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Université de Lorraine - IUT Charlemagne

Institut Elie Cartan de Lorraine
radu-stefan.stoica@univ-lorraine.fr

Nancy, M2 IMSD - S3



Table of contents

Course 1. Introduction and some Mathematical background
Introduction
Some data sets and their related questions
Mathematical background



Course 1. Introduction : course organisation, data sets and

examples

About me

◮ professor at Université de Lorraine

◮ mail : radu-stefan.stoica@univ-lorraine.fr

◮ web page :
https://sites.google.com/site/radustefanstoica/

◮ office : 120

◮ phone : + 33 6 20 06 29 30

Course structure

◮ 6 blocks, where 1 block = 1h30 course + 2h30 theoretical
and practical exercices

◮ mark : exam to be defined
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What is this course about ?

Spatial data analysis : investigate and describe data sets whose
elements have two components

◮ position : spatial coordinates of the elements in a certain
space

◮ characteristic : value(s) of the measure(s) done at this
specific location

◮ application domains : image analysis, environmental sciences,
astronomy



”The” questions :

◮ what is the data subset made of those elements having a
certain ”common” property ?

◮ what is the information contained by the data ?

”The” answer :

◮ generally, these ”common” property and information may be
described by a statistical analysis

◮ the spatial coordinates of the spatial data elements add a
morphological component to the answer

◮ the data subset and the information we are looking for, they
form a pattern that has relevant geometrical characteristics

Bayesian paradigm :

◮ use prior knowledge in order to answer the question



”The” question re-formulated :

◮ what is the pattern hidden in the data ?

◮ what are the geometrical and the statistical characteristics of
this pattern ?

Aim of the course : provide you with some mathematical tools to
allow you formulate answers to these questions



Examples : data sets and related questions

For the purpose of this course : software and data sets are
available

◮ R library : spatstat by A. Baddeley, R. Turner and
contributors → www.spatstat.org

◮ C++ library : MPPLIB by A. G. Steenbeek, M. N. M. van
Lieshout, R. S. Stoica and contributors → available at simple
demand



My research partners :

◮ mathematics : Université de Lorraine, INRIA, Université de
Lille, Universitat Jaume I Castellon, CWI Amsterdam

◮ astronomy and cosmology : Tartu Observatory, Observatorio
Astronomico de Valencia, Observatoire de Paris IMCCE

◮ environmental sciences : RING and GeoRessources, INRA,
CIRAD

◮ industry : SEDIF, St. Gobain



Forestry data (1) : the points positions exhibit attraction →
clustered distribution

redwoodfull

Figure: Redwoodfull data from the spatstat package

> library(spatstat)

> data(redwoodfull) ; plot(redwoodfull)



Forestry data (2) : the points positions exhibit neither attraction
nor repulsion → completely random distribution

japanesepines

Figure: Japanese data from the spatstat package

In order to see all the available data sets
> data(package="spatstat")



Biological data (1) : the points positions exhibit repulsion →
regular distribution

cells

Figure: Cell data from the spatstat package

> data(cells)

> cells

planar point pattern: 42 points

window: rectangle = [0, 1] x [0, 1] units



Biological data (2) : two types of cells exhibiting attraction and
repulsion depending on their relative positions and types

amacrine

Figure: Amacrine data from the spatstat package

> data(amacrine) ;

plot(amacrine,cols=c("blue","red"))



Geological data : two types of patterns, line segments and points
→ are these patterns independent ?

Copper

Figure: Copper data from the spatstat package

> attach(copper) ; L=rotate(Lines,pi/2) ;

P=rotate(Points,pi/2)

> plot(L,main="Copper",col="blue") ;

points(P$x,P$y,col="red")



Animal epidemiology : sub-clinical mastitis for diary herds

◮ points → farms location

◮ to each farm → disease score (continuous variable)

◮ clusters pattern detection : regions where there is a lack of
hygiene or rigour in farm management
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Figure: The spatial distribution of the farms outlines almost the entire
French territory (INRA Avignon).



Cluster pattern : some comments

◮ particularity of the disease : can spread from animal to animal
but not from farm to farm

◮ cluster pattern : several groups (regions) of points that are
close together and have the “same statistical properties”

◮ clusters regions → approximate it using interacting small
regions (random disks)

◮ local properties of the cluster pattern : small regions where
locally there are a lot of farms with a high disease score value

◮ problem : pre-visualisation is difficult ...



Image analysis : road and hydrographic networks

a) b)

Figure: a) Rural region in Malaysia (http://southport.jpl.nasa.gov), b)
Forest galleries (BRGM).



Thin networks : some comments

◮ road and hydrographic networks → approximate it by
connected random segments

◮ topologies : roads are “straight” while rivers are “curved”

◮ texture : locally homogeneous, different from its right and its
left with respect a local orientation

◮ avoid false alarms : small fields, buildings,etc.

◮ local properties of the network : connected segments covered
by a homogeneous texture



Cosmology (1) : spatial distribution of galactic filaments

Figure: Cuboidal sample from the North Galactic Cap of the 2dF Galaxy
Redshift Survey. Diameter of a galaxy ∼ 30× 3261.6 light years.



Cosmology (2) : study of mock catalogs

a) b)

Figure: Galaxy distribution : a) Homogeneous region from the 2dfN
catalog, b) A mock catalogue within the same volume



Cosmology (3) : questions and observations

Few words about the 2dF GRS and SDSS catalogues

◮ filaments, walls and clusters : different size and contrast

◮ inhomogeneity effects (only the brightest galaxies are
observed)

◮ filamentary network the most relevant feature

◮ local properties of the filamentary network : connecting
random cylinders containing a “lot” of galaxies “along” its
main axis

Mock catalogues

◮ how “filamentary” they are w.r.t the real observation ?

◮ how the theoretical models producing the synthetic data fits
the reality ?



Cosmology (4) : cluster detection

Figure: Distribution of galaxies in the 2MRS data set. Positions of
galaxies are given in supergalactic coordinates, where observer is located
at the origin of coordinates (marked as blue point on the figure). The
thickness of the slice shown in the figure is 15 Mpc. Some galaxy clusters
are marked with black ellipses to highlight the elongation of galaxy
groups/clusters along the line of sight.



Cosmology (5) : questions and observations

Few words about the 2MRS data set:

◮ more galaxies are observed

◮ price to pay : lack of precision for the third coordinates

◮ consequence : finger-of-God effect is much more important

◮ galaxy groups and clusters seem elongated along the line of
sight

◮ inhomogeneity effects



Cosmology (6) : influence of the new observations on the

already detected structures

a)
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Figure: Photometric galaxies(green dots), spectroscopical galaxies (red
dots) and filaments (blue) : a) photometrical galaxies projected on a
sphere, b) photometrical galaxies lines of sight



Few words about the SDSS Data Release 12 data set:

◮ much more galaxies are observed

◮ price to pay : bigger lack of precision for the third coordinates

◮ question : how this new data set is related to the already
existing detected structures

◮ need to compare and to relate complex patterns in 2d and 3d



Cosmology (7) : knowing the filamentary structure what is

the galaxy distribution ?

Figure: Data set : galaxy positions with spines (filaments main axes)



Some questions related to galaxy distribution

◮ galaxies are spread as pearls on a necklace : (Tempel et al.,
2014)

◮ inhomogeneity : filaments presence or interactions ?

◮ which of these factors controls the galaxy distribution ?

◮ what type of interaction : gravitational, territorial, component
oriented ?

◮ what is the interaction range ?

◮ what is the size of a cluster ?



Network science

Figure: Collaborations among researchers within the Loria laboratory :
HAL data set (2018).



Description of the network :

◮ each node represents a researcher,

◮ the edges are collaborative links

◮ nodes’ color represent the affiliation to a laboratory.

◮ all Loria members are coloured in yellow, while the members
of the other labs are differently coloured

Related questions :

◮ what determines the occurrence of a collaborative link ?

◮ how the presence of cooperating individuals can be
characterised ?

◮ how to quantify the cooperation behaviour of a research
team ?



Oort cloud comets (1)

The comets dynamics :

◮ comets parameters (z , q, cos i , ω,Ω) → inverse of the
semi-major axis,perihelion distance, inclination, perihelion
argument, longitude of the ascending node

◮ variations of the orbital parameters

◮ initial state : parameters before entering the planetary region
of our Solar System

◮ final state : current state

◮ question : do these perturbation exhibit any spatial pattern ?



Oort cloud comets (2)

Study of the planetary perturbations

◮ ∼ 107 perturbations were simulated

◮ data → set of triplets (q, cos i ,△z)

◮ spatial data framework : location (q, cos i) and marks △z

◮ △z = zf − zi :perturbations of the cometary orbital energy

◮ local properties of the perturbations : locations are uniformly
spread in the observation domain, marks tend to be important
whenever they are close to big planets orbits

◮ reformulated question : do these planetary observations
exhibit an observable spatial pattern ?

◮ problem : pre-visualisation is very difficult ...



Spatio-temporal data

Time dimension available :

◮ the previous example may be considered snapshots

◮ more recent data sets have also a temporal coordinate

◮ question : what is the pattern hidden in the data and its
spatio-temporal description ?



Binary asteroids

Bayesian orbit determination :

◮ input data : n observations at times t = (t1, ..., tn)

◮ observational equation :

w = ψ(s) + ε

with
◮ w = (x1, y1, . . . , xn, yn) : the rectangular coordinates of the

secondary asteroid with primary asteroid in the origin
◮ s = (a, e, i ,Ω, ω,T ,P) : the apparent orbit Keplerian elements

and the period of revolution P
◮ ε : noise and measure errors

◮ question : what are the best parameters s fitting the
observations w

◮ problem : the z1, . . . , zn coordinates are not observable

◮ our solution : elliptical regression + Bayesian modelling



Illustration example :

Figure: Orbit detection result ( asteroid 283 Emma) : observed data
(black points), our MCMC Bayesian detection method (blue points), N.
V. Emeliyanov least square method (red points)



Roads dynamics in Central Africa region :

◮ in forest region with rare woods, road networks appear and
disappear within the territory of an exploitation concession

◮ there is a difference between “classical” road networks and
“exploitation” networks → mining galleries

◮ this roads dynamics may be relevant in many aspects : health
of the forest, respect of rules for the enterprises,
environmental behaviour and understanding

◮ characterize the distribution and the dynamics of the road
network

→ video roads dynamics



Study the spatio-temporal spread of failures in a water distribution
network : failures (black points), detector’s activation (red points)

◮ information available : position, activation date, alert type,
etc.

◮ SEDIF data and questions : do the detectors work ? do the
failures form a particular pattern ?

◮ how to integrate the temporal dynamics ?



Paleontology : Guérande salinas - fairy rings

◮ growing rings : territories occupied by cyano-bacterias

◮ the size of a ring is proportional with its age

◮ what determines the spatial distribution of the rings : edge
effects, water arrival, interaction ?

◮ how to integrate the temporal dyanmics ?

Figure: The distribution of the morphostructures and their sizes
(diameter in cm)



Sismology : characterisation of earthquakes occurences

◮ earthquakes : space-time events

◮ self-excitation phenomenon

◮ characterize and predict the sismic activity in different regions

Figure: Representation of positions of earthquakes on the French territory



Synthesis

Hypothesis : the pattern we are looking for can be approximated
by a configuration of random objects that interact

◮ marked points pattern : repulsive or attractive marked points

◮ clusters pattern : superposing random disks

◮ filamentary network : connected and aligned segments

Important remark :

◮ locally : the number of objects is finite



Marked point processes :

◮ probabilistic models for random points with random
characteristics

◮ origin → stochastic geometry

◮ the pattern is described by means of a probability density →
stochastic modelling

◮ the probability density allows the computation of average
quantities and descriptors (these are integrals) related to the
pattern

◮ conversely, whenever a pattern is observed, the probabilistic
framework allows the derivation of the law of parameters
conditionned on the observation : Bayesian inference

◮ not the only integrator ...



Remarks :

◮ there exist also deterministic mathematical tools able to treat
pattern recognition problems

◮ probability is cool : the phenomenon is not controlled, but
understood

◮ probability thinking framework offers simultaneously the
analysis and the synthesis abilities of the proposed method

◮ probabilistic approach deeply linked with physics :
◮ exploratory analysis
◮ model formulation
◮ simulation
◮ statistical inference



◮ comets example : random fields → another probabilistic
mathematical tool
◮ unifying random fields and marked point processes is a

mathematical challenge
◮ determinental point processes ... ?

◮ binary system example :
◮ not especially a point process
◮ the pattern we are looking for is a ”tube” of ellipses
◮ common points : Gibbsian formulation of the problem to

optimize and Bayesian approach



◮ spatio - temporal examples :
◮ spatio-temporal marked point processes
◮ random sets theory
◮ general idea : new data sets require new mathematics →

stochastic processes and stochastic geometry
◮ still, partial answers to these questions can be given using the

tools presented in this course

◮ present challenge : big data
◮ examples : particle tracking (quantum dots), cosmological

data, etc.

Important question :

◮ are you interested in an internship : IECL, Inria,
GeoRessources, CRAN + travelling ?

◮ what about a phd ?



Mathematical background

Measure and integration theory → blackboard

◮ σ−algebra

◮ measurable space, sets, functions

◮ measure

◮ measure space, integral with respect to a measure

◮ probability space, probability measure



Table of contents

Course 2. Point processes, Binomial and Poisson point processes
Definition of a point process
Binomial point process
Poisson point process
Few words about self-exciting point processes
Exercises : binomial and Poisson point processes, simulation



Course 2. Point processes, Binomial and Poisson point

processes

Construction of a point process : mathematical ingredients

◮ observation window : the measure space (W ,B, ν), with
W ⊂ R

d , B the Borel σ−algebra and 0 < ν(W ) <∞ the
Lebesgue measure

◮ points configuration space : probability space (Ω,F ,P)



Configuration space construction :

◮ state space Ω :

Wn is the set of all n-tuples {w1, . . . ,wn} ⊂ W
Ω = ∪∞

n=0Wn, n ∈ N

◮ events space F : the σ− algebra given by

F = σ({w = {w1, . . . ,wn} ∈ Ω : n(wB) = n(w ∩ B) = m})

for any bounded B ∈ B and m ∈ N

◮ probability measure P : the model answering our questions



Definition
A point process in W is a measurable mapping from a probability
space (S,A) in (Ω,F). Its distribution is given by

P(X ∈ F ) = P{ω ∈ S : X (ω) ∈ F},

with F ∈ F . The realization of a point process is random set of
points in W . We shall sometimes identify X and P(X ∈ F ) and
call them both a point process.



Remarks : point process ⇒ random configuration of points w in a
observation window W . In the following, it is considered that :

◮ a points configuration is w = {w1,w2, . . . ,wn}, with n the
corresponding number of points

◮ the process is locally finite : n(w ∩ B) is finite whenever ν(B)
is finite

◮ the process is simple : wi 6= wj for i 6= j



Marked point processes : attach characteristics to the points →
extra-ingredient : marks probability space (M,M, νM)

Definition
A marked point process is a random sequence x = {xn = (wn,mn)}
such that the points wn are a point process in W and mn are the
marks corresponding for each wn.

Examples :

◮ random circles : M = (0,∞)

◮ random segments : M = (0,∞)× [0, π]

◮ multi-type process : M = {1, 2, . . . , k}
... and all the possible combinations ... → drawing



Stationarity and isotropy. A point process X on W is stationary if
it has the same distribution as the translated proces Xw , that is

{w1, . . . ,wn} L
= {w1 + w , . . . ,wn + w}

for any w ∈ W .
A point process X on W is isotropic if it has the same distribution
as the rotated proces rX , that is

{w1, . . . ,wn} L
= {rw1, . . . , rwn}

for any rotation matrix r.

◮ motion invariant : stationary and isotropic

◮ marked case : in principle easy to generalize, but take care ...

◮ counter example : a point process on a half plane is not
stationary



Intuitive characterisation of a point process : being able to say how
many points of the process X can be found in a neighbourhood in
W
The mathematical tools for point processes : should be able to do
the following

◮ count the points of a point process in a small neighbourhood
of a point in W , and then extend the neighbourhood

◮ count the points of a point process in a small neighbourhood
of a typical point of the process X , and then extend the
neighbourhood

◮ “counting” means using a probability measure based counter



Let X be a point process on W , and let us consider the counting
variable

N(B) = n(XB), B ∈ B,
representing the number of points “falling” in B .
Let us consider also the sets of the form

FB = {x ∈ Ω : n(xB) = 0},

that are called void events.



Theorem
The distribution of a point process X on a complete, separable
metric space (W , d) is determined by the finite dimensional
distributions of its count function, i.e. the joint distribution of
N(B1), . . . ,N(Bm) for any bounded B1, . . . ,Bm ∈ B and m ∈ N.

Theorem
The distribution of a simple point process on a complete, separable
metric space (W , d) is uniquely determined by its void probabilities

v(B) = P(N(B) = 0), B ∈ B.



Choquet’s theorem

Theorem
The distribution of a random closed set X is entirely determined by
the functional

TX (K ) = P(X ∩ K 6= ∅)
for every compact K in W .

◮ random closed sets : more general object than a point process
→ this object cannot be counted, but it can be observed
through a compact window ...

◮ practical applications → Boolean model



Binomial point process

The trivial random pattern : a single random point x uniformly
distributed in a compact W such that

P(x ∈ B) =
ν(B)

ν(W )

for all B ∈ F .

More interesting point pattern : n independent points distributed
uniformly such that

P(x1 ∈ B1, . . . , xn ∈ Bn) =

= P(x1 ∈ B1) · . . . · P(xn ∈ Bn)

=
ν(B1) · . . . · ν(Bn)

ν(W )n

for Borel subsets B1, . . . ,Bn of the compact W .
→ drawing



Properties

◮ this process earns its name from a distributional probability

◮ the r.v. N(B) with B ⊆ W follows a binomial distribution
with parameters

n = N(W ) = n(xW )

and

p =
ν(B)

ν(W )

◮ the intensity of the binomial point process, or the mean
number of points per unit volume

ρ =
n

ν(W )

◮ the mean number of points in the set B

E(N(B)) = np = ρν(B)



◮ the binomial point process is simple

◮ number of points in different subsets of W are not
independent even if the subsets are disjoint

N(B) = m ⇒ N(W \ B) = n−m

◮ the distribution of the point process is characterized by the
finite dimensional distributions

P(N(B1) = n1, . . . ,N(Bk) = nk) for k = 1, 2, . . .

such that n1 + n2 + . . .+ nk ≤ n



◮ if the Bk are disjoint Borel sets with B1 ∪ . . .Bk = W and
n1 + . . .+ nk = n, the finite-dimensional distributions are
given by the multinomial probabilities

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
n!

n1! . . . nk !

ν(B1)
n1 . . . ν(Bk)

nk

ν(W )n

◮ the void probabilities for the binomial point process are given
by

v(B) = P(N(B) = 0) =
(ν(W )− ν(B))n

ν(W )n



Stationary Poisson point process

Motivation : what happens if extend W towards Rd ?

◮ convergence binomial towards Poisson

◮ → drawing + blackboard

Definition : a stationary (homogeneous) Poisson point process X is
characterized by the following fundamental properties

◮ Poisson distribution of points counts. The random number of
points of X in a bounded Borel set B has a Poisson
distribution with mean ρν(B) for some constant ρ, that is

P(N(B) = m) =
(ρν(B))m

m!
exp(−ρν(B))

◮ Independent scattering. The number of points of X in k
disjoint Borel sets form k independent random variables, for
arbitrary k



Properties

◮ simplicity : no duplicate points

◮ the mean number of points in a Borel set B is

E(N(B)) = ρν(B)

◮ ρ : the intensity or density of the Poisson process, and it
represents the mean number of points in a set of unit volume

◮ 0 < ρ <∞, since for ρ = 0 ⇒ the process contains no points,
while for ρ = ∞ we get a pathological case



◮ if B1, . . . ,Bk are disjoint Borel sets, then N(B1), . . . ,N(Bk)
are independent Poisson variable with means
ρν(B1), . . . , ρν(Bk).Thus

P(N(B1) = n1, . . . ,N(Bk) = nk)

=
ρn1+...+nkν(B1)

n1 . . . ν(Bk)
nk

n1! · . . . · nk !
exp

(
−

k∑

i=1

ρν(Bi)

)
,

◮ this formula can be used to compute joint probabilities for
overlapping sets

◮ the void probabilities for the Poisson point process are given
by

v(B) = P(N(B) = 0) = exp(−ρ(ν(B)))



◮ the Poisson point process with ρ = ct. is stationary and
isotropic

◮ if the intensity is a function ρ : W → R
+ such that

∫

B

ρ(w)dν(w) <∞

for bounded subsets B ⊆ W , then we have a inhomogeneous
Poisson process with mean

E(N(B)) =

∫

B

ρ(w)dν(w) = Υ(B)

◮ Υ is called the intensity measure

◮ we have already seen that for the stationary Poisson process :
Υ(B) = ρν(B)



Theorem
Conditionning a Poisson point process. Let X be a stationary
Poisson point process on R

d with intensity ρ > 0 and W a
bounded Borel set with ν(W ) > 0. Then, conditional on the event
{N(W ) = n}, X restricted to W is a binomial point process of n
points.

◮ proof of the theorem : → Exercice 1

◮ bonus : → Exercice 2, 3 and 4



Some properties of the Poisson point process

Theorem
Interval theorem. Let X be a stationary point process on (0,∞)
with intensity ρ and let the points of X be written in ascending
order :

0 < X1 < X2 < . . . < Xn < . . . .

The the random variables :

Y1 = X1,Yn = Xn − Xn−1

are independently, identically distributed according to
g(y) = ρ exp(−ρy) for y > 0.

◮ bus paradox : if to the initial process a symmetric independent
copy on (−∞, 0) is added, then the interval between two
consecutive points of the process containing 0 is longer than
any other interval between two consecutive points

◮ no extension of this result for d ≥ 2



Maybe most important marked Poisson point process : the unit
intensity Poisson point process with i.i.d. marks on a compact W

◮ number of objects ∼ Poisson(ν(W ))

◮ locations and marks i.i.d. : wi ∼ 1
ν(W ) and mi ∼ νM

The corresponding probability measure : weighted ‘counting” of
objects

P(X ∈ F ) =
∞∑

n=0

e−ν(W )

n!

∫

W×M

· · ·
∫

W×M

1F {(w1,m1), . . . , (wn,mn)}

×dν(w1)dνM(m1) . . . dν(wn)dνM(m)

for all F ∈ F .
Remark : the simulation of this process is straightforward, while
the knowledge of the probability distribution allows analytical
computations of the interest quantities



Simulations results of some Poissonian point processes : the
domain is W = [0, 1]× [0, 1] and the intensity parameter is ρ = 100

a)

Poisson point process

b)

Multi−type Poisson point process

c)

Poisson segment process

0.00 0.25 0.50 0.75 1.00

Figure: Poisson based models realizations : a) unmarked, b) multi-type
and c) Poisson process of segments.



Definition
A disjoint union ∪∞

i=1Xi of point processes X1,X2, . . . is called
superposition.

Proposition

If Xi ∼ Poissson(W , ρi) , i = 1, 2, . . . are mutually independent
and if ρ =

∑
ρi is locally integrable, then with probability one,

X = ∪∞
i=1Xi is a disjoint union and est X ∼ Poisson(W , ρ) .

→ stable character of the Poisson process



Definition
Let be q : W → [0, 1] a function and X a point process on W .
The point process Xthin ⊂ X obtained by including the ξ ∈ X in
Xthin with probability q(ξ), where points are included/excluded
independently of each other, is said to be an independent thinning
of X with retention probabilities q(ξ).

Formally, we can set

Xthin = {ξ ∈ X : R(ξ) ≤ q(ξ)},

with the random variables R(ξ) ∼ U [0, 1], ξ ∈ W , mutually
independent and independent of X .



Proposition

Suppose that X ∼ Poisson(W , ρ) is subject to independent
thinning with retention probabilities q(ξ), ξ ∈ W and let

ρthin = q(ξ)ρ(ξ), ξ ∈ W .

Then Xthin and X \ Xthin are independent Poisson processes with
intensity functions ρthin and ρ− ρthin, respectively.

Corollary

Suppose that X ∼ Poisson(W , ρ) with ρ bounded by a positive
constant C. Then X is distributed as independent thinning of a
Poisson(W ,C ) with retention probabilities q(ξ) = ρ(ξ)/C.



Some general facts concerning the Poisson point processes

◮ the Poisson point process is as important for spatial statistics
as the Gaussian process in classical probability theory

◮ the law is completely known → analytical formulas

◮ the Poisson process is invariant under independent thinning

◮ easy procedure for simulate non-stationary Poisson process

◮ completely random patterns : null or the default hypothesis
that we want to reject

◮ independence → no interaction → no structure in the data



◮ two stationary Poisson point processes, they are not absolutely
continuous with respect to each other, except if one process
has unit intensity or if they have the same intensity

◮ two inhomogeneous Poisson point processes with strictly
positive intensities, they are absolutely continuous with
respect to each other

◮ more complicate models can be built → specifying a
probability density p(x) w.r.t. the reference measure given by
the unit intensity Poisson point process. This probability
measure is written as

P(X ∈ F ) =

∫

F

p(x)µ(dx)

with µ the reference measure.

Remark : in this case the normalizing constant is not available
from an analytical point of view. To check this replace in the
expression of µ(·) the indicator function 1F{y} with p(y) ...
→ Exercice 5



Few words about self-exciting point processes

Hawkes processes : a point process defined by its intensity of
events conditional on the past λ∗(t) → the intensity of the process
evolves with the time depending on the points arrived in the
configuration : no more indepence

λ∗(t) = λ+
n∑

i=1

µ(t − ti )

such as

◮ (ti )1≤i≤n the sequence of arrival times of events that have
occurred up to t.

◮ λ background intensity.

◮ µ : [0,+∞[→ [0,+∞[ excitation function.



Remarks :

◮ if µ = 0 ⇒ classical Poisson process

◮ modelling : several models available for the excitation
functions

◮ simulation : thinning method

◮ inference : the conditional intensity allows the consutruction
of a likelihood function

◮ application : sismology and epidemiology (extend the
definition of the conditional intensity)



Exponential model : an example of excitation function for Hawkes
processes

µ(t) = α exp(−βt)
with α < β. The parameter α gives the instantaneous influence of
events and β the rate at which it decreases.

Figure: Number of events and conditional intensity of a Hawkes process,
with exponential excitation function with parameters α = 0.6, β = 0.8 et
λ = 1.2.



Exercises1 : binomial and Poisson point processes,

simulation

Exercise 1. Prove the Theorem related to the conditionning of a
stationary Poisson point process.
Hint : Compute the void probabilities in subsets B ⊂ W .

Exercise 2. The spherical contact distribution for a point process is
given by

F (r) = P(d(w ,X ) ≤ r)

where d(w ,X ) is the minimum distance from a given point
w ∈ W to the point process X . Compute the expression of F (r)
for a stationary Poisson point process with intensity ρ > 0.

1Part of the theoretical and practical exercises is due to the generous help of

Zbyněk Pawlas from Charles University in Prague and Marie-Colette van

Lieshout from CWI Amsterdam.



Exercise 3. Let X be a stationary Poisson point process in R
2.

Denote by DX the distance from the origin to the nearest point in
X . Calculate the mean and the variance of the random variable
DX .

Exercise 4. Let X1,X2, . . . be independent and exponentially
distributed with parameter ρ and define a point process on R

+ by

X = {X1,X1 + X2,X1 + X2 + X3, . . .}

Calculate P(N((0, t]) = 0 for t ∈ R
+.



Exercise 5. Install the R package spatstat. Download the
following documents :

◮ Package spatstat

◮ Analysing spatial point patterns in ’R’ by A. J. Baddeley

a) Simulate and print 10 realizations of a Binomial point process
with n = 10 points in the square W = [0, 1]2.

b) Simulate and print 10 realization of a homogeneous Poisson
point processes with intensity parameter ρ = 10 in the square
W = [0, 1]2. Compare the realizations of the previous two
processes. What do you observe ?



c) Simulate an inhomogeneous Poisson point process given by
the intensity
◮ ρ(x1, x2) = 100(x2 + y) in the domain W = [0, 2]x [0, 1].
◮ ρ(x1, x2) = 100 exp[−(x2 + y2)] in the domain given by the

ellipse x2

4 + y2 − 1 = 0

d) Simulate and print a realization of a multi-type marked Point
process with the following parameters : the locations process
is a stationary Poisson point process in [0, 1]2, while the marks
probability law is the uniform distribution over three point
types.

e) Simulate and print a realization of a Poisson process of
random discs. The centres locations process is the previous
Poisson process, while the disk radius follows an uniform
distribution on the interval [0, 0.05].



f) Simulate and print a realization of a Poisson process of
random segments. The centres locations process is the
previous Poisson process, while the orientation and lengths
parameters are independently uniformly distributed in the
intervals [0, π] and [0, 0.2].

g) Propose statistics that may characterize the previous
processes ? Try to approximate them by simulation. How can
this be used as a statistical test ?

h) Test if the following spatstat datasets may be considered as
a stationary Poisson point process : cells, swedishpines,

japanesepines, redwood ?

Hint : Use the help. Some of the commands you may be interested
in are ppp, psp, rpoispp, rmpoispp, owin, runifpoint.
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Cours 3. Moment and factorial moment measures, product

densities

Present context :

◮ mathematical background

◮ definition of a marked point process

◮ Binomial and Poisson point process

◮ important result : the point process law is determined by
counts of points



Let X be a point process on W . The counts of points in bounded
Borel regions of B ⊂ W , N(B) characterize the point process and
they are well defined random variables

◮ it is difficult to average the pattern X

◮ it is possible to compute moments of the N(B)’s

The appropriate mathematical tools are :

◮ the moment measures

◮ the factorial moment measures

◮ the product densities

→ blackboard



Moment measures of the Poisson process

◮ stationary Poisson point processes → Exercise 6

◮ the n−th product density measure of an independently
thinned point process is

ρ
(n)
thin(w1, . . . ,wn) = ρ(n)(w1, . . . ,wn)

n∏

i=1

q(wi )

this gives the invariance under independent thinning of the
n−th point correlation function (van Lieshout, 2011)

ρ
(n)
thin(w1, . . . ,wn)

ρthin(w1) · . . . · ρthin(wn)
=

ρ(n)(w1, . . . ,wn)

ρ(w1) · . . . · ρ(wn)

◮ → Exercise 9 : explain the envelope tests



Campbell measures

Present context :

◮ counting points i.e. computing moment and factorial moment
measures → very interesting tool for analysing point
patterns : allow the computation of average quantities

◮ still, compute an average pattern → difficult and challenging
problem

◮ idea : counting points that have some specific properties →
Campbell measures



Definition
Let X be a point process on W . The Campbell measure is

C (B × F ) = E [N(B)1{X ∈ F}] ,

for any bounded B ∈ B and F ∈ F .

The first order moment measure can be expressed as a Campbell
measure :

C (B ×Ω) = E[N(B)] = µ(1)(B).

◮ the moment and Campbell measures are not necessarily
finite : their respective extension to an unique σ−finite
measure can be shown (see van Lieshout, 2000) → Exercise 7



Higher order Campbell measures are constructed in a similar
manner. For instance, the second ordre Campbell measure is

C (2)(B1 × B2 × F ) = E [N(B1)N(B2)1{X ∈ F}] ,

from which we can get the second order moment measure

C (2)(B1 × B2 ×Ω) = E [N(B1)N(B2)] = µ(2)(B1 × B2)

Remark :

◮ the moment measures allow to average functions h(x)
measured in the location of a point process X : the function h
does not depend on X

◮ the Campbell measures allow to average functions h(x , x)
measured in the location of a point process X : the function h
may depend on X



Campbell - Mecke formula

Theorem
Let h : W × Ω → [0,∞) a measurable function that is either
non-negative either integrable with respect to the Campbell
measure. Then

E

[
∑

w∈X

h(w ,X )

]
=

∫

W

∫

Ω
h(w , x)dC (w , x).

Proof.
→ Exercise 8



A more general Campbell-Mecke formulas

Theorem
For a point process X and arbitrary nonnegative measurable
function h that does not depend on X we have

E

∑

w1,...,wn∈X

h(w1, . . . ,wn) =

∫

W

· · ·
∫

W

h(w1, . . . ,wn)dµ
(n)(w1, . . . ,wn)

and

E

6=∑

w1,...,wn∈X

h(w1, . . . ,wn) =

∫

W

· · ·
∫

W

h(w1, . . . ,wn)dα
(n)(w1, . . . ,wn)

Proof.
Follow the same proof scheme as previously.



Remarks :

◮ If the function h does not depend on the point process X , the
Campbell - Mecke becomes

E

[
∑

w∈X

h(w)

]
=

∫

W

h(w)dµ(1)(w).

◮ point process of intensity function ρ(w)

E

[
∑

w∈X

h(w)

]
=

∫

W

h(w)ρ(w)dν(w).



◮ the preceding formula becomes for a stationary Poisson point
process of intensity ρ > 0

E

[
∑

w∈X

h(w)

]
= ρ

∫

W

h(w)dν(w),

this new formula is true for any stationary point process but is
difficult to relate its intensity with its distribution ...

◮ point process of second order intensity function ρ(2)(u, v)

E




6=∑

u,v∈X

h(u, v)


 =

∫

W

∫

W

h(u, v)ρ(2)(u, v)dν(u)dν(v).



s



Exercises : moment and factorial moment measures

Exercise 6. Let X be a stationary Poisson point process in R
2 with

intensity parameter ρ. Compute the first and second order moment
and factorial measures. Compute the corresponding product
densities and the pair correlation function.

Exercise 7. Let X be a finite point process on a compact subset
W ⊂ R

d with the number of points given by pn = 1
n(n−1) for n ≥ 2

and zero otherwise

a) Show that pn is a probability function.

b) Show that the first order moment measure on W is not finite.

Exercise 8. Prove the Campbell-Mecke Theorem.
Hint : start by considering indicator functions
h(w , x) = 1{(w , x) ∈ A× F} for some bounded Borel set A ∈ B
and some F ∈ F .



Exercise 9.

a) Simulate and print a realization of a Poisson point processes
with intensity parameter ρ = 100 on the square
W = [0, 1]× [0, 1]. Use the spatstat package to compute and
print estimates of the empty space function and of the pair
correlation function for a pattern of points obtained by the
simulation of the previous process. Compare the obtained
values with their corresponding theoretical values.

b) Build envelope tests based on these characteristics to compare
the observed pattern with the realization of a Poisson process.

c) Analyse the data sets : redwoodfull, japanesepines and
cells. How, the empty space function and the pair
correlation function can be used to diagnose clustering,
repulsion or completely randomness of a pattern ? Try to
propose a model for one of these data sets and test it.

Hint : Use the help. Commands you may be interested in are pcf,
Fest, envelope, density.



Exercise 10. χ2 test of homogeneity. Let x be an observed point
pattern of a finite point process in a compact W ⊂ R

2. Let us
consider the hypothesis test given by :

◮ HO : the point process is stationary Poisson,

◮ H1 : the point process is not stationary Poisson.

Divide the window W into quadrats B1, . . . ,Bm and count the
numbers of points n1, . . . , nm in each quadrat. Under the null
hypothesis, the njs are realisations of independent Poisson random
variables with expected values µj = ρaj where ρ is the unknown
intensity and aj = ν(Bj).



Given the total number of points n =
∑

j nj , and the total window
area a =

∑
j aj , the estimated intensity is ρ̂ = n/a, and the

expected count in quadrat Bj is ej = ρ̂aj = naj/a. The test
statistic is

T =

m∑

j=1

(nj − ej)
2

ej

and under H0 it follows a χ2 distribution with m − 1 degrees of
freedom.

a) Simulate and print a realization of a Poisson point processes
with intensity parameter ρ = 200 on the square
W = [0, 1] × [0, 1].

b) For a realisation of such a process visualise the decomposition
in equal surface quadrats. What do you observe if you
increase the number of quadrats ?

c) For the same realisation visualise the decomposition in
quadrats given by a Vornoi tesselation. What decomposition
may you prefer and why ?



d) Implement the χ2 test of homogeneity based on equal surface
quadrats.

e) Implement the test using a Voronoi decomposition. How do
you explain the obtained result ?

f) Repeat the previous points for the realisation of an
inhomogeneous Poisson point proces given by
ρ(x , y) = 100(x2 + y) in the domain W = [0, 2]x [0, 1].

g) Analyse the data sets : redwoodfull, japanesepines and
cells. Based on the χ2 test, check if these patterns tend to
be rather regular or clustered.

h) What are the advantages and the drawbacks of using this
test ?

Hint : Use the help. Commands you may be interested in are
quadratcount, intensity, dirichlet, quadrat.test.



Exercise 11.

a) Simulate and print a realisation of an inhomogeneous Poisson
point processes with intensity function given by
ρ(x , y) = (x2 + y2) in the square W = [0, 5]2.

b) Intensity estimator proposed by Diggle is

ρ̂(w) =

n∑

i=1

1

e(w)
κ(w − xi)

with the probability density kernel κ(w) ≥ 0 such that∫
R2 κ(w)dν(w) = 1 and the correction for bias due to edge
effects

e(w) =

∫

W

κ(w − u)dν(u)

Outside the window W , the estimated intensity is zero. Use
the R function density to estimate the intensity function for
the previous realisation.



c) Plot several density estimates using different kernel’s
bandwidths. What do you notice? Use the R command
bw.diggle in order to find an optimal estimate of the kernel’s
bandwidth.

d) Estimate the intensity of some real data sets: redwoodfull,
cells, japanesepines. Are these patterns stationary ?
Motivate your answer.



e) The R spatstat data set bei contains a pattern of points
and covariates. Use the help to learn about the data
structure. Type the following code to visualise the data set:

x11()

map.data=persp(bei.extra$elev, theta=-45, phi=18,

expand=7,border=NA, apron=TRUE, shade=0.3,

box=FALSE, visible=TRUE,

colmap=terrain.colors(128),

main="Tropical rain forest - data")

perspPoints(bei, Z=bei.extra$elev, M=map.data, pch=16,

col="blue",cex=0.5)



f) Estimate the intensity of the bei data set point pattern ? Is
the pattern stationary ? Motivate your answer.

g) Is the intensity depending of one the available covariates ? A
possible manner is to use the χ2 test based on quadrats. First
of all use the function quanttess to make a tesselation of the
domain depending on the quantiles of the elevation covariate.
Next, use the quadrat.test to reject a Poissonian
assumption. What model you test in this way ? What are the
alternatives you have considered ?



h) Another possible strategy to analyse the dependence of the
intensity on a covariate is to compare the observed
distribution of the values of the covariate at the data points
with the values of that covariate at all spatial locations in the
observation window. Do you have an explanation for it ?

i) Use the function cdf.test.ppp to test whether the intensity
of the point pattern in bei data set depends on the elevation
covariate. Plot the different results.



Table of contents

Course 4. Palm theory
Interior and exterior conditionning
A review of the Palm theory
Slivnyak - Mecke theorem
Applications : summary statistics



Cours 4. Palm theory

Interior and exterior conditioning : present context

◮ counting points measures : count points in a small region in
W → integrate using the Campbell Mecke formula

◮ idea : count points in a small region in W that is “centred” in
a point of the process X → interior conditionning

◮ question : how the measures applied to a process X change, if
we add or if we delete a point from the current configuration
→ exterior conditionning



Palm distributions
◮ present construction → blackboard

◮ the Palm distributions of X at w ∈ W can be interpreted as

Pw (F ) = P(X ∈ F |N({w}) > 0)

◮ the Campbell - Mecke formula can be expressed as

E

[
∑

w∈X

h(w ,X )

]
=

∫

W

∫

Ω
h(w , x)dPw (x)dµ

(1)(w)

◮ for stationary point processes

E

[
∑

w∈X

h(w ,X )

]

= ρ

∫

W

∫

Ω
h(w , x)dPw (x)dν(w)

= ρ

∫

W

∫

Ω
h(w , x + w)dPo(x)dν(w)



Slivnyak - Mecke theorem

Theorem
If X ∼ Poisson(W , ρ), then for functions h : W × Ω → [0,∞), we
have

E

∑

w∈X

h(w ,X \ {w}) =
∫

W

Eh(w ,X )ρ(w)dν(w),

(where the left hand side is finite if and only if the right hand side
is finite).

◮ proof : → Exercise 12



General Slivnyak - Mecke theorem

Theorem
If X ∼ Poisson(W , ρ), then for any n ∈ N and any functions
h : W n × Ω → [0,∞), we have

E

6=∑

w1,...,wn∈X

h(w1, . . . ,wn,X \ {w1, . . . ,wn})

=

∫

W

· · ·
∫

W

Eh(w1, . . . ,wn,X )

n∏

i=1

ρ(wi )dν(wi )

where the 6= over the summation sign means that the n points
w1, . . . ,wn are pairwise distinct.

◮ proof : similar to the previous one + induction. For n ≥ 2
consider

h̃(w , x) =

6=∑

w2,...,wn∈x

h(w ,w2, . . . ,wn, x \ {w2, . . . ,wn})



◮ this theorem is a very strong result, since it allows computing
averages of a Poisson point process knowing that one or
several points belong to the process ...

◮ application in telecomunications : knowing, in this location I
have a mobile phone antena, how the quality of the signal
change if I add randomly more antenas ? (the group of F.
Baccelli)



◮ combining the Campbell-Mecke and the Slivnyak-Mecke
theorem, we obtain for a Poisson proces

∫

Ω
h(x)dPw (x) =

∫

Ω
h(x ∪ {w})dP(x)

◮ in words : the Palm distribution of a Poisson process with
respect to w is simply the Poisson distribution plus an added
point at w

◮ a more mathematical formulation : the Palm distribution
PΥ
w (·) of a Poisson process of intensity measure Υ and

distribution P
Υ is the convolution P

Υ ⋆ δw of PΥ with an
additional deterministic point at w

◮ explanation : blackboard

→ Exercise 13 and 14



Assumption : X is a stationary point process

◮ the nearest neighbour distance distribution function

G (r) = Pw (d(w ,X \ {w}) ≤ r) (1)

with Pw the Palm distribution. The translation invariance of
the distribution of X → inherited by the Palm distribution →
G(r) is well-defined and does not depend on the choice of w .

◮ replacing the Palm distribution in (1) by the distribution of X
→ the spherical contact distribution or the empty space
function

F (r) = P(d(w ,X ) ≤ r)

with P the distribution of X .



◮ the J function : compares nearest neighbour to empty
distances

J(r) =
1− G (r)

1− F (r)

defined for all r > 0 such that F (r) < 1

The J function describes the morphology of a point pattern with
respect to a Poisson process :

J(r) is





= 1 Poisson : complete random
≤ 1 clustering : attraction
≥ 1 regular : repulsion



For the stationary Poisson process of intensity parameter ρ, on
W ⊂ R

2, these statistics have exact formulas :

F (r) = 1− exp[−ρπr2]
G (r) = F (r)

J(r) = 1

→ proof the formulas at the blackboard + Exercice 17
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Cours 5. Palm theory (continued). Papangelou conditional

intensity.

Reduced Palm distributions : present context

◮ Palm distributions : count the points in a neighbourhood
centred on a point of the process → this point is counted as
well

◮ idea : in some applications (telecommunications) we may wish
to measure the effect of a point process in a location being a
point of the process, while this particular point has no effect
on the entire process → reduced Palm distributions

◮ the following mathematical development is rather easy to
follows since it is similar to what we have already seen during
until now



Reduced Campbell measure

Definition
Let X be a simple point process on the complete, separable metric
space (W , d). The reduced Campbell measure is

C !(B × F ) = E

[
∑

w∈X∩B

1{X \ {w} ∈ F}
]
,

for any bounded B ∈ B and F ∈ F .

◮ the analogue of Campbell-Mecke formula reads

E

[
∑

w∈X

h(w ,X \ {w})
]
=

∫

W

∫

Ω
h(w , x)dC !(w , x).



◮ assuming the first order moment measure µ(1) of X exists and
it is σ−finite, we can apply Radon-Nikodym theory to write

C !(B × F ) =

∫

B

P !
w (F )dµ

(1)(w),

for any bounded B ∈ B and F ∈ F
◮ the function P !

· (F ) is defined uniquely up to an µ(1)−null set

◮ it is possible to find a version such that for fixed w ∈ W ,
P !
w (·) is a probability distribution → the reduced Palm

distribution



Campbell and Slivnyak theorems

◮ the reduced Palm distribution can be interpreted as the
conditional distribution

P !
w (F ) = P(X \ {w} ∈ F |N({w}) > 0)

◮ the Campbell-Mecke formula equivalent

E

[
∑

w∈X

h(w ,X \ {w})
]
=

∫

W

∫

Ω
h(w , x)dP !

w (x)dµ
(1)(w).



◮ for stationary point processes

E

[
∑

w∈X

h(w ,X \ {w})
]

= ρ

∫

W

∫

Ω
h(w , x)dP !

w (x)dν(w)

= ρ

∫

W

∫

Ω
h(w , x + w)dP !

o(x)dν(w)

◮ the Slivnyak-Mecke theorem : for a Poisson process on W
with distribution P, we have

P !
w (·) = P(·)

◮ there is a general result linking the reduced Palm distribution
and the distribution of a Gibbs process → a little bit later in
this course ...



Example

The nearest neighbour distribution G (r) of stationary process can
be expressed in terms of the Palm distributions

G (r) = 1− Po(X ∈ Ω : N(b(o, r)) = 1),

and the reduced Palm distributions

G (r) = 1− P !
o(X ∈ Ω : N(b(o, r)) = 0),

where N(b(o, r)) is the number of points inside the ball centred at
the origin o of radius r .



Summary statistics : the K and L functions

The K function : theoretical explanations → blackboard

◮ maybe one of the most used summary statistic

◮ for a stationary process, its definition depending on the
reduced Palm distribution is

ρK (r) = E
!
o [N(b(o, r))]

◮ the L function is

L(r) =

[
K (r)

ωd

]1/d

with ωd = ν(b(0, 1)) the volume of the d−dimensional unit
ball



◮ for stationary point processes, the pair correlation function is

g(r) =
K ′(r)

σd rd−1

with σd the surface area of the unit sphere in R
d

◮ for the stationary Poisson process we have

K (r) = ωd r
d , g(r) = 1

and
L(r) = r

◮ → Exercise 15 and 16



Few words about summary statistics estimation

◮ ‘Robbins’ theorem

◮ spatial sampling bias

◮ unbiased sampling rules

◮ Horvitz-Thompson and spatial Horvitz-Thompson estimators

◮ sampling bias for point processes

◮ application : Fritz Kleinschroth’s work on road network
dynamics and Maarja’s phd results ...
→ blackboard



Applications : summary statistics

Road network dynamics :

◮ data: spatio-temporal evolution of a road network due to
logging activity → you have already seen the video ...

◮ questions:
◮ do the exploitation companies respect the regulations for

preserving the forest ?
◮ does the economical activity affect the resilience capacity of

the forest ?

◮ exploratory analysis: empty space function → road-less space
measure

◮ challenge: build a stochastic model

◮ people: F. Kleinschroth, J. R. Healey, S. Gourlet-Fleury, F.
Mortier, M. N. M. van Lieshout

◮ paper: (Kleinschroth et al., 2017)
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Figure: Toy model for explaining the behaviour of the empty space
function: the simulated roads have the length, so the same density of
roads per unit of surface.
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Cosmology : influence of the new observations on the already
detected structure

◮ data: SDSS Data Release 12 - photometrical galaxies

◮ question:
◮ how this new data set is related to the already detected

structure ?

◮ exploratory analysis: adapt the F ,G and J function to
establish possible dependence of different types of patterns

◮ challenge: the position of the photometrical galaxies is not
entirely known

◮ people: M. Kruuse, E. Tempel, R. Kipper

◮ paper: in preparation



Preliminary result :

Figure: Estimation of the bivariate J function. The considered sets were
the photometric galaxies and the projection on the sphere of the
filamentary spines that are rather perpendicular on the line of sight. This
result indicates positive association of these two patterns.



Exterior conditioning : conditional intensity

◮ assume that for any fixed bounded Borel set B ∈ B, the
reduced Campbell measure C !(B × ·) is absolutely continuous
with respect to the distribution P(·) of X

◮ then

C !(B × F ) =

∫

F

Λ(B ; x)dP(x)

for some measurable function Λ(B ; ·) specified uniquely up to
a P−null set

◮ moreover, one can find a version such that for fixed x, Λ(·; x)
is a locally finite Borel measure → the first order Papangelou
kernel



◮ if Λ(·; x) admits a density λ(·; x) with respect to the Lebesgue
measure ν(·) on W , the Campbell-Mecke theorem becomes

E

[
∑

w∈X

h(w ,X \ {w})
]

=

∫

W

∫

Ω
h(w , x)dC !(w , x)

= E

[∫

W

h(w ,X )λ(w ;X )dν(w)

]

◮ the function λ(·; ·) is called the Papangelou conditional
intensity

◮ the previous result is known as the Georgii-Nguyen-Zessin
formula



◮ the case where the distribution of X is dominated by a
Poisson process is especially important

Theorem
Let X be a finite point process specified by a density p(x) with
respect to a Poisson process with non-atomic finite intensity
measure ν. Then X has Papangelou conditional intensity

λ(u; x) =
p(x ∪ {u})

p(x)

for u /∈ x ∈ Ω.

Proof.
→ Exercise 18



Importance of the conditional intensity :

◮ intuitive interpretation :

λ(u; x)dν(u) = P(N(du) = 1|X ∩ (dν(u))c = x ∩ (dν(u))c),

the infinitesimal probability of finding a point in a region
dν(u) around u ∈ W given that the point process agrees with
the configuration x outside of dν(u)

◮ the “conditional reverse” of the Palm distributions



◮ describe the local interactions in a point pattern → Markov
point processes

◮ if
λ(u; x) = λ(u; ∅)

for all patterns x satisfying x ∩ b(u, r) = ∅ → the process has
‘interactions of range r at u’

◮ in other words, points further than r away from u do not
contribute to the conditional intensity at u



◮ integrability of the model

◮ convergence of the Monte Carlo dynamics able to simulate the
model

◮ differential characterization of Gibbs point processes →
blackboard
◮ the Slivnyak-Mecke theorem links Palm distributions with the

distribution of a Poisson point process
◮ this characterization links the Palm distributions with the

distributions of a finite point process
◮ this characterization is an essential element for extending finite

point process to R
d



Exercises : Palm theory - interior and exterior

conditionning

Exercise 12. Prove the Slivnyak-Mecke Theorem.
Hint : start by considering the distribution function of Poisson
point process in W and compute the desired expectation.

Exercise 13. Compute the average number of pairs of points in a
stationary Poisson process of intensity ρ on the planar unit square
separated by a distance that does not exceed some fixed r <

√
2.

a) Do this computation conditionning on the event N(W ) = n.

b) Do this computation using the Campbell - Mecke formula.

Hint : E [E[X |Y ]] = E[X ].



Exercise 14. Let U1 and U2 be two independent random variables
with uniform distribution on the interval [0, r ], r > 0. Define a
point process X in R

2 as

X =
⋃

m,n∈Z

(U1 +mr ,U2 + nr), m, n ∈ Z

where Z = {. . . ,−1, 0, 1, . . .}. Determine the intensity measure
and the Palm distributions of X .



Exercise 15. Let X be a stationary Poisson point process on R
d

with intensity parameter ρ. Prove that :

K (r) = ωd r
d and L(r) = r ,

where ωd is the volume of the unit sphere in R
d .

Exercise 16. This exercice studies alternative definitions for the
Palm distribution and the G− function. Let X be a stationary
point process in R

d with intensity ρ.

a) Show that

Pv (F ) =
1

ρν(A)
E

∑

u∈X

1{u ∈ A,X+v−u ∈ F}, v ∈ R
d ,F ∈ F

for an arbitrary set A ⊂ R
d with 0 < ν(A) <∞.



b) Show that

G (r) =
1

ρν(A)
E

∑

u∈X

1{u ∈ A, (X \{u})∩b(u, r) 6= ∅}, r > 0,

for an arbitrary set A ⊂ R
d with 0 < ν(A) <∞.

Hint : use the Campbell-Mecke theorem



Exercise 17.

a) Simulate and print a realization of a Poisson point processes
with intensity parameter ρ = 100 on the square
W = [0, 1]× [0, 1]. Use the spatstat package to compute and
print estimates of the G , K and of the J function for a
pattern of points obtained by the simulation of the previous
process. Compare the obtained values with their
corresponding theoretical values.

b) Build envelope tests based on these characteristics to compare
the observed pattern with the realization of a Poisson process.



c) Analyse the data sets : redwoodfull, japanesepines and
swedishpines.

d) Analyse the behaviour of the different tree species in the data
set : lansing.

Hint : help(lansing). For the last two points use all the sumary
statistics you know.

Exercise 18. Prove the Papangelou conditional intensity Theorem.
Hint : use the Campbell-Mecke and the Georgii-Nguyen-Zessin
formulas.
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Cours 6. Poisson based point processes.

Direct application of counting measures and Palm distributions for
point process analysis

◮ counting measures → summary statistics for point pattern
characterization

◮ two categories : interpoint distances (F ,G and J) and second
order characteristics (ρ,K and L)

◮ possible extension of the summary statistics : marks,
non-stationary processes, different observation spaces W case
and spatio-temporal



◮ non-parametrical estimation of the summary statistics : kernel
estimation and management of the border effects + numerical
sensitivity and computational cost

◮ central limit available : statistical tests

◮ envelope simulation based tests : reject a particular model

◮ summary statistics for parameter estimation of a given
model :
◮ these statistics are an ”equivalent” of the moments in

probability theory, hence they do not entirely determine the
model to be estimated

◮ (Baddeley and Silverman, 1984)
◮ (Bedford and Berg, 1997)



◮ good exploring tool : spatstat

◮ outline important characteristics of a point pattern :
clustering, repulsion, completely randomness

◮ it is difficult to differentiate between interaction and
inhomogeneity if only one realisation is available

◮ need for models able to reproduce these characteristics

◮ counting or choosing a typical point is not always obvious :
consider random measure theory



Cox processes

Definition
Let Υ be a random locally finite diffuse measure on (W ,B). If the
conditional distribution of X given Υ is a Poisson process on W
with intensity measure Υ, X is said to be a Cox point process with
driving measure Υ. Sometimes X is also called doubly stochastic
Poisson process.

Remarks :

◮ if there exists a random field Z = {Z (w),w ∈ W } such that

Υ(B) =

∫

B

Z (w)dν(w)

then X is a Cox process with driving function Z



◮ the conditional distribution of X given Z = z is a distribution
of the Poisson process with intensity function z ⇒

E[N(B)|Z = z] =

∫

B

z(w)dν(w)

◮ the first order factorial moment measure is obtained using the
law of the total expectation

µ(1)(B) = α(1)(B) = E[N(B)]

= E [E[N(B)|Z = z]] = E

[∫

B

Z (w)dν(w)

]

= E[Υ(B)] =

∫

B

EZ (w)dν(w)

◮ if ρ(w) = EZ (w) exists then it is the intensity function



◮ smilarly, it can be shown that the second order factorial
moment measure is

α(2)(B1 × B2) = E [Υ(B1)Υ(B2)]

= E

[∫

B1

Z (u)dν(u)

∫

B2

Z (v)dν(v)

]

= E

[∫

B1

∫

B2

Z (u)Z (v)dν(u)dν(v)

]

=

∫

B1

∫

B2

E [Z (u)Z (v)] dν(u)dν(v)

◮ if ρ(2)(u, v) = EZ (u)Z (v) exists, then it is the product density



◮ the pair correlation function is

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
=

E [Z (u)Z (v)]

E [Z (u)]E [Z (v)]

◮ depending on Z it is possible to obtain analytic formulas for
the second order characteristics (g ,K and L) and the
interpoint distance characteristic (F ,G and J)



◮ the variance VarN(B) is obtained using the total variance law,
and it is

VarN(B) = EN(B) + Var

[∫

B

Z (w)dν(w)

]
≥ EN(B)

⇒ over - dispersion of the Cox process counting variables

◮ the void probabilities of Cox processes are

P(N(B) = 0)) = E1{N(B) = 0}
= E [E1{N(B) = 0}|Z = z)] = E [P(N(B) = 0|Z = z)]

= E

[
exp

(
−
∫

B

Z (w)dν(w)

)]

= E [exp (−Υ(B))]



Trivial Cox process : mixed Poisson processes

◮ Z (w) = Z0 a common positive random variable for all
locations w ∈ W

◮ X |Z0 follows a homogeneous Poisson process with intensity Z0

◮ the driving measure is Υ(B) = Z0ν(B)

Thinning of Cox processes :

◮ X is a Cox process driven by Z

◮ Π = {Π(w) : w ∈ W } ⊆ [0, 1] is a random field which is
independent of (X ,Z )

◮ Xthin|Π → the point process obtained by independent thinning
of the points in X with retention probabilities Π

◮ ⇒ Xthin is a Cox process driven by Zthin(w) = Π(w)Z (w)



Log Gaussian Cox processes

◮ introduced independently by astronomers (Coles and Jones,
1991) and statisticians (Møller et. al., 1998)

◮ consider Y = logZ is a Gaussian field
◮ for any integer n > 0, locations ξ1, . . . , xn ∈ R

d and numbers
a1, . . . an ∈ R,

∑n

i=1 aiY (ξi ) follows a normal distribution

◮ the Cox process X driven by Z = exp(Y ) is a log Gaussian
Cox Process (LGCP)



◮ the distribution of (X ,Y ) is entirely determined by the mean
and the covariance function

m(ξ) = EY (ξ) and c(ξ, η) = Cov(Y (ξ)Y (η))

◮ covariance function :
◮ for simplicity it may be considered translation invariant

c(ξ, η) = c(ξ − η)

of the form
c(ξ) = σ2r(ξ/α)

◮ the function r : Rd → [−1, 1] is a correlation function for a
Gaussian field iif r is positive definite

n∑

i=1

aiaj r(ξi , ξj) > 0 for all ξ1, . . . , xn ∈ R
d , a1, . . . an ∈ R



◮ weak conditions are required on m and r in order to get

Υ(B) =

∫

B

Z (ξ)dν(ξ)

for bounded B ⊂ R
d . For instance, we may require ξ → Y (ξ)

continuous almost surely

◮ as example, this is satisfied by continuous m and r such that

r(ξ) = exp(− ‖ ξ ‖δ), 0 ≤ δ ≤ 2

with δ controlling the smoothness of the realizations of the
Gaussian field
◮ δ = 1 : exponential correlation function
◮ δ = 1/2 : stable correlation function
◮ δ = 2 : Gaussian correlation function

◮ there is a one-to-one correspondence between (m, c) and
(g , ρ) Rightarrow the distribution of (X ,Y ) is uniquely
determined by (ρ, g)

→ Exercise 19



Cluster processes

Definition
Let C be a point process (parent process), and for each c ∈ C let
Xc be a finite point process (daughter process). Then

X =
⋃

c∈C

Xc

is called a cluster point process.

Definition
Let X be a cluster point process such that C is a Poisson point
process and conditional on C, the processes Xc , c ∈ C are
independent. Then X is called a Poisson cluster point process.



Neyman-Scott processes

Definition
Let X be a Poisson cluster point process such that centred
daughter processes Xc − c are independent of C . Given C, let the
points of Xc − c be i.i.d. with probability density function k on R

d

and N(Xc ) be i.i.d. random variables. Then X is called a
Neyman-Scott process. If moreover N(Xc ) given C has a Poisson
distribution with intensity α, then X is a Neyman-Scott Poisson
process.

→ drawing + Exercice 20



Theorem
Let X be a Neyman-Scott Poisson process such that C is a
stationary Poisson process with intensity κ. Then X is stationary
process with intensity ρ = ακ and pair correlation function

g(u) = 1 +
h(u)

κ
,

where

h(u) =

∫
k(v)k(u + v)dν(v)

is the density for the difference between two independent points
distributed according to k.

Proof.
→ Exercise 21



Other very known cluster point processes

Matérn cluster process (Matérn 1960,1986)

k(u) =
1{‖ u ‖≤ r}

ωd rd

is the uniform density on the ball b(o, r)

Thomas process (Thomas 1949)

k(u) =
exp

(
−‖u‖2

2ω2

)

(2πω2)d/2

is the density for Nd (0, ω
2Id ), i.e. for d independent normally

distributed variables with mean 0 and variance ω2 > 0



◮ both kernels are isotropic

◮ the Thomas process pair correlation function is

g(u) = 1 +
1

κ(4πω2)d/2
exp

[
−‖ u ‖2

4ω2

]

and its K−function for d = 2 is

K (r) = πr2 +
1− exp[−r2/(4ω2)]

κ

◮ other summary statistics can be also computed

◮ the expressions of the summary statistics are more
complicated for the Matérn process

→ drawing the processes ...



Remarks :

◮ usually in applications Z is unobserved

◮ one cannot distinguish a Cox process X from its
corresponding Poisson process X |Z whenever a single
realisation of X is available

◮ open question : which of the two models might be most
appropriate, i.e. whether Z should be random or
“systematic”/deterministic



◮ prior knowledge of the observed phenomenon

◮ Bayesian setting of the intensity function ⇒ Cox processes

◮ if we want to investigate the dependence of certain covariates
associated to Z , these may be treated as systematic terms,
while unobserved effects may be treated as random terms

◮ Cox process: more flexible models for clustered patterns than
inhomogeneous Poisson point processes

◮ parameter estimation methods: minimum contrast, Palm
distributions, composite likelihood
◮ based on the K function and the Palm distributions
◮ spatstat: the kppm function

→ Exercise 22



Boolean model

Random objects “centred” around Poissonian points → germs and
grains

◮ germs : a stationary Poisson point process X of intensity ρ on
R
d

◮ grains : a sequence of i.i.d. random compact sets Γ1, Γ2, . . .
and independent of X

The Boolean model is the random set obtained by the replacement
of the germs by the appropriately shifted corresponding set, and
taking the set union as it follows

Γ =

∞⋃

n=1

(Γn + wn) = (Γ1 + w1) ∪ (Γ2 + w2) ∪ . . .

The random set Γ0 is said to be the typical grain. The set Γ is also
called the Poisson germ-grain model.



The Boolean model observation is an incomplete observation of a
marked point process, since the locations points is not available

a)

Boolean model of random discs

b)

Boolean model : what is really observed

Figure: Boolean model of random discs : marked point process
(complete) and random sets perspectives.



Remarks :

◮ classical references : Matheron (1975), Molchanov (1997),
Lantuéjoul (2002), Chiu et al. (2013)

◮ important practical applications → one of the first models of
complex patttern

◮ Neyman-Scott processes are Boolean models as well

◮ very convenient models since they allow the analytical
computation of quantities describing them → this is due
mainly to the independence properties allowed in the
construction of the process

◮ independence ↔ no objects interactions ↔ no structure



Capacity functional.Choquet theorem

◮ in general, for random sets it is rather difficult to use moment
and factorial measures ↔ it is not possible to “count” points

◮ un-marked and marked point processes are particular random
sets

Definition
The capacity functional the random closed set Γ is

TΓ(K ) = P(Γ ∩ K 6= ∅)

for K an element of the family K of compact sets in R
d .

Theorem
(Choquet theorem). The distribution of a random closed set Γ is
completely determined by the capacity functionals TΓ(K ) for all
K ∈ K.



Capacity functional of the Boolean model

Proposition

The capacity functional of the Boolean model Γ is

TΓ(K ) = 1− exp
[
−ρE(ν(Γ̌0 ⊕ K ))

]
.

◮ the reflection of the typical grain :

Γ̌0 = −Γ0 = {−w : w ∈ A}, for A ⊂ R
d

◮ the Minkowski addition :

A⊕ B = {u + v : u ∈ A, y ∈ B}, for A,B ⊂ R
d

Proof.
→ blackboard: Exercise 23



Basic characteristics of the Boolean model

◮ the volume fraction : the mean fraction of volume occupied
by Γ in a region of unit volume

p = P(o ∈ Γ) = 1− exp[−ρE(ν(Γ0))]

◮ the non-centred covariance

C (r) = P(o ∈ Γ and r ∈ Γ) = 2p − 1 + (1− p)2 exp[ρηΓo ]

with ηΓo = E[ν(Γo ∩ (Γo − r))]

◮ contact distribution

HB(r) = 1− 1− TΓ(rB)

1− p

→ Exercise 24 + some more explanations for the contact
distribution



Stability of the Boolean model

Proposition

The following properties are satisfied :
i) the union of two independent Boolean models is a Boolean
model
ii) a Boolean model dilated by a non-empty compact subset of Rd

is a Boolean model
iii) the intersection between a Boolean model and a compact
subset of Rd is a Boolean model
iv) the cross-section of a Boolean model by an i-flat is a Boolean
model

Proof.
→ blackboard: Exercise 25



Exercises : Poisson based point processes

Exercise 19. The intensity and pair correlation function of an
LGCP are given by

ρ(ξ) = exp(m(ξ) + c(ξ, ξ)/2), g(ξ, η) = exp(c(ξ, η)).

Hint : the moment generating function of the normal distribution
with mean m and variance σ2 is exp(mt + σ2t2/2).

Exercise 20. In the case of a Neyman-Scott Poisson process as
defined during the course, show that Xc given C are independent
Poisson processes with intensity function ρ(w) = αk(w − c).
Hint : compute the void probabilities.

Exercise 21. Prove the stationarity of a Neyman-Scott Poisson
process and the computation of its pair-correlation function.
Hint : compute the void probabilities



Exercise 22. Use the spatstat package to compute and print
estimates of the known summary statistics (second order and
interpoint distances) for

a) Thomas process with parameters α = 10, κ = 10 and
ω2 = 0.01 in a window W = [0, 1] × [0, 1].

b) Matérn cluster process with parameters α = 10, κ = 10 and
r = 0.1 in a window W = [0, 1] × [0, 1].

c) LGCP with exponential correlation function and parameters
m = 4, σ2 = 0.2, α = 0.1



d) What is the theoretical intensity of these processes ? Do you
see any differences between two realizations of these two
processes, respectively ? How, can you use these observations
in order to chose an appropriate model for a given data set ?

e) Estimate the model parameters of the three precedent models
on the data set redwood.

f) Compare the three results using an envelope test based on the
L function.

Hint : Spatstat commands : rThomas, rMatClust,

rLGCP,kppm, envelope. Install the package RandomFields.
Play with model parameters in order to obtain different
configuration topologies.



Exercise 23. Prove the capacity functional formula of the Boolean
model.

Exercise 24. Let Γ be a Boolean process on R
d with intensity

parameter ρ. Prove the formulas presented in the course, for the
volume fraction, the covariance and the contact distribution
function.

Exercise 25. Prove the stability properties of the Boolean model.
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Gibbs models

Construction of the probability density of a point process :

◮ the independence property of the Poisson based processes
does not allow to introduce point interactions

◮ Gibbs models are flexible point processes that allow the
specification of point interactions via a a probability density

◮ in the following, let us consider (W , d) a complete, separable
metric space such that W ⊂ R

d and 0 < ν(W ) <∞
◮ let µ be the unit intensity Poisson point process on W

◮ the condition that W has to be finite is required in order to
obtain a well defined probability density for the considered
Gibbs model



◮ the probability density of a Gibbs model is a Radon-Nykodim
derivative w.r.t the Poissonian reference measure µ

◮ within a statistical physics context, the probability density of
such a point process has the form

p(x) =
exp[−U(x|θ)]

α(θ)

with U(x|θ) the energy function, θ the model parameters and

α(θ) =

∫

Ω
exp[−U(x|θ)]dµ(x)

the normalizing constant or the partition function



◮ under these circumstances, the probability distribution of a
Gibbs model writes as

P(X ∈ F ) =

∫

F

p(x)dµ(x)

and by introducing the expression of µ, it is further expressed
as

P(X ∈ F ) =

=

∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

1({x1, . . . , xn} ∈ F )×

p({x1, . . . , xn})dν(x1) . . . dν(xn),

whenever n > 0. If n = 0, we take exp[−ν(W )]1(∅ ∈ F )p(∅).
If ν(W ) = 0, then P(X = ∅) = 1. For applications, we always
assume that ν(W ) > 0.

◮ the marked case writes in a similar way by introducing also
the marks distribution νM



◮ usually the probability density is known only up to a
constant : p ∝ h = exp(−U)

◮ the normalizing constant or the partition function is given by

α =

∫

Ω
h(x)dµ(x)

that becomes

α =
∞∑

n=0

exp[−ν(W )]

n!

∫

W

· · ·
∫

W

h({x1, . . . , xn})dν(x1) . . . dν(xn)

(2)



◮ the previous quantity is not always available under analytical
closed form

◮ this is the main difficulty to be solved while ausing this
approach ...

Normalizing constant for the Poisson process : Let ρ be the
intensity function of a Poisson point process on W . Its probability
density up to a normalizing constant is

p(x) ∝
∏

xi∈x

ρ(xi ).



Let Υ(B) =
∫
B
ρ(w)dν(w) be the associated intensity measure.

By using (2), we get

α = exp[−ν(W )]

∞∑

n=0

Υ(W )n

n!
= exp[Υ(W )− ν(W )],

that gives for the complete probability density

p(x) = exp[ν(W )−Υ(W )]
∏

xi∈w

ρ(xi )

If the process is stationary ρ(x) = ρ = ct., then the probability
density is

p(x) = exp[(1− ρ)ν(W )]ρn



Remarks :

◮ the probability density is specified only for finite point
processes

◮ the extension to R
d of a finite point process specified by a

probability density is possible under some conditions (see
(Møller and Waagpetersen, 2004, section 6.4))

◮ two such conditions that are equivalent :
◮ local specification for Markov point processes
◮ differential characterisation of Gibbs point process : link Palm

distribution and conditional intensity

◮ phase transition - if such an extension is possible, does it
surely leads to an unique probability measure ?



Construction of the probability density

◮ specify the interaction functions φ(k) : Ω → R
+

φ(xi1 , . . . , xik )
(k)

for any k−tuplet of objects

◮ the un-normalized probability density is the product of all
these functions

h(x) =
∏

xi∈x

φ(xi )
(1) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 , . . . , xik )
(k) (3)

◮ clearly, the energy function is obtained by taking
U(x) = − log h(x)

◮ α the normalizing constant is difficult to be determined :
untractable mathematical formula



◮ the un-normalized probability densities (3) are suitable for
modelling provided they are integrable on Ω ; that is

α =

∫

Ω
h(x)dµ(x) <∞.

◮ the following results ensure the integrability of the probability
density of a marked point process → the Ruelle stability
conditions



Definition
Let X be a marked point process given by the un-normalized
probability density h w.r.t the reference measure µ. The process X
is stable in the sense of Ruelle, if it exists Λ > 0 such that

h(x) ≤ Λn(x), ∀x ∈ Ω. (4)

Proposition

The un-normalized probability density of a stable point process is
integrable.



Proof.
The integrability of h(x) follows directly from the preceding
condition :

∫

Ω
h(x)µ(dx) ≤

∫

Ω
Λn(x)µ(dx)

=
∞∑

n=0

exp[−ν(W )][Λν(W )])n

n!
= exp[ν(W )(Λ − 1)].



Definition
Under the same hypotheses as in Prop. 5, a marked point process
is said to be locally stable if it exists Λ > 0 such that

h(x ∪ {η}) ≤ Λh(x), ∀x ∈ Ω, η ∈ W ×M \ x (5)

Proposition

A locally stable point process is stable in the sense of Ruelle.



Proof.
It is easy to show by induction that

h(x) ≤ h(∅)Λn(x), ∀x ∈ Ω.

The local stability of a point process (5) implies its
integrability (4).



◮ the conditional intensity for a point process X with probability
density p is

λ(η; x) =
p(x ∪ {η})

p(x)
=

h(x ∪ {η})
h(x)

, x ∈ Ω, η ∈ W ×M \ x,

taking a/0 = 0 for a ≥ 0

◮ the conditional intensity is also known in the literature as the
Papangelou intensity condition (we have already meet it)

◮ we shall often consider functions h : Ω → [0,∞[ which are
hereditary

h(x) > 0 ⇒ h(y) > 0, for y ⊂ x.

◮ if p is hereditary, then there is a one-to-one correspondence
between p and λ



Importance of the conditional intensity : key element in modelling

◮ plays a similar role as the conditional probabilities for Markov
random fields

◮ integrability

◮ convergence properties of the MCMC algorithms used to
sample from p

◮ the process X is attractive if x ⊆ y implies

λ(η; x) ≤ λ(η; y),

and repulsive otherwise

λ(η; x) ≥ λ(η; y),



◮ attractive processes tend to cluster the points, while the
repulsive ones tend to distance the points

◮ these conditions are important also for exact MCMC
algorithms

◮ there exist processes that are neither attractive nor repulsive

◮ there are processes that are integrable but not locally stable :
Lennard - Jones (statistical physics)



Markov point processes

The conditional intensity of an interacting point process is given by

λ(η; x) = φ(η)(1)
∏

xi∈x

φ(xi , η)
(2) · · ·

∏

{xi1 ,...,xik }∈x

φ(xi1 . . . . , xik , η)
(k+1)

◮ difficult to manipulate

◮ possible simplifications : limit the order of interactions → only
pairs of points for instance

◮ limit the range of the interaction : a point interact only with
its closest neighbours



Let ∼ be a symmetrical and reflexive relation between points
belonging to W ×M. This may be a typical neighbourhood
relation based on a metric (Euclidean, Hausdorff) or on sets
intersection.

Definition
A clique is a configuration x ∈ Ω such that η ∼ ζ for all η, ζ ∈ x.
The empty set is a clique.



Definition
Let X be a marked point process on W ×M with probability
density p w.r.t the reference measure µ. The process X is Markov
if for all x ∈ Ω such that p(x) > 0, the following conditions are
simultaneously fulfilled :

(i) p(y) > 0 for all y ⊆ x (hereditary)

(ii) p(x∪{ζ})
p(x) depends only on ζ and ∂(ζ) ∩ x = {η ∈ x : η ∼ ζ}.

This process is known in the literature as the Ripley-Kelly Markov
process.



Example : The probability density w.r.t to µ of a marked Poisson
process on W ×M with constant intensity function
(ρ(η) = β > 0) is

p(x) = βn(x) exp[(1 − β)ν(W )].

Clearly p(x) > 0 for all configurations x. Its Papangelou
conditional intensity is

λ(η; x) = β1{η /∈ x}.

Hence, the Poisson process is Markov, independently of the
interaction functions φ(k). This agrees with the choice of the
Poisson process for modelling a completely random structure.



The following result is known as the spatial Markov property.
→ drawing

Theorem
Let X be a Markov point process with density p(·) on W and
consider a Borel set A ⊆ W. Then the conditional distribution of
X ∩ A given X ∩ Ac depends only on X restricted to the
neighbourhood

∂(A) ∩ Ac = {u ∈ W \ A : u ∼ a for some a ∈ A}.

Proof.
→ Exercise 26



The following result is known as the Hammersley-Clifford theorem.

Theorem
A marked point process density p : Ω → R

+ is Markov with
respect to the interaction relation ∼ if and only if there is a
measurable function φc : Ω → R

+ such that

p(x) =
∏

cliques y⊆x

φc (y), α = φ(∅) (6)

for all x ∈ Ω.

Proof.
→ Exercise 27



Remarks :

◮ the previous result simplifies the writing of the probability
density of an interacting point process

◮ taking φc (y) = 1 whenever y is not a clique leads us to the
equivalence of (3) and (6)

◮ Markov point processes are known in physics community as
Gibbs point processes

p(x) =
1

Z
exp [−U(x)] =

1

Z
exp


−

∑

cliques z⊆x

Uc(z)


 ,

with Z the partition function, U the system energy and
Uc = log φc the clique potential

◮ all the Markov processes are Gibbs

◮ the reciprocal is not true



Poisson process as a Markov process : the probability density of a
Poisson point process is

p(x) = e(1−β)ν(W )
∏

x∈x

β.

Hence, the interactions functions applied to cliques are

φc(∅) = e(1−β)ν(W )

φc({u}) = β

with φc ≡ 1 for the cliques made of more than one object. The
potential of the cliques made of a single object is

Uc(u) = − log β,

while Uc = 0 otherwise. This confirms the lack of interaction in
the Poisson process. It validates also, the choice of this process to
model patterns exhibiting no particular morphological structure.



Distance interaction model - Strauss model : (Strauss, 1975),
(Kelly and Ripley, 1976)

p(x) = αβn(x)γsr (x), α, β > 0, γ ∈ [0, 1]
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Figure: Strauss model realisations for different parameter values : a)
γ = 1.0, b) γ = 0.5 and c) γ = 0.0.



The interaction function γ : W ×W → [0, 1] is

γ(u, v) =

{
γ if d(u, v) ≤ r
1 otherwise

The conditional intensity of adding a point η to x \ {η} is

λ(u; x) = βγcard∂(u)

where ∂(u) = {v ∈ x : d(u, v) ≤ r}



The Strauss model is a locally stable model with Λ = β and
Markov with interaction range r .
The interaction functions applied to cliques are

φc(∅) = α

φc({u}) = β

φc({u, v}) = γ(u, v)

and φc ≡ 1 if the cliques have three or more objects. The
interaction potentials are obtained taking Uc = − log φc .



Multi-type pairwise interaction processes

a)

Bivariate Poisson model

b)

Bivariate Strauss model

c)

Widom − Rowlinson model

Figure: Bivariate pairwise interaction processes with r = 0.05 and : a)
γ1,2 = γ2,1 = 1.0, b) γ1,2 = γ2,1 = 0.75 and c) γ1,2 = γ2,1 = 0. Circles
around the points have a radius of 0.025.



Widom-Rowlinson or penetrable spheres model : this model is
described by the mark space M = {1, 2} and the density

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,1),(v ,2)∈x

1{‖ u − v ‖> r} (7)

w.r.t the standard Poisson point process on W ×M with
νM(1) = νM(2).
The parameters β1 > 0 and β2 > 0 control the number of particles
of type 1 and 2, respectively.
The conditional intensity for adding (w , 1) /∈ x to the configuration
x is

λ((w , 1); x) = β11{d(u,w) > r for all the (u, 2) ∈ x}.

A similar expression is available for adding an object of type 2.



The Widom-Rowlinson is hereditary and locally stable with

Λ = max{β1, β2}.

Furthermore, λ((w ,m); x′) ≥ λ((w ,m); x) for all x′ ⊆ x and
(w ,m) ∈ W ×M.
The interaction functions are

φc(∅) = α

φc({(w ,m)}) = βm

φc({(u, 1), (v , 2)}) = 1{d(u, v) > r}

and φc ≡ 1 if the cliques have two or more objects of the same
type.



Multi-type pairwise interaction process : consider M = {1, . . . , I}
with I ∈ N and νM the uniform distribution on M. The probability
density w.r.t the standard multi-type process is

p(x) = α
∏

(w ,m)∈x

βm
∏

(u,i)6=(v ,j)∈x

γij(d(u, v)). (8)

◮ the parameters βm > 0, m ∈ M control the intensity of the
points of type m.

◮ the measurable functions γij : [0,∞) → [0, 1] describe the
interaction between each type pair of objects i , j ∈ M

◮ symmetric functions : γij ≡ γji for all i , j ∈ M



For (w ,m) /∈ x, the conditional intensity is

λ((w ,m); x) = βm
∏

(u,i)∈x

γim(d(u,w)).

This process is locally stable with Λ = maxm∈M βm, anti-monotonic
and Markov under smooth assumptions on the functions γij .
The interaction functions are

φc(∅) = α

φc({(w ,m)}) = βm

φc ({(u, i), (v , j)}) = γij(d(u, v))

with φc ≡ 1 for cliques of three objects and more.



Area interaction model :
(Baddeley and van Lieshout, 1995)

p(x) ∝ βn(x)γ−ν[Γ(x)], β, γ > 0 (9)
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Figure: Area interaction model realisations for different parameter
values : a) γ = 1.0, b) γ > 1.0 and c) γ < 1.0.



Remarks :

◮ the first probability density based point process producing
clusters → alternative to the Strauss process ...

◮ the model should be re-parametrized in order to be identifiable

Proposition

The area interaction process given by (9) is a Markov point
process.

Proof.
→ Exercice 28 + Exercice 29



Candy model :

(van Lieshout and Stoica, 2003), (Stoica, Descombes and Zerubia,
2004)

p(x) ∝ γ
nf (x)
f γ

ns (x)
s γ

nd (x)
d γ

no(x)
o γ

nr (x)
r ,

with γf , γs , γd > 0 and γo , γr ∈ [0, 1]
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Figure: Candy model realisations.



Bisous model :
(Stoica, Gregori and Mateu, 2005)

p(x) ∝
[

q∏

s=0

γ
ns (x)
s

]
∏

κ∈Γ⊂R

γnκ(x)κ γs > 0, γκ ∈ [0, 1]
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Figure: Random shapes generated with Bisous model.



Remarks :

◮ Candy and Bisous are based on compound interactions →
drawing + explanations

◮ connections are produced by giving different weights for the
repulsive interactions

◮ the conditional intensity is bounded

λ(ζ; x) ≤
q∏

s=0

max{γs , γ−1
s }12 = Λ.

this gives the name of the model → kissing number

◮ → blackboard - Candy

◮ Markov range : 4rh + 2ra

◮ the models are locally stable but the exact simulation is
sometimes difficult ...



Compare two random sets : idea inspired by work with M. N. M.
van Lieshout and classical literature in mathematical morphology

Figure: Realizations of the Candy model obtained with different samplers.



Empty space function : these probability distributions should be
similar ⇒ Kolmogorov-Smirnov p− value is higher than 0.8
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Figure: Estimation of the empty space function for the previous Candy
realizations



Exercises : Gibbs models

Exercise 26. Prove the Spatial Markov property Theorem.

Exercise 27. Prove the Hammersley - Clifford Theorem.

Exercise 28. Let us consider the area-interaction point process as
defined in the course.

a) Write its conditional intensity.

b) Prove that the model is locally stable and for β, γ > 0.

c) What kind of pattern is generated if γ < 1, γ = 1 and γ > 1 ?

d) Prove the model is Markov and exhibit its interaction
functions. What order are these interactions ?



Exercise 29.

a) Simulate attractive and repulsive area-interaction processes in
W = [0, 1]2. Use the R spatat function : rmh.

b) To an attractive and repulsive pattern obtained previously fit
the area-interaction process. What do you notice ? Are the
differences between the theoretical and estimated parameters
important ? Why ? Use the R spatat function : ppm.

c) Consider now the data set redwood. After en exploratory
analysis of the data set, fit an area-interaction process to it.
Test the model using envelope tests. How do you interpret the
results ? How do you compare these results with the ones
obtained at the Exercice 22 ?
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Markov chain Monte Carlo algorithms

Problem : sampling or simulation probability distributions

π(A) =

∫

A

p(x)dµ(x)

that are not available in closed form ↔ normalising constant
analytically intractable



Basic MCMC algorithm

Algorithm

x = My first MCMC sampler (T )

1. choose an initial condition x0

2. for i = 1 to T , do

{
xi = Update(xi−1)

}
3. return xT .



Principles of the MCMC algorithm :

◮ simulates a Markov chain

◮ the Update function reproduces the transition kernel of the
Markov chain

◮ the output xT is asymptotically distributed according to π
whenever T → ∞

◮ if the simulated Markov chain has good properties →
statistical inference is possible

◮ several solutions : Gibbs sampler, Metropolis-Hastings, birth
and death processes, stochastic adsorption, RJMCMC, exact
simulation (CFTP, clan of ancestors, etc.)



Markov chains : a little bit of theory

Let (Ω,F , µ) a probability space.

Markov chain : a sequence of random variables {Xn} such that :

P(Xn+1|X0, . . . ,Xn) = P(Xn+1|Xn)

The chain is homogeneous if the probabilities from going from one
state to another do not change in time.

Transition kernel : a mapping P : Ω×F → [0, 1] such that

◮ P(·,A) is measurable for any A ∈ F
◮ P(x , ·) is a probability measure on (Ω,F) for any fixed x ∈ Ω



As on discrete spaces the n−step transition probability kernel is
defined iteratively. Let P0(x,A) = δx(A) the Dirac measure defined
by

δx(A) =

{
1 x ∈ A
0 x /∈ A,

and, for n ≥ 1 the n−step transition probability kernel is defined
inductively

Pn(x,A) =

∫

Ω
P(x, dy)Pn−1(y ,A) x ∈ Ω,A ∈ F .



Theorem: Chapman-Kolmogorov equations. For any m with
0 ≤ m ≤ n,

Pn(x,A) =

∫

Ω
Pm(x, dy)Pn−m(y,A), x ∈ Ω,A ∈ F .

Proof: See (Meyn and Tweedie 2009, Thm. 3.4.2 pp.61). It is
easy to see that

Pn(x,A) =

∫

Ω
P(x, dy)Pn−1(y,A)

∫

Ω
P(x, dy)

∫

Ω
P(y, dz)Pn−2(z,A)

∫

Ω
P2(x, dz)Pn−2(z,A)

...∫

Ω
Pm(x, dy)Pn−m(y,A).



◮ in a very intuitive way, this result states that to get from x to
A in n +m steps, the chain must pass through some y on the
nth step

◮ in the discrete case the Chapman-Kolmogorov equations may
be interpreted as a matrix product

◮ in the general case the kernel Pn is an operator acting on
both bounded measurable functions and σ−finite measures µ
on F via

Pnf (x) =

∫

Ω
Pn(x, dy)f (y), µPn(A) =

∫

Ω
µ(dx)Pn(x,A).



Definition: invariant measure. A σ−finite measure on (Ω,F) is
invariant, if it verifies

π(A) =

∫

Ω
π(dx)P(x,A), A ∈ F .

◮ if an initial condition is sampled according to the invariant
distribution π, then the action of the transition kernel will
produce new states always distributed according to π

◮ simple verification:

π(A) =

∫

Ω
π(dx)P(x,A) =

∫

Ω

[∫

Ω
π(dy)P(y, dx)

]
P(x,A)

=

∫

Ω
π(dy)

[∫

Ω
P(y, dx)P(x,A)

]
=

∫

Ω
π(dy)P2(y,A)

...

=

∫

Ω
π(dy)Pn(y,A),

for any n and all A ∈ F .



◮ now, consider any starting distribution µ

◮ if a limiting measure γµ exists in a suitable topology on the
space of probability measures, such as

γµ(A) = lim
n→∞

∫

Ω
µ(dx)P(n)(x,A)

for sets A ∈ F
◮ then

γµ(A) = lim
n→∞

∫

Ω
µ(dx)

∫

Ω
Pn−1(x, dy)P(y,A)

=

∫

Ω
γµ(dy)P(y,A),

hence γµ is an invariant probability measure.



◮ if the chain has an unique invariant measure π

◮ then
◮ the limit γµ equals π
◮ it is independent of any initial condition µ

◮ in this case, the invariant measure is the equilibrium
distribution of the chain



Definition: reversibility. A transition kernel P(x,A) is said to be
reversible with respect to a measure π, if the integral

∫

A

∫

B

1A(x)1B (y)π(dx)P(x, dy) (10)

is symmetric under the interchange of A and B .

◮ applying the previous definition to the formula (10) leads
directly to

∫

A

π(dx)P(x,B) =

∫

B

π(dx)P(x,A)

◮ hence, the probability of going from A to B equals the
probability of going backwards from B to A.



◮ if P(x,Ω) = 1 and B = Ω, it follows immediately

π(A) =

∫

Ω
π(dx)P(x,A),

hence, the reversibility of the transition kernel guarantees the
invariance of the considered measure

◮ practical point of view: the Update() mechanism should
reproduce a reversible transition kernel

◮ the reversibility condition alone → only the construction of a
sampling algorithm that needs the initial conditions to be
chosen according to the distribution of interest

◮ problem solved: if the Markov chain is irreducible, aperiodic
and recurrent



Irreducibility

◮ crucial property in the setup of MCMC algorithms

◮ intuitive description: guarantees that from any initial point
x ∈ Ω, the chain may reach any region A ∈ F of the
configuration space

◮ first measure of the sensitivity of the Markov chain to the
initial conditions

◮ it leads to convergence conditions of the simulated chain
towards the desired equilibrium distribution.

◮ for presenting it, we need first the definition of the stopping
time of the chain in a set A.



Definition: stopping time at A. For any set A ∈ F , the quantity

τA = min{n ≥ 1 : Xn ∈ A}

is called the stopping time at A. If Xn /∈ A for every n, then by
convention τA = +∞.

◮ discrete case: irreducibility means, that all the chain states
communicate, that is

Px(τy <∞) > 0 ∀x, y ∈ Ω.

◮ continuous state space: Px(τy <∞) = 0

◮ in order to correctly define irreducibility for general state
spaces, an auxiliary measure φ is needed



Definition: φ−irreducibility. The Markov chain (Xn) is
φ−irreducible if there exists a measure φ on F such that,
whenever φ(A) > 0, we have Px(τA <∞) > 0 for all x ∈ Ω.

An equivalent formulation of the definition of the φ−irreducibility
is that for all x ∈ Ω, whenever φ(A) > 0, there exists n > 0 such
that Pn(x,A) > 0.

◮ a φ−irreducible Markov chain is able to reach any set A which
is “big enough”, independently of the initial condition

◮ in the following we will give the tools needed for establishing
the irreducibility of a transition kernel



Definition: small sets. A set C is a small set if there exists n ∈ N
⋆

and a nonzero measure νn such that

Pn(x,A) ≥ νn(A) (11)

for all x ∈ C and A ∈ F . Whenever the equation (11) is verified,
the set C is called νn−small.

Theorem. Let (Xn) be a φ−irreducible chain. For every set A ∈ F
such that φ(A) > 0, there exists n ∈ N

⋆ and a small set C ⊂ A
such that νn(C ) > 0. Moreover, Ω can be decomposed in a
countable partition of small sets.

◮ proof: (Meyn and Tweedie, 2009) Prop. 5.2.4 pp.105-106

◮ the small sets are tool for ”discretizing” a continuous space
state



◮ communicating states (i.e. irreducibility): desirable property
whenever building Markov chain for sampling probability
distributions

◮ cyclic behaviour: naturally considered as undesirable

Definition: aperiodic chain. Let P(·, ·) be a φ−irreducible
transition kernel. Suppose that there is a set A ∈ F , a probability
measure ν with ν(A) = 1, a constant ǫ > 0 and an integer n0 ≥ 1
such that

Pn0(x, ·) ≥ ǫν(·) ∀x ∈ A.

The induced Markov chain is aperiodic if

gcd{m : ∃ ǫm > 0 such that Pm(x, ·) ≥ ǫmν(·) ∀x ∈ A} = 1.

◮ practical consequence: aperiodic Markov chains may be
constructed by simply allowing the Update procedure to
remain in the initial state with a positive probability



Theorem. Suppose the chain (Xn) has invariant probability
measure π. Assume that the chain is π−irreducible and aperiodic.
Then there is a set Ω′ ⊆ Ω such that π(Ω′) = 1 and

sup
A∈F

|Pn(x,A)− π(A)| → 0 (12)

for each x ∈ Ω′.

◮ proof: (Athreya et al. 1996), Thm. 1 pp. 72

◮ the results allows to build Update() procedures to sample
from π

◮ the result does not prevent the Markov chain of a set of
configurations Ω′′ with π(Ω′′) = 0 for which the limit in (12)
differs from zero



Recurrence

◮ the recurrence is the Markov chain property that guarantees
the non-existence of null-sets, such as Ω′′.

◮ it guarantees the independence of a MCMC sampling
algorithm with respect to the initial conditions

Definition: number of passages. For any set A ∈ F , the quantity

ηA =
∞∑

n=1

1A(Xn)

is the number of passages of (Xn) in A.

Definition: Harris recurrence. A set A is Harris recurrent if
Px(ηA = ∞) = 1 for all x ∈ A. The chain (Xn) is Harris recurrent
if it is φ−irreducible and if any set A ∈ F such that φ(A) > 0 is
Harris recurrent.



◮ Harris recurrence is a “better” property than φ−irreducibility

◮ in practice, the Update mechanisms that are φ−irreducible,
they are also Harris recurrent

◮ the following result presents: mathematical tool for proving
Harris recurrence, based on the so-called drift condition

Theorem. Let (Xn) be a φ−irreducible Markov chain and suppose
there exist a small set C ∈ F and function V : Ω → (0,∞) such
that the level sets

CV (α) = {x ∈ Ω : V (x) ≤ α}

are small. The chain is Harris recurrent if the drift
△V (x) = PV (x)− V (x) is negative for any x /∈ C , that is :

PV (x) =

∫

Ω
P(x, dy)V (y) ≤ V (x), x /∈ C .

◮ proof: (Meyn and Tweedie, 2009), Thm. 9.1.8 pp. 206.



Ergodicity

◮ whenever a Harris recurrent Markov chain is simulated through
an Update procedure, LLN and CLT can be used with the
obtained samples, only after the chain reaches the equilibrium

◮ for the non-perfect MCMC algorithms, i.e. this is impossible

◮ the only thing we know: the chain should reach the
equilibrium, but we do not know exactly when this will happen

◮ possible solution to this problem → build an ergodic chain

◮ no need to wait till equilibrium

◮ the only thing needed: enough samples in order to be able to
apply the LLN or the CLT apply the LLN or the CLT



Definition: ergodicity. The Markov chain (Xn) is ergodic if it is
both Harris recurrent and aperiodic.

◮ for ergodic chains, (12) holds independently of the initial
conditions

◮ the speed of convergence of the chain may be the same for all
the initial conditions → the chain is uniformly ergodic

◮ if the speed of convergence depends on the starting a point,
we may have a geometrically ergodic chain



Definition: total variation norm. The total variation norm of a
bounded signed measure ν on (Ω,F) is defined as

‖ ν ‖= sup
A∈F

ν(A)− inf
A∈F

ν(A).

The total variation distance between two such measures ν1 and ν2
is ‖ ν1 − ν2 ‖.

Theorem. Let (Xn) be a Markov chain φ−irreducible and
aperiodic. The chain is geometrically ergodic if there exists a
function V : Ω → [1,∞), constants b <∞ and a < 1, and a small
set C ∈ F such that

PV (x) ≤ aV (x) + b1C (x), ∀x ∈ Ω. (13)



◮ proof: (Meyn and Tweedie, 2009), Thm. 15.0.1 pp. 363

◮ geometric ergodicity means that the iterations of the
transition kernel approach the equilibrium distribution at a
geometric speed

◮ it can be shown, that the sets CV (α) are small for any α > 0
→ the geometric ergodicity drift condition implies the drift
condition for Harris recurrence.



Metropolis-Hastings algorithm

Principle :

◮ consider the chain in the state xi = x

◮ propose a new state xf = y using the proposal density
q(xi → xf )

◮ accept this new state with probability

α(x , y) = min

{
1,

p(y)q(y → x)

p(x)q(x → y)

}

if not remain in the previous state

◮ iterate as many times as we need (... in theory till infinity ...)



Properties

◮ α(·, ·) is a solution of the detailed balance equation →
reversibility is preserved

◮ very few conditions are required for q(· → ·) so that the chain
has all the convergence properties

◮ q(· → ·) should be simple to calculate and to simulate

◮ the knowledge of the normalizing constant of p(·) is not
needed

→ Exercise 30



MH algorithm for sampling marked point processes

Idea : the transition kernel propose to add an object to the
configuration with probability pb or propose to delete an object
from the configuration with the probability pd

Birth : add an object

◮ initial state : xi = x an object configuration

◮ final state : xf = x ∪ {ζ}
◮ proposal density to add an object : choose uniformly its

location in W and its mark independently according to νM

q(xi → xf ) = q(x → x ∪ {ζ}) = pb
1{ζw ∈ W }
ν(W )



◮ proposal density to remove an object : choose uniformly an
object from x ∪ {ζ}

q(xf → xi ) = q(x ∪ {ζ} → x) = pd
1{ζ ∈ x ∪ {ζ}}

n(x) + 1

◮ acceptance probability

α(x → x ∪ {ζ}) = min

{
1,

pdp(x ∪ {ζ})
pbp(x)

× ν(W )

n(x) + 1

}
(14)



Death : remove an object

◮ the inverse movement of birth

◮ acceptance probability

α(x → x \ {ζ}) = min

{
1,

pbp(x \ {ζ})
pdp(x)

× n(x)

ν(K )

}
(15)



A transition kernel doing these transformations is

P(x,A) = pb

∫

K

b(x, η)α(x, y := x ∪ {η})1{y ∈ A}dσ(η)

+ pd
∑

η∈x

d(x, η)α(x, y := x \ {η})1{y ∈ A}

+ 1{x ∈ A}
[
1− pb

∫

K

b(x, η)α(x, x ∪ {η})dσ(η)

− pd
∑

η∈x

d(x, η)α(x, x \ {η})
]
,

where K = W ×M, dσ(η) = dσ((w ,m)) = dν(w)× dνM(m) et
0 < pb + pd ≤ 1. The birth rate is b(x, η) = 1

ν(W ) and the death

rate is d(x, η) = 1
n(x)



Remarks :

◮ the Papangelou intensity appears in the acceptance probability

◮ local stability property guarantees good convergence
properties of the Markov chain

◮ → blackboard : discuss reversibility



Algorithm

y = Update(x)

1. Choose “birth” or “death” with probabilities pb and pd ,
respectively.

2. If “birth” was chosen, then generate a new object following
b(x, η). Accept the new configuration, y = x ∪ {η} with the
probability α(x, y) given by (14).

3. If “death” was chosen, then select the object to be removed
using d(x, η). Accept the new configuration, y = x \ {η} with
the probability α(x, y) given by (15).

4. Return the present configuration.



Theorem. Let be b, d and q as described previously. Assume that
b(x, η) and d(x, η) are strictly positive on their corresponding
definition domain, respectively, and

lim
n→∞

un = lim
n→∞

[
sup

η∈W×M,x∈Ξn

d(x ∪ {η}, η)
b(x, η)

]
→ 0.

Fix pb, pd ∈ (0, 1) with pb + pd ≤ 1 and let p(x) be the probability
density of a marked point process on W ×M. The point process is
locally stable and p(x) is built w.r.t the standard Poisson process
µ. The MH sampler defined previously simulates a Markov chain
with invariant measure π =

∫
pdµ who is φ−irreducible, Harris

recurrent and geometric ergodic.
→ proof: Exercise 31



Remark :

◮ the same result holds if change moves are introduced with
care ... → explain ...

Optimality of the MH dynamics

◮ theoretical convergence properties

◮ local computation

◮ no need of the normalising constant

◮ highly correlated samples : only one element changed per
accepted transition

◮ allows improvements : transition kernels that “help” the
model



Tailored to the model proposal distribution

b(x, η) =
p1
ν(K )

+ p2ba(x, η),

with p1 + p2 = 1 and ba(x, η) a probability density given by

ba(x, η) =
1

n(A(x))

∑

x∈A(x)

b̃(x , η).

◮ the role of ba(x, η) : propose the birth of a new pointin those
regions where the interactions between the new born and the
other configuration members is favoured or not penalised by
the model

◮ A(x) : the set of marked points in a configuration that are not
exhibiting yet “good” interactions



Figure: Extremities marked by triangles are connected and further than
1
2 lmax + rc to the boundary, those labeled by a black disk are closer than
1
2 lmax + rc to the boundary of K .



MH algorithm for sampling the Candy model : dynamics behaviour
through the sufficient statistics analysis
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◮ great adaptability and theoretical convergence

◮ easy to use

◮ appropriate solutions need to be found for each new model

◮ the general framework, even if it has good theoretical
properties, it is not always the most efficient from a numerical
point of view

◮ still, if no good theoretical properties are available, the results
will be always bad

→ Exercise 32



Perfect or exact simulation

+ la schioapa sunt ...

◮ classical MCMC methods → need a theoretical infinite time
till convergence

◮ dependence on the initial conditions

◮ perfect or exact MCMC methods indicate by themselves
whenever the convergence is attained

◮ these methods are perfect within the limits of the random
number generators of the computers

◮ historical paper : (Propp and Willson, 1996)



Principle : discrete case

Let us build a MCMC sampler for π defined on the discrete state
space Ω = {ω1, ω2, . . . , ωm}. The induced Markov chain (Xn) is
represented by its transition functiones φ(·, ·) such that

Xn+1 = φ(Xn,Vn), (16)

where Vn are i.i.d random variables.



Key idea :

◮ consider m, (Xn(ωi )) all initialised with a different state, that
evolve from −T < 0 till 0

◮ the chains are coupled : they use the same Vns

◮ if at a certain moment n ∈ −T , . . . , 0 all the chains are in the
same state or they coalesced, that is

Xn ≡ x

then they will all remain in the same state, till the time 0

◮ the influence of the initial conditions just ... vanished

◮ if the chains are started before the time −T , at infinite, the
chains will be all in the same state, at the same moment

◮ it comes out that X0 is a perfect sampler from the equilibrium
distribution π

→ blackboard : drawing



Extraordinary smart idea :

◮ launching m parallel chains is not always feasible

◮ if Ω can be ordered

ωmin = ω(1) < ω(2) < . . . < ω(m) = ωmax

and if the transition kernel respect this order relation

ω ≤ ω′ ⇒ φ(ω) ≤ φ(ω′)

then only the states ωmin and ωmax are needed

◮ the behaviour of the other chains is bounded by the extremal
chains Xn(ωmin) and Xn(ωmax)

This idea is known under the name Coupling From The Past
(CFTP).



Spatial birth-and-death processes

Theoretical background : continuous time Markov chains → the
very nice book of S. Resnick (2005)

◮ history : the first MCMC sampler for marked point processes

◮ the simulation of locally stable marked point process is rather
simple : thinning procedure

◮ the simulated pattern is “hidden” in a dominating Poisson
process



Algorithm

Let p be the probability density w.r.t. the standard Poisson
process, of a locally stable marked point process on W ×M. Its
corresponding Papangelou conditional intensity bound is Λ.
Set X (0) = x0 for some configuration x0 ∈ Ω with p(x0) > 0. For
n = 0, 1, . . ., if X (n) = x, do :

◮ the sojourn time T (n) in the state X (n) is exponentially
distributed with mean 1

n(x)+Λν(W )

◮ the next transition is a death with probability n(x)
n(x)+Λν(W ) ,

obtained by selecting one point η from the current
configuration with probability 1

n(x) , and then deleting it, that

is x = x \ {η}
◮ with probability Λν(W )

n(x)+Λν(W ) the next transition is a birth,
obtained by generating a new point η according to the
probability density 1

ν(W ) and accepting it with probability
λ(η;x)

Λ , hence x = x ∪ {η},



Remarks :

◮ this algorithm has equivalent convergence properties
compared to MH algoritm (van Lieshout 2000, Thm. 3.3 pp.
86; Møller and Waagepetersen 2004, Prop. G7 pp. 276)

◮ nevertheless, for strong interactions Λ may be very high

◮ Candy and Bisous models with strong interactions cannot be
simulated with this algorithm

◮ but ... extremely important tool in building perfect simulation
algorithms



Perfect algorithms for sampling marked point processes

Coupling From The Past algorithms :

◮ dominating process :
◮ stationary Poisson → (CFTP and clan of ancestors), Λ

parameter is important
◮ it runs into the past, and then into the future till time 0 :

doubling time scheme till coalescence

◮ the coupling and transition function ingredients : the Vns,
conditional intensity and Λ

◮ spatial birth-and-death based algorithms : CFTP and clan of
ancestors

◮ Metropolis-Hastings based algorithms : different dominant
process + control of the birth and death proposal probabilities

◮ apply to locally stable point processes

◮ monotonic and anti-monotonic point processes



Gibbs sampler algorithm :

◮ discrete probability densities → approximation of the
continuous marked point processes probability density

◮ does not require : order relation, dominating process,
monotonic or anti-monotonic relation

◮ still the algorithm is more efficient if these properties are
exhibited by the considered model

◮ Potts like models

Remarks :

◮ CFTP algorithm is implemented within the spatstat package

◮ all these algorithms are implemented within the MPPLIB

C++ package



Strauss model : convergence speed for exact sampling methods

(van Lieshout and Stoica, 2006)
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Figure: Exact simulation algorithms applied to Strauss model : a) CFTP,
b) clan of ancestors, c) Metropolis-Hastings and d) Gibbs.



Comparison exact simulation and MH algorithm for the

Strauss model (1)
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Figure: Boxplots comparison for the n and sr statistics distributions :
white - the distributions obtained using the exact algorithm, pink (dark
couloured) - the distributions obtained using the Metropolis - Hastings
algorithm.



Comparison exact simulation and MH algorithm for the

Strauss model (2)
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Figure: Qqplot comparison for the n and sr statistics distributions.

→ Exercise 33



Open questions MCMC methods :

Classical algorithms - MH based dynamics

◮ good convergence properties but convergence at infinity

◮ burning-in methods + de-correlation techniques

◮ great adaptability : tailored to the model moves

◮ manipulate several objects during one move : work of X.
Descombes

◮ link with RJMCMC : great adaptability, but difficult to state
convergence proofs, hence difficult to use ...



Perfect simulation algorithms

◮ the simulated chain indicates by itself whenever convergence
is reached

◮ parameter dependence : can be applied in practice only to a
restricted range of parameters

◮ neither change moves, nor tailored moves

◮ study existing algorithm : Fill algorithm, forward simulation
and simulated tempering

◮ challenging perspective : synthesis of both families of
algorithms → exact algorithms able to be tailored to the
model



Exercises : Markov chain Monte Carlo algorithms

Exercise 30. Look at the following code lines and explain the role
of each function :

algo.mh = function(x0,n)

{x=x0;

for(i in 1:n)

{ y=q.prop(x);

a.ratio=(p.density(y)*q.density(y,x))/

(p.density(x)*q.density(x,y));

u=runif(1,0,1);

if(u<=a.ratio){ x=y; }}

x;

}



q.prop = function (x)

{

delta=0.1;

lim=0.5*delta;

res=runif(1,x-lim,x+lim);

}

q.density = function (x,y)

{

delta=0.1;

lim=0.5*delta;

res=dunif(y,x-lim,x+lim);

}



p.density = function (y)

{

d1=100;

d2=100;

if(y>=0)

{ res=df(y,d1,d2); }

else

{ res=0; }

}

x0=0.5;

m=10;

n=1000;

x=1:n;

for (i in 1:n)

{

x[i]=algo.mh(x0,m);

x0=x[i];

}



Using the previous code, answer the following questions :

a) Simulate n = 1000 random variables distributed according to
a Fisher distribution F (ν1, ν2) of parameters ν1 = ν2 = 100.

b) Plot the histogram of the obtained values. On the same plot,
add the theoretical density. Plot the empirical
cross-correlation function.

c) For reducing the correlation of the samples obtained using the
Metropolis-Hasting algorithm, one common techniques is to
separate the samples; Re-do this exercice, by taking the
samples every m = {1, 5, 10, 50, 100} iterations. Interpretation
of the obtained results.



d) Repeat the exercise for δ = 0.001, 1.0, 100. If needed the very
first samples given by the algorithm can be droped of. This is
called burn-in time. Try different values for it.

e) Simulate n = 1000 random variables following a Fisher
distribution with parameters ν1 = ν2 = 100. In this case, we
should obtain E [X ] = 1.02. What is the value of the variance
we should obtain ? Build confidence intervals for the samples
mean. Make a statistical test to verify that the simulated
variables have the desired theoretical mean.

f) Plot the evolution of the mean, the confidence intervalls, the
p−values and the empirical levels for the confidence intervals
and the tests, while the number of samples increases.

g) Suppose that we do not know what is the sampled
distribution, build a test to verify the values obtained from the
empirical mean. As before, build and plot confidence intervals,
statistical tests and empirical levels for the samples mean.



Exercise 31. Prove the convergence of the MH sampler for marked
point processes.

Exercice 32. Look at the following code lines and explain the role
of each function :

mo=list(cif="strauss",par=list(beta=100,gamma=0.1,r=0.1),

w=square(1))

X=rmh(model=mo,start=list(n.start=100),

control=list(nrep=10000,nsave=100,nburn=100,

track=TRUE))

plot(X,cols="blue",main="Strauss model")

a) The previous setting of the MH dynamics saves all the
intermediate patterns. To have access to these patterns use :

patternX=attr(X,"saved")

Make a plot of the evolution of the sufficient statistics of the
model.



b) If γ = 1 in a Strauss model a Poisson point process is
simulated. Use the sufficient statistics plots in order to find a
parameter setting of the MH dynamics that may indicate
convergence of the algorithm.

c) Simulate different realisations of the Strauss model for
different model parameters. item For β = 100 and γ = 1 build
confidence intervals and statistical tests in order to verify the
obtained values for the mean of the sufficient statistics.

d) Repeat the previous question but for β = 50, γ = 0.5 and
r = 0.1.



Exercice 33. Consider a Strauss process in W = [0, 1]2 with the
following parameters β = 100,γ = 0.25 and r = 0.005

a) Simulate 1000 samples using a Metropolis-Hastings dynamics
and plot the time series evolution and diagnostics
corresponding to the sufficient statistics.

b) Simulate 1000 samples using the CFTP dynamics and plot the
time series evolution and diagnostics corresponding to the
sufficient statistics.

c) Compare the sufficient statistics samples using exploratory
analysis tools (boxplots, qqplots, histograms) and also
statistical tests (Kolmogorov-Smirnoff).

d) How many samples do we need in order to obtain
Metropolis-Hastings based patterns that may be considered
“good enough” ?
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Parameter estimation and model validation : the statistical

inference problems

Problem I : parameter estimation

◮ observe the pattern x and find the model parameters θ able to
statistically reproduce it

◮ complete and incomplete data : pseudo-likelihood, Monte
Carlo maximum likelihood, EM, ABC Shadow

◮ open problem : sampling p(θ|x)
Problem II : pattern detection

◮ observe the data d and find x “hidden”

◮ the model parameters are : hidden, modelled, unknown

◮ open problem : the does the detected pattern really exist ?



Problem III : sample the joint law of the pattern and the
parameters p(x, θ)

◮ shape modelling → “crystal ball” ?

◮ look at a phenomenon and propose a model providing
statistical prediction and validation of the observed pattern

◮ needs also the time dimension

◮ open problem : how to introduce time

◮ what it is the time “quanta” → generating element and
interactions as for marked point processes → a twisted
spaghetti - see pasta geometry of Max Tegmark ?



Parameter estimation based on pseudo-likelihood

The pseudo-likelihood of a marked point process X with conditional
intensity λθ(ζ; x) observed on the bounded set W is expressed as

PLW (θ; x) =

=

[
∏

xi∈x

λθ(xi ; x)

]
exp

[
−
∫

W×M

λθ((w ,m); x)ν(dw)νM (dm)

]
.

→ blackboard : construction of the pseudo-likelihood

The pseudo-likelihood estimator is given by the solution of the
equation :

∂PLW (θ; x)

∂θ
= 0



Remarks :

◮ the PL is concave for exponential models

◮ no normalising constant needed ...

◮ it ”amplifies” the interaction weights : check the formula - for
a Strauss process the interactions are counted twice ...

◮ consistency and asymptotic normality of the estimator : if we
observe the model in a finite window, then it converges
towards the parameters estimated using the
pseudo-vraisemblance based on the observation of the
“whole” window (Jensen and Møller, 1991)



◮ it can be used to have a “good” initial condition for other
more elaborate methods
◮ ”good” results for mild interactions : (Mateu and Montes,

2001)

◮ lacks of statistical significance : there is no real link with the
true model behind the pattern
◮ except for the Poisson process : in this case the

pseudo-likelihood is the true likelihood

◮ easy to be implemented :
◮ this was the motivation to introduce it in the middle of 70s

(Besag, 1975)
◮ see (Baddeley, Rubak and Turner, 2016) for implementation

details within the spatstat package

→ Exercise 34 + Exercice 35



Implementation within R spatstat package

◮ stationary Strauss process :

log λθ(ζ; x) = log β + (log γ)t(ζ, x)

with t(ζ, x) the number of pairs of objects closer than the
distance r in the configuration y

◮ general structure of the conditional intensity

log λθ(ζ; x) = ηS(ζ) + φV (ζ, x),

with the ‘first order term’ S(u) that describes spatial
inhomogeneity and/or covariates effects and the ‘higher order’
term that describes interobject interaction

◮ refer to the spatstat documentation

→ caution : definition of the model ...



Applications

Pseudo-likelihood profile analysis : the range parameters
>radius = data.frame(r=seq(0.05,0.11, by=0.01))

>pradius = profilepl(radius, Strauss, japanesepines)

>plot(pradius,main="Strauss : PL analysis")
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Fitting the model to the pattern :
> ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

Stationary Strauss process

First order term: beta 77.93567

Interaction: Strauss process interaction distance:

0.08

Fitted interaction parameter gamma: 0.7953



Monte Carlo Maximum likelihood estimation

Exponential family models :

◮ very general framework

◮ the point processes models that were presented are given by

p(x|θ) = h(x|θ)
Z (θ)

=
exp〈t(x), θ〉

Z (θ)

where h(x|θ), t(x) and θ represent the un-normalized
probability density w.r.t. the standard Poisson process, the
sufficient statistics vector and the model parameters vector,
respectively. The normalising constant Z (θ) is unknown.

→ blackboard : general notions about the exponential family
models



The configuration x is entirely observed, hence the log-likelihood
with respect a known parameter ψ can be written as follows :

l(θ) = 〈t(x), θ − ψ〉 − log
Z (θ)

Z (ψ)

It is easy to check, that the normalizing constants ratio is

Z (θ)

Z (ψ)
= E [exp〈t(X), θ − ψ〉] ,



since we have

Z (θ)

Z (ψ)
=

1

Z (ψ)

∫

Ω
h(x|θ)dµ(x)

=
1

Z (ψ)

∫

Ω
h(x|θ)h(x|ψ)

h(x|ψ)dµ(x)

=

∫

Ω

h(x|θ)
h(x|ψ)

h(x|ψ)
Z (ψ)

dµ(x)

= E

[
h(X|θ)
h(X|ψ)

]



The Monte Carlo approximation of the normalizing constants ratio
gives :

Z (θ)

Z (ψ)
≈ 1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉,

where X1,X2, . . . ,Xn are samples obtained from p(y|ψ).
Hence, the Monte-Carlo counterpart of the log-likelihood is :

ln(θ) = 〈t(x), θ − ψ〉 − log

(
1

n

n∑

i=1

exp〈t(Xi), θ − ψ〉
)
.



Theorem
The log-likelihood of an exponential family model is a convex
function.

◮ proof : see (Monfort 1997, Thm.3, pp. 61)

◮ ln(θ) → l(θ) almost sureley

◮ all these suggest that local optimisation procedures applied to
ln(θ) may give interesting results

→ Exercise 36



MCMC local optimisation procedures

The gradient of the MCMC log-likelihood is

∇ln(θ) = t(x)− En,θ,ψ[t(X)]

where

En,θ,ψ[t(X)] =

∑n
i=1 t(Xi) exp〈t(Xi), θ − ψ〉∑n

i=1 exp〈t(Xi ), θ − ψ〉
that is the Monte Carlo importance sampling approximation
of Eθt(X).



Similarly, the Hessian can be computed too :

−∇2ln(θ) = Varn,θ,ψ[t(X)]

where

Varn,θ,ψ[t(X)] = En,θ,ψ[t(X)t(X)
t ]− En,θ,ψ[t(X)]En,θ,ψ[t(X)

t ].



Newton-Raphson method :

θk+1 = θk − [∇2ln(θk)]
−1∇ln(θk) (17)

for k = 1, 2, . . .,

◮ ln(·) is computed using n samples from p(x|ψ)
◮ the computation of the gradient and Hessian inverse is

numerically unstable

◮ useful only if the initial value is close enough from the solution



Iterative gradient method :

{
ln(θk + ρ(θk)∇ln(θk)) = maxρ∈R ln(θk + ρ∇ln(θk))
θk+1 = θk + ρ(θk)∇ln(θk)

where ρ(θk) is the optimal step (Descombes et al. ’99, Stoica ’01).

◮ re-sampling if ‖ θk − ψ ‖> threshold

◮ obtain a reference value θ0 close enough to the maximum
likelihood estimator



Stochastic gradient :

θk+1 = θk + ǫk [t(x)− t(Xk)]

where ǫk > 0 is a decreasing sequence while Xk is a sample of
p(x|θk)
◮ very simple, but finding an optimal sequence {ǫk} is an open

problem

◮ L. Younes, G. Winkler : Markov random fields

◮ R. Moyeed and A. Baddeley : point processes



Asymptotic results MCMCML estimation

The random variable
√
n(θ̂n − θ̂) whenever n → ∞, it converges in

distribution towards a normal random variable of zero mean and
variance I (θ̂)−1ΓI (θ̂)−1 :

√
n(θ̂n − θ̂) → N (0, I (θ̂)−1ΓI (θ̂)−1).

◮ the matrix
I (θ̂) = Var

θ̂
[t(X)] = −∇2l(θ̂)

is the Fisher information of θ̂

◮ the matrix Γ is the matrix of the asymptotic covariance of the
normalised Monte Carlo gradient

√
n∇ln(θ̂)



◮ the variance of the components of θ̂ − θ0 can be estimated by

taking the diagonal elements of the inverse of −∇2ln(θ̂n)
◮ it represents the error between the maximum likelihood

estimate and the true model parameters

◮ the variance of the components of
√
n(θ̂n − θ̂) can be

estimated by taking the diagonal elements of I (θ̂)−1ΓI (θ̂)−1

◮ it represents the error between the maximum likelihood
estimate and its Monte Carlo counterpart

◮ refer to (Monfort, 1997), (Geyer, 1999) and (van Lieshout and
Stoica, 2003) for the computation of these matrices

→ show the next example + blackboard : incomplete data
observation - EM algorithm



MCML example

Candy model : (van Lieshout and Stoica, 2003)
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θf = −8.5
θs = −3.0
θd = 2.5
θo = −2.5
θr = −2.5

Sufficient statistics

nf = 4
ns = 34
nd = 63
no = 12
nr = 9

Figure: Realization (left) of the reference model given by the parameters
in the middle table. The observed values of the sufficient statistics are
listed at right.



Results : estimation of the parameters from the reference
configuration given by the Candy model

Initial param-
eters

Iterative
method

Monte Carlo
MLE

θif = −9.5 θ̂0f = −8.37 θ̂nf = −8.32

θis = −4.0 θ̂0s = −2.74 θ̂ns = −2.73

θid = 1.5 θ̂0d = 2.46 θ̂nd = 2.47

θio = −3.5 θ̂0o = −2.13 θ̂no = −2.17

θir = −3.5 θ̂0r = −2.42 θ̂nr = −2.42

Asymptotics : estimation errors (central limit theorems available)

Asymptotic standard MCSE
deviation of MLE

0.51 0.002
0.23 0.003
0.17 0.001
0.30 0.002
0.31 0.005



Log-likelihood ratio approximation :
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Figure: Monte Carlo approximation of the log likelihood function. The X
axis represents the variation of a single component. The Y axis
represents the values of the Monte Carlo log likelihood with all other
components of θ̂0 fixed : a - θf ∈ [−11,−7], b - θs ∈ [−5,−1], c -
θd ∈ [1, 5], d - θo ∈ [−4.5,−0.5], e - θr ∈ [−4.5,−0.5].



Parameter estimation using the ABC Shadow algorithm

Parameter estimation : the pattern detection dual problem

◮ let p(θ|y) be the conditional distribution of the model
parameters given the patten

p(θ|y) = exp[−U(y|θ)]p(θ)
Z (y)c(θ)

with p(θ) the prior density for the model parameters and Z (y)
the normalization constant

◮ the posterior law is defined on Θ a compact region in R
m ;

the parameter space Θ is endowed with the Borel algebra TΘ



◮ the parameter estimator is

θ̂ = argmax
θ∈Θ

{p(θ|y)}

◮ optimisation procedure : requires sampling p(θ|y)
◮ sampling the posterior law is not straightforward → requires

the evaluation of the ratio c(θ)/c(ψ)

◮ if p(θ) is the uniform distribution over Θ then θ̂ is the
maximum likelihood estimator

Remark : the model parameters taken into account by the
posterior distribution are the “interaction” parameters. And not
the “range” parameters ...



Sampling posterior laws : theoretical solution

Auxiliary variable method : given by (Møller, Pettitt, Reeves and
Berthelsen, 2006)

◮ principle : use an auxiliary variable X defined by the
probability density a(x|θ, y) → sample the joint distribution

π(θ, x|y) = a(x|θ, y)p(θ|y) = a(x|θ, y)exp[−U(y|θ)p(θ)
Z (y)c(θ)

◮ present context : the auxiliary variable → auxiliary pattern ...

◮ key idea : the final mathematical construction leads to the
simplification of the normalizing constants ratio in the MH
algorithm sampling π(θ, x|y)



→ blackboard: explain the algorithm

Remarks :

◮ very elegant solution

◮ exact sampling of the auxiliary variable

◮ choice of the auxiliary variable density : behaviour of the
simulated chain ...



Sampling posterior laws : approximate solution

Approximate Bayesian Computation

◮ generic name for numerical simulation methods allowing
model selection based on an approximate sampling from the
posterior distribution p(θ|y)

◮ idea originated in Montpellier → statistics and environmental
sciences communities
◮ (Grelaud, Robert, Marin, Rodolphe and Taly, 2009)
◮ (Marin, Pudlo, Robert and Ryder, 2012)



Algorithm ABC : assume the observed pattern is y, fix a tolerance
threshold ǫ and an integer value n.

1. For i = 1 to n do
◮ Generate θi according to p(θ).
◮ Generate xi according to the probability density

p(x|θi ) = exp[−U(x|θi )]
c(θi )

2. Return all the θi ’s such that the distance between the
statistics of the observation and those of the simulated
pattern is small, that is

d(t(y), t(xi )) ≤ ǫ



Observed statistics : t(y)

Parameters : theta

Simulated statistics : t(x)

Figure: Graphical representation of the outputs of an ABC algorithm.

Theoretical result

◮ (Blum, 2009) : gives the bias and the variance of the
posterior distribution estimate

◮ (G. Biau, F. Cérous and A. Guyader , 2015) : give asymptotic
features of the outputs of a slightly different algorithm

◮ ideas : kernel and k−nearest neighbour estimation



Remarks :

◮ exact sampling from p(x|θ) is needed
◮ choice of the statistics vector

◮ exponential family models → the sufficient statistics

◮ appropriate setting :
◮ distance d
◮ precision parameter ǫ
◮ number of neighbours kn and bandwidth parameter hn

Synthesis :

◮ ABC algorithms are useful if enough samples xi are ”close” to
the observed pattern y



ABC Shadow algorithm

Key points

◮ need : an algorithm with outputs ”close” enough to the
posterior distribution

◮ tool : build a Markov chain evolving ”close” to an equilibrium
regime given by p(θ|y)

◮ plan : use the auxiliary variable method ideas

Ideal MCMC sampling of the posterior : general MH algorithm

◮ assume the system is in the state θ

◮ choose a new value ψ according to a proposal density
q(θ → ψ)

◮ the value ψ is accepted with probability

αi(θ → ψ) = min

{
1,

p(ψ|y)p(ψ)
p(θ|y)p(θ)

q(ψ → θ)

q(θ → ψ)

}



◮ consider the proposal density

q(θ → ψ) = q∆(θ → ψ|x) = f (x|ψ)/c(ψ)
I (θ,∆, x)

1b(θ,∆/2){ψ}

with
◮ x : outcome of a marked point process driven by the

probability density p(x|υ) where υ is any value in Θ.
◮ pattern detection context : f (x|ψ) = exp[−U(x|ψ)]
◮ ∆ > 0 : control parameter
◮ 1b(θ,∆/2){·} is the indicator function over b(θ,∆/2), which is

the ball of centre θ and radius ∆/2
◮ I (θ,∆, x) =

∫
b(θ,∆/2)

f (x|φ)/c(φ) dφ.
◮ this choice guarantees the ideal chain to be uniformly ergodic

and avoids the evaluation of the ratios c(θ)/c(ψ)

◮ but, it requires the computation of integrals I (θ,∆, x) ...

→ blackboard : drawing



Shadow chain : approximation of the ideal chain

Theorem : if p(x|θ) is a continuously differentiable function in θ

◮ For any fixed θ ∈ Θ and A ∈ TΘ, we have

lim
∆→0+

∫

A

|q∆(θ → ψ)− U∆(θ → ψ)|dψ = 0

◮ For any fixed θ ∈ Θ, we have

lim
∆→0+

sup
ψ∈Θ

∣∣∣∣∣∣
q∆(θ → ψ|x)
q∆(ψ → θ|x) −

f (x|ψ)
c(ψ) 1b(θ,∆/2)(ψ)

f (x|θ)
c(θ) 1b(ψ,∆/2)(θ)

∣∣∣∣∣∣
= 0

uniformly in θ ∈ Θ, with

◮ V∆ : the volume of the ball b(θ,∆/2)

◮ U∆ = 1
V∆

1b(θ,∆/2){ψ} : uniform probability density



Application : simulate the shadow chain that approximate the ideal
chain

◮ first part : use U∆(θ → ψ) instead of q∆(θ → ψ) for
proposing new values

◮ second part : approximates the computation of the proposal
density ratio while simplifying the normalizing constant ratio

◮ the shadow Markov chain accepts new states with the
probability :

αs(θ → ψ) = min

{
1,

p(ψ|y)p(ψ)
p(θ|y)p(θ) ×

f (x; θ)c(ψ)1b(ψ,∆/2){θ}
f (x;ψ)c(θ)1b(θ,∆/2){ψ}

}



Corollary : the acceptance probabilities of the ideal and shadow
chains are uniformly as closed as desired whenever △ → 0+

Proposition : Let Pi and Ps be the transition kernels for the ideal
and the shadow Markov chains using a general ∆ > 0 and a
configuration x ∈ Ω. Then, for every ǫ > 0 and every n ∈ N, there
exists ∆0 = ∆0(ǫ, n) > 0 such that for every ∆ ≤ ∆0

|P(n)
i (θ,A)− P

(n)
s (θ,A)| < ǫ

uniformly in θ ∈ Θ and A ∈ TΘ.



Algorithm ABC Shadow : assume the observed pattern is y and fix
values for ∆ and n and the current state θ0

1. Generate x according to p(x|θ0)
2. For k = 1 to n do

◮ Generate a new candidate ψ following U∆(θk−1 → ψ).
◮ The new state θk = ψ is accepted with probability

αs(θk−1 → ψ), otherwise θk = θk−1

3. Return θn



Remarks :

◮ if several samples are needed, re-start the procedure for the
same ∆ and n, with θ0 = θn.

◮ depending on ∆, the algorithm approaches the equilibrium
regime of the ideal chain :

‖P(n)
s (θ,A)− π(A)‖ ≤ M(x,∆)ρn + ǫ.

with π(A) =
∫
A
p(θ|y)dθ ; M and ρ : ergodicity parameters of

the ideal chain

◮ caution : this is not convergence



Application : sampling the posterior of a Gaussian model

The posterior of a Normal model with mean θ1 and variance θ2 is

p(θ1, θ2|y = Y(ω)) ∝
exp

(
θ1
θ2
Y(ω)− Y

2(ω)
2θ2

)

c(θ1, θ2)
p(θ1, θ2)

with

◮ y = Y(ω) : observation issued from the supposed model

◮ t(y) = (Y(ω),Y2(ω)) : the sufficient statistics vector

◮ if the sample size is m then :
t(y) =

(∑m
i=1Yi(ω),

∑m
i=1Y

2
i (ω)

)



Experiment :

◮ simulate 1000 i.i.d. Normal r. v.’s with parameters
θ = (µ, σ2) = (2, 9)

◮ t(y) = (1765.45, 12145.83)

◮ p(θ1, θ2) the uniform distribution over [−100, 100] × [0, 200]

◮ compare 1000 samples of the MH and ABC Shadow
algorithms

◮ ∆ = (0.005, 0.025) and n = 500

Summary statistics for Normal posterior sampling

Algorithm Q5 Q25 Q50 θ̄ Q75 Q95

MH θ1 1.60 1.69 1.75 1.76 1.82 1.92
ABC θ1 1.60 1.70 1.76 1.76 1.82 1.91

MH θ2 8.45 8.80 9.07 9.08 9.33 9.76
ABC θ2 8.35 8.78 9.03 9.06 9.33 9.83

Table: Empirical quantiles and mean for the posterior of the Normal
model.
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Figure: Boxplots and qqplots of the MH and ABC Shadow outpts.
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Figure: Sample path for the Normal posterior. Left colum: the MH
algorithm results - from top to bottom the joint parameter path and the
θ1 time series. Right column: the ABC Shadow procedure - from top to
bottom the joint parameter path and the θ1 time series.



Parameter estimation for marked point processes

Strauss model :
p(y|θ) ∝ βn(y)γsr (y), (18)

with

◮ t(y) = (n(y), sr (y)) : sufficient statistics

◮ θ = (log β, log γ) : model parameters



Experiment :

◮ domain W = [0, 1]2 and range parameter r = 0.1

◮ simulate 1000 realisations of the model θ = (4.60,−1.60)
using the CFTP algorithm

◮ the empirical means of the sufficient statistics
t̄(y) = (n̄(y), s̄r (y)) = (34.33, 5.31)

◮ ABC Shadow “sampling” of p(θ|t̄(y)) → 1000 samples

◮ ∆ = (0.01, 0.01) and n = 200

◮ p(θ) the uniform distribution over [3.5, 5.5] × [−5, 0]
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Figure: Strauss posterior sampling using the ABC procedure : histograms
and kernel density estimates of the marginals. Maximum of the kernel
estimated density is θ̂ = (4.63,−1.53).

Summary statistics for Strauss posterior sampling

Algorithm Q50 θ̄

ABC log β 4.606 4.603
ABC log γ -1.669 -1.700

Table: Empirical median and mean for the posterior of the Strauss model.



Candy model :

p(y|θ) ∝ exp〈θdnd (y) + θsns(y) + θf nf (y) + θrnr (y)〉 (19)

with

◮ t(y) = (nd (y), ns(y), nf (y), nr (y)) : sufficient statistics

◮ θ = (θd , θs , θf , θr ) : model parameters



Experiment :

◮ domain W = [0, 3] × [0, 1], segment length l = 0.12,
connection range rc = 0.01, curvature parameters
τc = τr = 0.5 radians

◮ simulate 1000 realisations of the model θ = (10, 7, 3,−1)
using an Adapted MH algorithm

◮ the empirical means of the sufficient statistics
t̄(y) = (51.10, 101.06, 19.97, 72.89)

◮ ABC Shadow “sampling” of p(θ|t̄(y)) → 1000 samples

◮ ∆ = (0.01, 0.01, 0.01, 0.01) and n = 500

◮ p(θ) the uniform distribution over [2, 12]3 × [−7, 0]



Summary statistics for Candy posterior sampling

Algorithm Q50 θ̄

ABC log θd 9.995 9.998
ABC log θf 2.977 2.975
ABC log θs 7.005 7.008
ABC log θr -1.014 - 1.016

Table: Empirical median and mean for the posterior of the Candy model.
Maximum of the kernel estimated density is θ̂ = (9.96, 3.02, 6.99,−1.00).



Real data application : cosmology
◮ short range correlations for the galaxy distribution

   

Figure: Sample of a cosmological data set. The points represent galaxy
positions in a region of our Universe.



◮ exploratory analysis : summary statistics → cluster behaviour

0.00 0.02 0.04 0.06 0.08
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

F envelope test

u

F
(u

)

0.00 0.02 0.04 0.06

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

G envelope test

u

G
(u

)
0.00 0.02 0.04 0.06 0.08

0
2

4
6

8
1

0
1

2

J envelope test

u

J
(u

)

0.00 0.05 0.10 0.15 0.20 0.25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

K envelope test

u

K
(u

)

Figure: Summary statistics envelope test (100 simulations) for the galaxy
pattern: shaded (gray) region - the Monte Carlo envelopes, dotted line
(red) - the theoretical statistics, continuous (black) line - the observed
statistics.



◮ sampling the posterior of an area-interaction model
conditionally on different range parameters

◮ the posterior sampling → the probability that the model
parameters indicate clustering

Data for the Galaxy pattern

r 0.01 0.02 0.03 0.04 0.05 0.06 0.07

n(y) = 163

−ar (y) 135.91 114.05 96.44 82.23 69.85 59.05 49.73

Table: The observed sufficient statistics computed for the galaxy pattern,
depending on the range parameter r . For all these parameters n(y)
remains constant, while ar (y) depends on r .



◮ the area interaction model : p(y|θ) ∝ βn(y)γar (y) with

ar (y) = −ν [Ar (y))]

πr2
= −ν [∪

n
i=1b(wi , r)]
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Figure: Box-plots of the posterior distributions for the parameters of the
area-interaction process estimated from the galaxy pattern, given
different values for the interaction radius.



Estimation errors

r 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Asymptotic standard deviation

σ̂log β 0.20 0.17 0.13 0.11 0.10 0.10 0.08
σ̂log γ 0.26 0.28 0.27 0.30 0.34 0.40 0.52

Monte Carlo standard deviation

σ̂MC
log β 0.001 0.002 0.001 0.002 0.002 0.002 0.003

σ̂MC
log γ 0.002 0.003 0.004 0.006 0.008 0.012 0.024

Table: Estimation errors computed for the MAP estimates obtained from
the galaxy pattern.



Synthesis parameter estimation

Pseudo-likelihood estimation :

◮ easy to compute

◮ good alternative whenever nothing else can be done

◮ consistency and central limit theorems : difficult to interpret

◮ no properties concerning the sufficient statistics of the model
using the PL estimates of the parameters

◮ work of J. Mateu and P. Montes : comparison with maximum
likelihood



Monte Carlo maximum likelihood :

◮ general statistical framework

◮ numerically unstable → but re-sampling is guaranteed to
convergence, since the log-likelihood is convex

◮ the asymptotics are related to the true model

◮ property : the expectation of the sufficient statistics
computed by the model with the ML parameters equals the
observed sufficient statistics



ABC Shadow parameter estimation :

◮ approximate algorithm that samples ”close” to the posterior

◮ interesting numerical results : comparable with classical
MCMCML inference

◮ relatively low computational cost : MCMCML needs
re-sampling

◮ complementary tool → applications :
◮ initialisation point for more rigorous methods
◮ statistical testing
◮ model validation

◮ open problem : range parameters



Open questions :

◮ range parameters

◮ parameters of the mark distribution

◮ posterior sampling

◮ incomplete data : EM algorithms converges towards the first
local maximum → a lot of references available ...

◮ ABC methods : empirical methods for parameter estimation
→ control the sufficient statistics



Model validation : residual analysis for point processes
Let X be a locally stable marked point process on W ×M.

h−Innovations : for nonnegative functions h and A ⊆ W ×M

I (A, h, λ) =
∑

xi∈YA

h(xi ,X \ xi)−
∫

A

λ(η;X)h(η,X)(ν × νM)(dη)

◮ assuming the sum and the integral in the definition have finite
expectations, the Georgii-Nguyen-Zessin formula gives

EI (A, h, λ) = 0

◮ I is a signed measure

◮ △I (xi ) = h(xi ,X \ η) : the innovation increment (’error’)
attached to a point η ∈ X

◮ dI (η) = −λ(η;X)h(η,X) : the innovation increment attached
to a background location η ∈ W ×M



h−Residuals : for h ≥ 0 functions and A ⊆ W ×M

R(A, ĥ, θ̂) = I (A, ĥ, λ̂)

=
∑

xi∈xA

ĥ(xi , x \ xi)−
∫

A

λ̂(η; x)ĥ(η, x)(ν × νM)(dη)

since the function h may depend on the model, ĥ denotes an
estimate.
Application idea :

◮ consider a parametric model for a marked point process X
observed within A

◮ estimate the model parameters (maximum likelihood,
pseudo-likelihood)

◮ expect the residuals R(A) to be close to 0 if the model is
appropriate



Building residuals : several possible choices for h

◮ raw residuals h(η, x) = 1

R(A, 1, θ̂) = n(x ∩ A)−
∫

A

λ̂(η; x)(ν × νM)(dη)

◮ inverse residuals h(η, x) = 1/λ(η; x) (equivalent with the
Stoyan-Grabarnik diagnostic)

R(A,
1

λ̂
, θ̂) =

∑

xi∈xA

1

λ̂(xi ; xA)
−
∫

A

1{λ̂(η; x) > 0}(ν × νM)(dη)



◮ Pearson residuals h(η, x) = 1/
√
λ(η; x) (analogy with Poisson

log-linear regression)

R(A,
1√
λ̂
, θ̂) =

∑

xi∈xA

1√
λ̂(xi ; xA)

−
∫

A

√
λ̂(η; x)(ν × νM)(dη)

Remark : the inverse and Pearson residuals we need
λθ(x)(xi ; x) > 0 for all xi ∈ x for any pattern x, while
λθ(x)(η; x) = 0 is allowed for η /∈ x



Properties :

◮ expectation

E

[
R(A, ĥ, θ̂)

]

=

∫

A

E

[
h
θ̂(X∪{η})

(η,X)λ(η,X) − h
θ̂(X)

(η,X)λ
θ̂(X)

(η,X)
]

◮ variance : more complicate structures but very nice formulas
for Poisson processes (Baddeley, Moller and Pakes 2008)

◮ these residuals do not have independent increments → the
raw innovations for Markov point processes are conditionnaly
independent and uncorrelated (Baddeley, 2005)

◮ consistency and asymptotic normality for the residuals of
stationary Gibbs point processes (Coeurjolly and Lavancier,
2013)



Application : smoothed residuals to test several models for
japanesepines datasets

◮ Strauss process : only repulsion

◮ area-interaction process : repulsion or attraction (competition
for ressources)
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Figure: Raw residual analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)



◮ R code:
>mjp=ppm(japanesepines, 1,Strauss(r=0.08),rbord=0.08)

>rjp=residuals(mjp,type="raw") >plot(rjp)

QQ plots: comparison of empirical quantiles of the smoothed
residuals with the expected quantiles under the estimated model

◮ interpretation in the spirit of K and F functions

◮ if the data pattern is more clustered than the model: heavier
tails especially in the left-hand tail

◮ if the data pattern is more inhibited than the model: lighter
tails especially in the right-hand tail

◮ R code : qqplot.ppm(rjp, type="raw")
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Residuals: raw

Figure: Q-Q plot analysis, from left to right : Strauss(r=0.08) and
AreaInt(r=0.09)

◮ Strauss(r=0.08): over-estimates repulsion, but
under-estimates close attraction

◮ AreaInter(r=0.09): very well for the close attraction,
underestimate the repulsion

◮ the best model for the entire data set : polynomial
inhomogeneity and soft-core interaction



Remarks :

◮ the theory is wonderful

◮ but the numerical results are obtained using the PL estimators
...

◮ see the remark of J. Besag

◮ visualisation of residuals difficult for higher dimensions

◮ the qq plots very informative → link with the central limit
theorems for computing confidence intervals

◮ open question : validating pattern detection result ... ?

→ Exercise 37



Exercises : Parameter Estimation.

Exercise 34. Let X be a homogeneous Poisson point process on a
compact W ⊂ R

d with unknwon intensity parameter θ.

a) Write its probability density w.r.t. the reference given by the
unit intensity Poisson process. Specifiy its normalising
constant.

b) Write the log-likelihood function and give the maximum
likelihood estimate of θ.



Exercice 35. Let X be an inhomogeneous Poisson point process on
a compact W ⊂ R

d with the intensity function λ depending on the
parameter θ.

a) Write its probability density w.r.t. the reference given by the
unit intensity Poisson process. Specifiy its normalising
constant.

b) Write the log-likelihood function and compare it with the log
pseudo-likelihood of a point process.

c) In this case, what is the difference between the intensity of
the process and its conditional intensity ?



Exercice 36. Let X be a Strauss point process on a compact
W ⊂ R

d given by the probability density w.r.t. the unit rate
Poisson point procees :

p(x; θ) = α(θ)βn(x)γs(x)

where n(x) denotes the cardinality of x, s(x) the number of
r−close pairs in x and θ = (β, γ) with β > 0 and γ ∈ (0, 1) is the
parameter vector of interest

a) Specify the normalising constant and write the log-likelihood
function.

b) Write the system of equations for obtaining θ.

c) Show that the maximum likelihood estimator solves :

(n(x), s(x)) = (Eθn(X ),Eθs(X ))



Exercice 37. The data set waterstriders within the package
spatstat contains three point patterns representing the positions
of water striders in a pound. Try to answer the following question :
what is the more important factor in the relative position of these
insects - the distance w.r.t to its neighbour or the occupied
territory ? In order to answer the question, do the following steps :

a) Plot the data. Do a summary statistics analysis in order to
propose at least two candidates for modelling ? What type of
interaction is exhibited by all these patterns ?

b) Use the profile of the pseudo-likelihood and the previous
analysis in order to propose a good candidate for the
interaction radius.

c) Fit the models using ppm.

d) Verify the models using envelope tests.

e) Choose a model using the residual analysis : residuals,
qqplot
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Pattern detection and characterisation

The pattern detection problem :

◮ a spatial data set is observed → pattern hidden in the data ?

◮ hypothesis : the pattern is the realization of a random process
(MRFs, marked point processes, etc.)

◮ the Gibbsian modelling framework → write a probability
density model

p(y|θ) = exp[−U(x|θ)]
c(θ)

with U : Ω → R
+ the energy function, θ the model

parameters and c(θ) the normalizing constant

◮ parameters knowledge → prior density p(θ)

◮ the pattern estimator is

(x̂, θ̂) = arg max
(x,θ)∈Ω×Θ

{p(x|θ)p(θ)} = arg max
(x,θ)∈Ω×Θ

{p(x, θ)}.



Statistical pattern detection

Build the pattern model : probability density construction
conditionally on the data observation

p(x, θ|d) ∝ exp

[
−Ud(x|θ) + Ui(x|θ)

Z (θ)
+ log p(θ)

]

◮ interaction energy Ui(x|θ) → objects interactions (geometrical
shape of the structure)

◮ data energy Ud(x|θ) induced by the data field d → object
locations

◮ if the interaction parameters are unknown → prior model p(θ)



◮ role of the interaction and data energies :

a) b)

c) d)

Figure: Influence of the energy components of the model : a) original
image SPOT ; and results obtained using only : the data term (b), the
interaction term (c), the complete model (d)



◮ setting the model parameters :

a)

s1

s3

s2

b)
s1

s2
s3

Figure: Two segments configurations : a) the connectivity is favored over
alignment, b) connectivity and alignment have equivalent potentials.



Pattern estimator : the object configuration that maximises the
probability density

(x̂, θ̂) = arg min
Ω×Ψ

{
Ud(x|θ) + Ui(x|θ)

Z (θ)
− log p(θ)

}

with Ψ the model parameters space.

Simulated annealing : global optimisation technique

◮ sampling from p(x, θ)1/T while slowly T → 0

◮ convergence towards the uniform distribution on the
configuration subspace minimizing U(x, θ) (Stoica, Gregori
and Mateu, 2005)

◮ inhomogeneous Markov chain



Algorithm SA : x = Simulated Annealing (T0, δ,T )

1. choose an initial condition x0

2. for i = 1 to T do

{
xi = Update (xi−1,Ti−1, δ)
Ti = T0/[log(i) + 1]
}

3. return xT .

◮ slow algorithm → an alternative cooling schedule :

Tn+1 = cTn with c ∈ [0.95, 1[

◮ simulated tempering : improving mixing properties



Level sets estimators :

◮ visit maps for compact regions in W :

{T (w) > α} ⇒ {Tn(w) > α}

with T (w) = P(w ∈ X ) the probability that the structure hits
a point in W

◮ link with the capacity functional and volumic fraction



◮ two challenges : discretisation and Monte Carlo
approximations

◮ Vorob’ev expectation : the level set with volume equal to the
mean volume of the random set
◮ demands the knowledge of the behaviour of an unknown

random set, but still manageable in practice ...

◮ average behaviour of the pattern (fixed temperature)

◮ (Heinrich, Stoica and Tran, 2012) prove the convergence L
1

of these estimators

→ Exercise 38



Build the machine ...
Filaments detection in galaxies catalogues :
◮ interaction energy : Bisous model (random cylinders)
◮ data energy : local tests (density and spread of galaxies inside

a cylinder)

ily
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i+k

i+k
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w

ir

Figure: Locating interacting cylinders in a field of points.



Cluster detection in galaxies catalogues :

◮ interaction energy : Strauss and Area-interaction models
(random object : trunck of a cone + two hal-spheres)

◮ data energy : local minimum number of galaxies insid the
considered random object tests

Figure: Cross-section of the considered random object : two half-spheres
connected with a truncated cone. The object is fully determined by its
centre position, radius r and shape parameter t > 1. Shape parameter t
gives the aspect ratio of the object along and perpendicular to the line of
sight; for t = 1 the object is a ball. For a given r and t the height of the
truncated cone is defined as h = 2r(t − 1). The shape of the truncated
cone is defined by the lines of sights, which are indicated by dashed lines
on the figure. The observer is located at far left from the object.



Cluster detection in epidemiological data :

◮ interaction energy : Strauss and Area-interaction models
(random disks)

◮ data energy : local statistical test (the average score of the
farms covered by a disk)

a) b)

Figure: Data→ field of marked points : a) observed clusters, b) clusters
approximated by random disks.



Orbit determination for binary systems (1)

◮ interaction energy :

UI (θ) = log p(θ) =
7∑

i=1

log p(θi),

where θ = (a, e, i ,Ω, ω, τ,P) is the vector of orbital
parameters
◮ Jeffreys’ principle - non-informative independent priors
◮ our choice : uniform distributions over bounded intervals
◮ the intervals were chosen taking into account the a priori

knowledge of the objects to be detected
◮ perspective : introduce dependence of the parameters



Orbit determination for binary systems (2)

◮ data energy : sum of the distances between the observed
positions and the computed positions ; these last ones are
computed using the given model parameters

Ud(ϕ|θ) =
n∑

i=1

[
−
(
|xoi − xci |l + |yoi − y ci |l

)k/l]
=

where
◮ d = {(xoi , yo

i )}, (i = 1, 2, . . . , n) : the n observed positions of
the secondary asteroid with respect to the primary

◮ {(xci , y c
i )} : the computed positions at the same time i as the

corresponding observations, given the current θ
◮ k , l : pre-fixed model parameters

◮ k = l = 2 : Gaussian character of the data model
◮ k = l = 1 : Laplacian character of the data model

◮ perspective : model choice



Road network extraction in satellite and aerial images

(Stoica, Descombes, van Lieshout and Zerubia, 2002)

a) b)

Figure: Rural region in Malaysia : a) original image; b) obtained results.



Forest galleries : verifying the results
(Stoica, Descombes and Zerubia, 2004)

a) b)

c) d)

Figure: Forest galleries extraction : a) original image ; b) ground truth ;
c)-d) obtained results. Data provided by BRGM.



Filaments detection (1) : (Tempel, Stoica et. al., 2014)

Figure: Detected filamentary pattern (cylinder axes) in a small sample
volume within a pattern of galaxies (points).



Filaments detection (2)

(Tempel, Stoica et. al., 2014)
The movie, showing the MCMC in action is available at
:http://www.aai.ee/ elmo/sdss-filaments/



Cluster detection in cosmology : (Tempel, Stoica et. al., 2018)

Figure: The distribution of galaxies in supergalactic coordinates (points)
and the visit map obtained using the cluster detection process. The
thickness of the slice is 4 Mpc around SGX = 0. Red points show
galaxies in the Coma cluster while the other coloured points show
galaxies in some clusters with at least five members. The grey points
show all remaining galaxies.



Cluster detection in epidemiology : sub-clinical mastitis

data

(Stoica, Gay and Kretzschmar, 2007)
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Figure: Disease data scores and coordinates for the year 1996 : a) disk
configuration obtained using the simulated annealing algorithm ; b) cover
probabilities.



Orbit determination (1) : (Kovalenko, Stoica and Emelyanov,
2017)

Figure: Simulated observations (black points): ∆x and ∆y correspond to
relative positions of the secondary with respect to the primary. Lines
show a search for the optimal solution during SA algorithm.



Orbit determination (2) :

Figure: Resulting distributions of semi-major axis a, eccentricity e,
inclination i and longitude of the ascending node Ω (referenced to J2000
equatorial frame) obtained for simulated observations with the likelihood
model. Solid line represents the true parameter value. The doted lines
represent the 2.5% and 97.5% quantiles of the resulting sample.



Does the detected pattern really exist ?

Idea : the sufficient statistics of the model → morphological
descriptors of the shape hidden by the data

◮ turn the machine at constant temperature T = 1

◮ compute the average of the sufficient statistics

◮ compare with the maximum value obtained for the permuted
data

Sufficient statistics :

◮ Bisous model (pattern of connected cylinders) : free cylinders,
cylinders with one extremity connected, cylinders with both
extremities connected



Test for the filaments existence in galaxy catalogs

Permuted data : keeping the same number of galaxies while
spreading them uniformly (binomial point process)

Data
Sufficient statistics NGP150 NGP200 NGP250

n̄2 4.13 5.83 9.88
n̄0 15.88 21.19 35.82
n̄1 21.35 35.58 46.49

Simulated data (100 binomial catalogs)
Sufficient statistics NGP150 NGP200 NGP250

max n̄2 0.015 0.05 0.015
max n̄0 0.54 0.27 0.45
max n̄1 0.39 0.24 0.33



Test for the cluster existence epidemiological data

Permuted data : keeping the same farm locations while exchanging
the score disease

Results :

◮ sufficient statistics for the data from the year 1996 :

n̄(y) = 74.10, ν̄[Z (y)] = 312.46, n̄o = 555.08

◮ maximum values of the sufficient statistics for 100 simulated
data fields

n̄(y) = 2.36, ν̄[Z (y)] = 13.83, n̄o = 2.62

Interpretation : this test does not say if the pattern is well
detected, but it says that there is something to be detected ...



Orbit determination validation : position prediction for the
obtained parameter values

Figure: The calculated positions (black circles) are compared with given
observed positions (crosses) by the x and y coordinates on sky-plane.
Black bars denote the 2.5%-97.5% quantiles interval. Dotted line
corresponds to the calculated positions for the orbit, obtained with the
entire set of observations.



How similar are two data sets ?

Cosmology : compare the sufficient statistics for 22 mock
catalogues with the ones for the observation (Stoica, Martinez and
Saar, 2010)

Discussion

◮ mock catalogues exhibit filaments

◮ mock filaments are generally shorter, more fragmented and
more dense

◮ Bisous model : good for testing the filamentary structure
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Figure: Comparison of the sufficient statistics distributions for the real
data (dark box plot) and the mock catalogues.



Some conclusion and perspectives
Spatial models and random geometry :

◮ Markov marked point processes allow statistical and
morphological description of the pattern

◮ good synthesis properties

◮ limitations : models remain just models ...

Perspectives :

◮ stochastic processes and random geometry (marked point
processes, random fields) → modelling, simulation, statistical
inference

◮ temporal dimension ...

◮ applications : astronomy and environmental sciences

Acknowledgements : this work was done together with wonderful
co-authors and also with the precious help of some very generous
persons ...



Exercises : Pattern detection and characterisation.

Exercise 38.

a) Build an Metropolis-Hastings algorithm for sampling the
probability distribution :

f (x ; k , θ) ∝ Γ(k , θ) + 0.75Γ(3k , 2θ)

with k = 6 and θ = 0.5. Please explain the choice of the
algorithm parameters.

b) Find the maximum of this distribution using the Simulated
Annealing algorithm.



c) Compare the algorithm performances depending of the
following cooling schedules

Tk+1 = cTk , c ∈ {0.99, 0.999, 0.9999, 0.99999}

and

Tk+1 =
T0

log(k + 1) + 1
, k ∈ N.

d) Test the algorithm dependence on the set of initial conditions
given by x0 = {0.5, 8, 25}.
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