function λui 7→ E(yui|λui) is increasing. Thus, the higher
the λui = [WHT ]ui, the higher (in expectation) the level
of interaction between the user and the item.

4. Bayesian Inference
We impose a gamma prior on the entries of both ma-
trices W and H, i.e., wuk ∼ Gamma(αW , βWu ) and
hik ∼ Gamma(αH , βHi ). Gamma prior is known to induce
sparsity which is a desirable property in NMF methods.

4.1. Augmented Model

As described in Section 3.2 , the log-likelihood for ordinal
data such that v ∈ {1, . . . , V } brings up a non-linear term
log(1 − e−x) which is not conjugate with the gamma dis-
tribution, making the inference complicated. To solve this
issue, we use the trick presented in Section 2.2 by augment-
ing our model with the latent variable:

nui|yui, λui ∼

{
δ0, if yui = 0,

ZTP(λui∆yui), if yui > 0.
(28)

Moreover, as commonly done in the PF setting (Cemgil,
2009; Gopalan et al., 2015), we augment our model with
the latent variable cui|nui, λui ∼ Mult(nui,φui), where
Mult is the multinomial distribution and φui is a probability

Table 1. Variational distributions for IG-OrdNMF.

Var. Distribution

C q(cui|nui) = Mult
(
cui; nui, φ̃ui

)
N q(nui) =

{
δ0, if yui = 0

ZTP(nui; Λui∆yui
), if yui > 0

W q(wuk) = Gamma
(
wuk; α̃Wuk, β̃

W
uk

)
H q(hik) = Gamma

(
hik; α̃Hik, β̃

H
ik

)

vector with entries λuik

λui
. Therefore, for ordinal data yui ∈

{1, . . . , V }, we obtain the following joint log-likelihood:

log p(yui, nui, cui|λui) = −λuiθyui−1 (29)

+ nui log ∆yui +
∑
k

(cuik log λuik − log cuik!) ,

s.t. nui ∈ N∗ and nui =
∑
k

cuik.

Joint log-likelihood of IG-OrdNMF. We denote by Z =
{N,C,W,H} the set of latent variables of the augmented
model. Moreover, we define Tv such that:

Tv =

{
θ0, if v = 0,

θv−1, if v > 0.
(30)

The joint log-likelihood of IG-OrdNMF is therefore given
by:

log p(Y,N,C|W,H) =
∑
ui

[
nui log ∆yui

+
∑
k

(cuik log λuik − log cuik!)− λuiTyui

]
. (31)

It is important to note that nui = 0 and cui = 0K when
yui = 0. Consequently, the variables N and C are partially
observed and the inference take advantage of the sparsity of
the observed matrix Y.

4.2. Variational Inference

The posterior distribution p(Z|Y) is intractable. We use
VI to approximate this distribution by a simpler variational
distribution q. Here, we assume that q belongs to the mean-
field family and can be written in the following factorized
form:

q(Z) =
∏
ui

q(nui, cui)
∏
uk

q(wuk)
∏
ik

q(hik). (32)

Note that the variables N and C remains coupled. We use
a coordinate-ascent VI (CAVI) algorithm to optimize the
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parameters of q. The variational distributions are described
in Table 1. The associated update rules are summarized in
Algorithm 1.

Approximation and link with PF. Algorithm 1 can be
simplified by assuming that q(nui) = δ1 if yui > 0. This
amounts to replacing the non-linear term log(1− e−x) by
log x in Eq. (26). However, this approximation will produce
similar results only if x is very small, since log(1− e−x) =
log x+o(x). In practice, this can only be verified a posteriori
by observing that Eq(nui) ≈ 1.

As mentioned above, BePoF is a special case of IG-OrdNMF
for V = 1 and θ0 = 1. Thus, we can notice that PF algo-
rithm applied to binary data is an approximation of BePoF
algorithm for q(nui) = δ1 if yui = 1.

4.3. Thresholds Estimation

A key element of threshold models is the learning of thresh-
olds (corresponding here to θ parameters). For this, we
use a VBEM algorithm. It aims to maximize the term
Eq(log p(Y,Z;θ)), w.r.t. the variables θ, which is given
by:

Eq(log p(Y,Z;θ)) = (33)∑
ui

[
Eq(nui) log ∆yui

− Eq(λui)Tyui

]
+ cst,

s.t. θ0 > θ1 > · · · > θV−1 > θV = 0.

Note that both terms Tv (defined in Eq. (30)) and ∆v =
θv−1 − θv > 0 depend on the sequence θ.

Decrements optimization. We choose to work on the
decrement sequence ∆ rather than on the threshold se-
quence θ. Indeed, by doing so, the decreasing constraint
of θ becomes a non-negativity constraint of ∆. Moreover,
we obtain only terms in x and log x in the function to be
maximized. Thus, the problem can be solved analytically.

We can rewrite the term Tv w.r.t. the sequence ∆ by noting
that: Tv =

∑V
l=1 1[v ≤ l]∆l, ∀v ∈ {0, . . . , V }. Therefore,

the optimization problem presented in Eq. (33) amounts to
maximizing the following function:

Eq(log p(Y,Z; ∆)) =
∑
ui

V∑
l=1

[
1[yui = l]Eq(nui) log ∆l

− 1[yui ≤ l]Eq(λui)∆l

]
+ cst, s.t. ∆ ≥ 0. (34)

Algorithm 1 CAVI for IG-OrdNMF.
Data: Matrix Y
Result: Variational distribution q and thresholds θ

1 Initialization of variational parameters and thresholds θ;
repeat

2 foreach couple (u, i) such as yui > 0 do
3 Λuik = exp (Eq(logwuk) + Eq(log hik));

Λui =
∑
k Λuik;

Eq(nui) =
Λui∆yui

1−e−Λui∆yui
;

Eq(cuik) = Eq(nui)
Λuik

Λui
;

4 end
5 foreach user u ∈ {1, . . . , U} do
6 α̃Wuk = αW +

∑
i Eq(cuik);

β̃Wuk = βWu +
∑
i Tyui

Eq(hik);
7 end
8 foreach item i ∈ {1, . . . , I} do
9 α̃Hik = αH +

∑
u Eq(cuik);

β̃Hik = βHi +
∑
u Tyui

Eq(wuk);
10 end
11 Update of thresholds: Eq. (35) and Eq. (36);

Update of rate parameters βWu and βHi ;
Calculate ELBO(q,θ);

12 until ELBO converge;

Thus, we obtain the following update rules:

∆l =

∑
ui 1[yui = l]Eq(nui)∑
ui 1[yui ≤ l]Eq(λui)

,∀l ∈ {1, . . . , V }, (35)

θv =

V∑
l=v+1

∆l,∀v ∈ {0, . . . , V − 1}. (36)

Algorithm 1 scales with the number of non-zero values in
the observation matrix Y. The complexity of OrdNMF
is of the same order of magnitude as BePoF and PF. The
only difference with these algorithms in terms of computa-
tional complexity is the update of the thresholds (Line 11 of
Alg. 1).

4.4. Posterior Predictive Expectation.

The posterior predictive expectation E(Y∗|Y) corresponds
to the expectation of the distribution of new observations
Y∗ given previously observed data Y. This quantity allows
us to create the list of recommendations for each user. We
can approximate it by using the variational distribution q:

E(Y∗|Y) ≈
∫
W,H

E(Y∗|W,H)q(W)q(H)dWdH.

(37)

Unfortunately, this expression is not tractable. But for rec-
ommendation we are only interested in ordering items w.r.t.
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Table 2. Recommendation performance of OrdNMF using the MovieLens dataset. Bold: best NDCG score. R: raw data. B: binarized data.

NDCG@100 with threshold s
Model Data K s = 1 s = 4 s = 6 s = 8 s = 10

OrdNMF R 150 0.444 0.444 0.439 0.414 0.353
BePoF B (≥ 1) 50 0.433 0.430 0.421 0.383 0.310
PF B (≥ 1) 100 0.431 0.428 0.418 0.380 0.306
BePoF B (≥ 8) 50 0.389 0.393 0.399 0.408 0.369
PF B (≥ 8) 150 0.386 0.389 0.395 0.403 0.365

Table 3. Recommendation performance of OrdNMF using the Taste Profile dataset. Bold: best NDCG or log-likelihood score. Q:
quantized data. B: binarized data. R: raw data.

NDCG@100 with threshold s
Model Data K s = 1 s = 3 s = 6 s = 11 s = 21 s = 51 log-lik

OrdNMF Q 250 0.213 0.174 0.153 0.135 0.123 0.117 −2.8 · 105

dcPF R 150 0.209 0.173 0.154 0.137 0.128 0.121 −3.0 · 105
BePoF B (≥ 1) 250 0.210 0.170 0.149 0.131 0.120 0.115 N/A
PF B (≥ 1) 250 0.206 0.167 0.146 0.129 0.118 0.115 N/A

this quantity. The function λui 7→ E(y∗ui|λui) being in-
creasing, we can use instead of Eq. (37) the simpler score
sui = [Eq(W)Eq(H)T ]ui.

5. Experimental Results
5.1. Experimental Set Up

Datasets. We report experimental results for two datasets
described below.

•MovieLens (Harper & Konstan, 2015). This dataset con-
tains the ratings of users on movies on a scale from 1 to
10. These explicit feedbacks correspond to ordinal data. We
consider that the class 0 corresponds to the absence of a
rating for a couple user-movie. The histogram of the ordinal
data is represented in blue on Figure 4. We pre-process a
subset of the data as in (Liang et al., 2016), keeping only
users and movies that have more than 20 interactions. We
obtain U = 20k users and I = 12k movies.

• Taste Profile (Bertin-Mahieux et al., 2011). This dataset,
provided by the Echo Nest, contains the play counts of users
on a catalog of songs. As mentioned in the introduction, we
choose to quantize these counts on a predefined scale in or-
der to obtain ordinal data. We arbitrarily select the following
quantization thresholds: [1, 2, 5, 10, 20, 50, 100, 200, 500].
For example, the class labeled 6 corresponds to a listening
counts between 21 and 50. As for MovieLens, the class 0
corresponds to users who have not listen to a song. The his-
togram of the ordinal data are displayed in blue on Figure 4.
We pre-process a subset of the data as before and obtain
U = 16k users and I = 12k songs.

Be careful not to confuse the predefined quantization used to
obtain ordinal data, with the quantization of the latent vari-
able in OrdNMF model which is estimated during inference.
Although we expect OrdNMF to recover a relevant scaling
between the categories, there is no reason to get the same
quantization function that was used for pre-processing.

Evaluation. Each dataset is split into a train set Ytrain and
a test set Ytest: the train set contains 80% of the non-zero
values of the original dataset Y, the other values are set to
the class 0; the test set contains the remaining 20%. All
the compared methods are trained on the train set and then
evaluated on the test set.

First, we evaluate the recommendations with a ranking met-
ric. For each user, we propose a list of m = 100 items
(movies or songs) ordered w.r.t. the prediction score pre-
sented in Section 4.4: sui = [Eq(W)Eq(HT )]ui. The qual-
ity of these lists is then measured through the NDCG met-
ric (Järvelin & Kekäläinen, 2002). The NDCG rewards
relevant items placed at the top of the list more strongly
than those placed at the end. We use the relevance definition
proposed in (Gouvert et al., 2019):

rel(u, i) = 1[ytest
ui ≥ s]. (38)

In other words, an item is considered as relevant if it belongs
at least to the class s in the test set. The NDCG metric is
between 0 and 1, the higher the better.

Moreover, for the Taste Profile dataset, we calculate the
log-likelihood of the non-zero entries on the test set, as it is
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Figure 4. PPC of the distribution of the classes in the Taste Profile dataset (left) and MovieLens dataset (right). The blue bars (Truth)
represents the histogram of the classes in the train set. The colored bars represent the simulated histograms obtained from the different
inferred OrdNMF or dcPF models. The percentages of non-zero values are written in parentheses.

done in (Basbug & Engelhardt, 2016):

LNZ =
∑

(u,i)∈Testset

log p(ytest
ui |ytest

ui > 0,Ŵ, Ĥ), (39)

where ytest
ui is the quantized data, ŵuk = E[wuk] and ĥik =

E[hik] are the estimated latent factors.

Compared methods. We compare OrdNMF with three
other models: PF, BePoF and discrete compound PF
(dcPF) (Basbug & Engelhardt, 2016) with a logarithmic ele-
ment distribution as implemented in (Gouvert et al., 2019).
Each model is applied either to raw data (R), quantized data
(Q) or binarized data (B). For the MovieLens dataset, two
different binarizations are tested: one with a threshold at 1
(≥ 1) and one with a threshold at 8 (≥ 8). For the Taste Pro-
file dataset, dcPF is applied to the count data (R) whereas
OrdNMF is applied to the quantized data (Q).

For all models, we select the shape hyperparameters
αW = αH = 0.3 among {0.1, 0.3, 1} (Gopalan et al.,
2015). The number of latent factors is chosen among
K ∈ {25, 50, 100, 150, 200, 350} for the best NDCG score
with threshold s = 8 for the MovieLens dataset, and s = 1
for the Taste Profile dataset. All the algorithms are run 5
times with random initializations and are stopped when the
relative increment of the expected lower bound (ELBO) falls
under τ = 10−5. The computer used for these experiments
was a MacBook Pro with an Intel Core i5 processor (2,9
GHz) and 16 Go RAM. All the Python codes are available
on https://github.com/Oligou/OrdNMF.

5.2. Prediction Results

Table 2 displays the results for the MovieLens dataset. First,
we can compare BePoF with its approximation, i.e., PF ap-
plied to binarized data. BePoF is slightly better than PF for
both binarizations, and requires less latent factors. Then, we
observe that the choice of the binarization has a big impact

on the NDCG scores. BePoF with data thresholded at 1
(≥ 1) perform well on small NDCG threshold s but has
poor performance after. On the contray, with data thresh-
olded at 8 (≥ 8), BePoF achieves best performances for
NDCG s = 10 but poor performances for small s. OrdNMF
does not exhibit such differences between NDCG scores
and benefits from the additional information brought by the
ordinal classes. Nevertheless, we can note a small decrease
of the performance with s = 10 which is the hardest class
to predict.

Table 3 displays the same kind of results for the Taste Profile
dataset. Again, OrdNMF outperforms BePoF and PF which
exploit less data information. OrdNMF is competitive with
dcPF which gives the best results for the highest thresholds
s. However, OrdNMF presents a higher log-likelihood score
than dcPF. Thus, OrdNMF seems better suited to predict the
feedback class of a user than dcPF. This observation is con-
firmed by the posterior predictive checks (PPC) presented
below.

5.3. Posterior Predictive Check (PPC)

A PPC consists of generating new data based on
the posterior predictive distribution p(Y∗,W,H|Y) ≈
p(Y∗|W,H)q(W)q(H), and then compare the structure
of the original data Y with the artificial data Y∗. Here,
we focus on the distribution of the ordinal categories. Fig-
ure 4 presents the results of these PPCs for the Taste Profile
dataset. The blue bars correspond to the empirical histogram
of the data (Ytrain), the red and orange bars correspond to
the histograms of the simulated data obtained with OrdNMF
and dcPF respectively. While dcPF fails to model the very
large values present in the data (from the class 7, which cor-
responds to values greater than 50 plays), OrdNMF seems
to precisely describe all the ordinal categories. This is also
the case on the MovieLens dataset too. Even if the empirical
histogram is here less regular, OrdNMF can adapt itself to

https://github.com/Oligou/OrdNMF
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all type of data through the inferred thresholds b.

6. Conclusion
We developed a new probabilistic NMF framework to pro-
cess ordinal data. In particular, we presented IG-OrdNMF
which is an extension of BePoF and conducted experiments
on two different datasets. We show the ability of OrdNMF
to process different kinds of ordinal data both explicit and
implicit. This work opens up several exciting perspectives.
As we described in Section 3.1, OrdNMF can be used for
different choices of multiplicative noise. It would be in-
teresting to develop OrdNMF for the exponential noise in
a similar way than IG-OrdNMF. Finally, when applied to
implicit data, it would be of particular interest to learn the
pre-processing during the factorization, in order to automat-
ically tune the level of pre-processing adapted to a given
dataset. This is yet left for future investigations.
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