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Cosmology (6) : influence of the new observations on the already detected structures 

Definition

A marked point process is a random sequence x = {x n = (w n , m n )} such that the points w n are a point process in W and m n are the marks corresponding for each w n .

Examples :

◮ random circles : M = (0, ∞) ◮ random segments : M = (0, ∞) × [0, π] ◮ multi-type process : M = {1, 2, . . . , k} ... and all the possible combinations ... → drawing Stationarity and isotropy. A point process X on W is stationary if it has the same distribution as the translated proces X w , that is {w 1 , . . . , w n } L = {w 1 + w , . . . , w n + w } for any w ∈ W . A point process X on W is isotropic if it has the same distribution as the rotated proces rX , that is {w 1 , . . . , w n } L = {rw 1 , . . . , rw n } for any rotation matrix r.

◮ motion invariant : stationary and isotropic ◮ marked case : in principle easy to generalize, but take care ... ◮ counter example : a point process on a half plane is not stationary

Intuitive characterisation of a point process : being able to say how many points of the process X can be found in a neighbourhood in W The mathematical tools for point processes : should be able to do the following ◮ count the points of a point process in a small neighbourhood of a point in W , and then extend the neighbourhood ◮ count the points of a point process in a small neighbourhood of a typical point of the process X , and then extend the neighbourhood ◮ "counting" means using a probability measure based counter Let X be a point process on W , and let us consider the counting variable

N(B) = n(X B ), B ∈ B,
representing the number of points "falling" in B.

Let us consider also the sets of the form

F B = {x ∈ Ω : n(x B ) = 0},
that are called void events.

Theorem

The distribution of a point process X on a complete, separable metric space (W , d) is determined by the finite dimensional distributions of its count function, i.e. the joint distribution of N(B 1 ), . . . , N(B m ) for any bounded B 1 , . . . , B m ∈ B and m ∈ N.

Theorem

The distribution of a simple point process on a complete, separable metric space (W , d) is uniquely determined by its void probabilities v (B) = P(N(B) = 0), B ∈ B.

Choquet's theorem Theorem

The distribution of a random closed set X is entirely determined by the functional T X (K ) = P(X ∩ K = ∅)

for every compact K in W .

◮ random closed sets : more general object than a point process → this object cannot be counted, but it can be observed through a compact window ...

◮ practical applications → Boolean model

Binomial point process

The trivial random pattern : a single random point x uniformly distributed in a compact W such that

P(x ∈ B) = ν(B) ν(W )
for all B ∈ F.

More interesting point pattern : n independent points distributed uniformly such that 

P(x 1 ∈ B 1 , . . . , x n ∈ B n ) = = P(x 1 ∈ B 1 ) • . . . • P(x n ∈ B n ) = ν(B 1 ) • . . . • ν(B n ) ν ( 
P(N(B 1 ) = n 1 , . . . , N(B k ) = n k ) = n! n 1 ! . . . n k ! ν(B 1 ) n 1 . . . ν(B k ) n k ν(W ) n
◮ the void probabilities for the binomial point process are given by v ◮ ρ : the intensity or density of the Poisson process, and it represents the mean number of points in a set of unit volume ◮ 0 < ρ < ∞, since for ρ = 0 ⇒ the process contains no points, while for ρ = ∞ we get a pathological case ◮ if B 1 , . . . , B k are disjoint Borel sets, then N(B 1 ), . . . , N(B k ) are independent Poisson variable with means ρν(B 1 ), . . . , ρν(B k ).Thus

P(N(B 1 ) = n 1 , . . . , N(B k ) = n k ) = ρ n 1 +...+n k ν(B 1 ) n 1 . . . ν(B k ) n k n 1 ! • . . . • n k ! exp - k i =1 ρν(B i ) ,
◮ this formula can be used to compute joint probabilities for overlapping sets ◮ the void probabilities for the Poisson point process are given by v (B) = P(N(B) = 0) = exp(-ρ(ν(B)))

◮ the Poisson point process with ρ = ct. is stationary and isotropic ◮ if the intensity is a function ρ : W → R + such that 

Theorem

Conditionning a Poisson point process. Let X be a stationary Poisson point process on R d with intensity ρ > 0 and W a bounded Borel set with ν(W ) > 0. Then, conditional on the event {N(W ) = n}, X restricted to W is a binomial point process of n points.

◮ proof of the theorem : → Exercice 1

◮ bonus : → Exercice 2, 3 and 4

Some properties of the Poisson point process Theorem Interval theorem. Let X be a stationary point process on (0, ∞) with intensity ρ and let the points of X be written in ascending order : 0 < X 1 < X 2 < . . . < X n < . . . .

The the random variables :

Y 1 = X 1 , Y n = X n -X n-1
are independently, identically distributed according to g (y ) = ρ exp(-ρy ) for y > 0.

◮ bus paradox : if to the initial process a symmetric independent copy on (-∞, 0) is added, then the interval between two consecutive points of the process containing 0 is longer than any other interval between two consecutive points ◮ no extension of this result for d ≥ 2

Maybe most important marked Poisson point process : the unit intensity Poisson point process with i.i.d. marks on a compact W ◮ number of objects ∼ Poisson(ν(W ))

◮ locations and marks i.i.d. : w i ∼ 1 ν(W ) and m i ∼ ν M The corresponding probability measure : weighted 'counting" of objects 

P(X ∈ F ) = ∞ n=0 e -ν(W ) n! W ×M • • • W ×M 1 F {(w 1 , m 

Definition

A disjoint union ∪ ∞ i =1 X i of point processes X 1 , X 2 , . . . is called superposition.

Proposition

If X i ∼ Poissson(W , ρ i ) , i = 1, 2, . . . are mutually independent and if ρ = ρ i is locally integrable, then with probability one, X = ∪ ∞ i =1 X i is a disjoint union and est X ∼ Poisson(W , ρ) . → stable character of the Poisson process

Definition

Let be q : W → [0, 1] a function and X a point process on W . The point process X thin ⊂ X obtained by including the ξ ∈ X in X thin with probability q(ξ), where points are included/excluded independently of each other, is said to be an independent thinning of X with retention probabilities q(ξ). Formally, we can set X thin = {ξ ∈ X : R(ξ) ≤ q(ξ)}, with the random variables R(ξ) ∼ U [0, 1], ξ ∈ W , mutually independent and independent of X .

Proposition

Suppose that X ∼ Poisson(W , ρ) is subject to independent thinning with retention probabilities q(ξ), ξ ∈ W and let ρ thin = q(ξ)ρ(ξ), ξ ∈ W .

Then X thin and X \ X thin are independent Poisson processes with intensity functions ρ thin and ρρ thin , respectively.

Corollary

Suppose that X ∼ Poisson(W , ρ) with ρ bounded by a positive constant C . Then X is distributed as independent thinning of a Poisson(W , C ) with retention probabilities q(ξ) = ρ(ξ)/C . Some general facts concerning the Poisson point processes ◮ the Poisson point process is as important for spatial statistics as the Gaussian process in classical probability theory 

◮
P(X ∈ F ) = F p(x)µ(dx)
with µ the reference measure.

Remark : in this case the normalizing constant is not available from an analytical point of view. To check this replace in the expression of µ(•) the indicator function 1 F {y} with p(y) ...

→ Exercice 5

Few words about self-exciting point processes

Hawkes processes : a point process defined by its intensity of events conditional on the past λ * (t) → the intensity of the process evolves with the time depending on the points arrived in the configuration : no more indepence

λ * (t) = λ + n i =1 µ(t -t i )
such as ◮ (t i ) 1≤i ≤n the sequence of arrival times of events that have occurred up to t.

◮ λ background intensity. Exercises1 : binomial and Poisson point processes, simulation

Exercise 1. Prove the Theorem related to the conditionning of a stationary Poisson point process.

Hint : Compute the void probabilities in subsets B ⊂ W .

Exercise 2. The spherical contact distribution for a point process is given by

F (r ) = P(d(w , X ) ≤ r )
where d(w , X ) is the minimum distance from a given point w ∈ W to the point process X . Compute the expression of F (r ) for a stationary Poisson point process with intensity ρ > 0.

Exercise 3. Let X be a stationary Poisson point process in R 2 . Denote by D X the distance from the origin to the nearest point in X . Calculate the mean and the variance of the random variable D X .

Exercise 4. Let X 1 , X 2 , . . . be independent and exponentially distributed with parameter ρ and define a point process on R + by

X = {X 1 , X 1 + X 2 , X 1 + X 2 + X 3 , . . .} Calculate P(N((0, t]) = 0 for t ∈ R + .
Exercise 5. Install the R package spatstat. Download the following documents : ◮ the n-th product density measure of an independently thinned point process is

◮
◮ ρ(x 1 , x 2 ) = 100(x 2 + y ) in the domain W = [0, 2]x[0, 1]. ◮ ρ(x 1 , x 2 ) = 100 exp[-(x 2 + y 2 )] in
ρ (n) thin (w 1 , . . . , w n ) = ρ (n) (w 1 , . . . , w n ) n i =1 q(w i )
this gives the invariance under independent thinning of the n-th point correlation function (van Lieshout, 2011)

ρ (n) thin (w 1 , . . . , w n ) ρ thin (w 1 ) • . . . • ρ thin (w n ) = ρ (n) (w 1 , . . . , w n ) ρ(w 1 ) • . . . • ρ(w n )
◮ → Exercise 9 : explain the envelope tests

Campbell measures

Present context :

◮ counting points i.e. computing moment and factorial moment measures → very interesting tool for analysing point patterns : allow the computation of average quantities ◮ still, compute an average pattern → difficult and challenging problem ◮ idea : counting points that have some specific properties → Campbell measures

Definition

Let X be a point process on W . The Campbell measure is

C (B × F ) = E [N(B)1{X ∈ F }] ,
for any bounded B ∈ B and F ∈ F.

The first order moment measure can be expressed as a Campbell measure :

C (B × Ω) = E[N(B)] = µ (1) (B).
◮ the moment and Campbell measures are not necessarily finite : their respective extension to an unique σ-finite measure can be shown (see van Lieshout, 2000) → Exercise 7

Higher order Campbell measures are constructed in a similar manner. For instance, the second ordre Campbell measure is

C (2) (B 1 × B 2 × F ) = E [N(B 1 )N(B 2 )1{X ∈ F }] ,
from which we can get the second order moment measure

C (2) (B 1 × B 2 × Ω) = E [N(B 1 )N(B 2 )] = µ (2) (B 1 × B 2 )
Remark :

◮ the moment measures allow to average functions h(x) measured in the location of a point process X : the function h does not depend on X ◮ the Campbell measures allow to average functions h(x, x) measured in the location of a point process X : the function h may depend on X

Campbell -Mecke formula

Theorem

Let h : W × Ω → [0, ∞)
a measurable function that is either non-negative either integrable with respect to the Campbell measure. Then

E w ∈X h(w , X ) = W Ω h(w , x)dC (w , x).
Proof.

→ Exercise 8

A more general Campbell-Mecke formulas

Theorem

For a point process X and arbitrary nonnegative measurable function h that does not depend on X we have

E w 1 ,...,wn∈X h(w 1 , . . . , w n ) = W • • • W h(w 1 , . . . , w n )dµ (n) (w 1 , . . . , w n ) and E = w 1 ,...,wn∈X h(w 1 , . . . , w n ) = W • • • W h(w 1 , . . . , w n )dα (n) (w 1 , . . . , w n )
Proof.

Follow the same proof scheme as previously.

Remarks :

◮ If the function h does not depend on the point process X , the Campbell -Mecke becomes

E w ∈X h(w ) = W h(w )dµ (1) (w ).
◮ point process of intensity function ρ(w )

E w ∈X h(w ) = W h(w )ρ(w )dν(w ).
◮ the preceding formula becomes for a stationary Poisson point process of intensity ρ > 0

E w ∈X h(w ) = ρ W h(w )dν(w ),
this new formula is true for any stationary point process but is difficult to relate its intensity with its distribution ... ◮ point process of second order intensity function ρ

(2) (u, v ) E   = u,v ∈X h(u, v )   = W W h(u, v )ρ (2) (u, v )dν(u)dν(v ).
s

Exercises : moment and factorial moment measures Exercise 6. Let X be a stationary Poisson point process in R 2 with intensity parameter ρ. Compute the first and second order moment and factorial measures. Compute the corresponding product densities and the pair correlation function.

Exercise 7. Let X be a finite point process on a compact subset W ⊂ R d with the number of points given by p n = 1 n(n-1) for n ≥ 2 and zero otherwise a) Show that p n is a probability function.

b) Show that the first order moment measure on W is not finite. Divide the window W into quadrats B 1 , . . . , B m and count the numbers of points n 1 , . . . , n m in each quadrat. Under the null hypothesis, the n j s are realisations of independent Poisson random variables with expected values µ j = ρa j where ρ is the unknown intensity and a j = ν(B j ).

Given the total number of points n = j n j , and the total window area a = j a j , the estimated intensity is ρ = n/a, and the expected count in quadrat B j is e j = ρa j = na j /a. The test statistic is

T = m j=1 (n j -e j ) 2 e j
and under H 0 it follows a χ 2 distribution with m -1 degrees of freedom.

a) Simulate and print a realization of a Poisson point processes with intensity parameter ρ = 200 on the square 

W = [0, 1] × [0, 1]. b)

Palm distributions

◮ present construction → blackboard ◮ the Palm distributions of X at w ∈ W can be interpreted as

P w (F ) = P(X ∈ F |N({w }) > 0)
◮ the Campbell -Mecke formula can be expressed as

E w ∈X h(w , X ) = W Ω h(w , x)dP w (x)dµ (1) (w )
◮ for stationary point processes

E w ∈X h(w , X ) = ρ W Ω h(w , x)dP w (x)dν(w ) = ρ W Ω h(w , x + w )dP o (x)dν(w ) Slivnyak -Mecke theorem Theorem If X ∼ Poisson(W , ρ), then for functions h : W × Ω → [0, ∞), we have E w ∈X h(w , X \ {w }) = W Eh(w , X )ρ(w )dν(w ),
(where the left hand side is finite if and only if the right hand side is finite).

◮ proof : → Exercise 12

General Slivnyak -Mecke theorem Theorem If X ∼ Poisson(W , ρ), then for any n ∈ N and any functions h :

W n × Ω → [0, ∞), we have E = w 1 ,...,wn∈X h(w 1 , . . . , w n , X \ {w 1 , . . . , w n }) = W • • • W Eh(w 1 , . . . , w n , X ) n i =1 ρ(w i )dν(w i )
where the = over the summation sign means that the n points w 1 , . . . , w n are pairwise distinct.

◮ proof : similar to the previous one + induction. 

G (r ) = P w (d(w , X \ {w }) ≤ r ) (1)
with P w the Palm distribution. The translation invariance of the distribution of X → inherited by the Palm distribution → G(r) is well-defined and does not depend on the choice of w .

◮ replacing the Palm distribution in (1) by the distribution of X → the spherical contact distribution or the empty space function F (r ) = P(d(w , X ) ≤ r ) with P the distribution of X .

◮ the J function : compares nearest neighbour to empty distances

J(r ) = 1 -G (r ) 1 -F (r )
defined for all r > 0 such that F (r ) < 1

The J function describes the morphology of a point pattern with respect to a Poisson process :

J(r ) is    = 1 Poisson : complete random ≤ 1 clustering : attraction ≥ 1 regular : repulsion
For the stationary Poisson process of intensity parameter ρ, on W ⊂ R 2 , these statistics have exact formulas :

F (r ) = 1 -exp[-ρπr 2 ] G (r ) = F (r ) J(r ) = 1
→ proof the formulas at the blackboard + Exercice 17 

C ! (B × F ) = E w ∈X ∩B 1{X \ {w } ∈ F } ,
for any bounded B ∈ B and F ∈ F.

◮ the analogue of Campbell-Mecke formula reads

E w ∈X h(w , X \ {w }) = W Ω h(w , x)dC ! (w , x).
◮ assuming the first order moment measure µ (1) of X exists and it is σ-finite, we can apply Radon-Nikodym theory to write

C ! (B × F ) = B P ! w (F )dµ (1) (w ),
for any bounded B ∈ B and F ∈ F ◮ the function P ! • (F ) is defined uniquely up to an µ (1) -null set ◮ it is possible to find a version such that for fixed w ∈ W , P ! w (•) is a probability distribution → the reduced Palm distribution

Campbell and Slivnyak theorems

◮ the reduced Palm distribution can be interpreted as the conditional distribution

P ! w (F ) = P(X \ {w } ∈ F |N({w }) > 0)
◮ the Campbell-Mecke formula equivalent

E w ∈X h(w , X \ {w }) = W Ω h(w , x)dP ! w (x)dµ (1) (w ).
◮ for stationary point processes

E w ∈X h(w , X \ {w }) = ρ W Ω h(w , x)dP ! w (x)dν(w ) = ρ W Ω h(w , x + w )dP ! o (x)dν(w )
◮ the Slivnyak-Mecke theorem : for a Poisson process on W with distribution P, we have

P ! w (•) = P(•)
◮ there is a general result linking the reduced Palm distribution and the distribution of a Gibbs process → a little bit later in this course ...

Example

The nearest neighbour distribution G (r ) of stationary process can be expressed in terms of the Palm distributions

G (r ) = 1 -P o (X ∈ Ω : N(b(o, r )) = 1),
and the reduced Palm distributions

G (r ) = 1 -P ! o (X ∈ Ω : N(b(o, r )) = 0),
where N(b(o, r )) is the number of points inside the ball centred at the origin o of radius r .

Summary statistics : the K and L functions

The K function : theoretical explanations → blackboard ◮ maybe one of the most used summary statistic ◮ for a stationary process, its definition depending on the reduced Palm distribution is

ρK (r ) = E ! o [N(b(o, r ))]
◮ the L function is

L(r ) = K (r ) ω d 1/d with ω d = ν(b(0, 1)) the volume of the d-dimensional unit ball
◮ for stationary point processes, the pair correlation function is

g (r ) = K ′ (r ) σ d r d-1
with σ d the surface area of the unit sphere in R d

◮ for the stationary Poisson process we have Exterior conditioning : conditional intensity ◮ assume that for any fixed bounded Borel set B ∈ B, the reduced Campbell measure

K (r ) = ω d r d , g ( 
C ! (B × •) is absolutely continuous with respect to the distribution P(•) of X ◮ then C ! (B × F ) = F Λ(B; x)dP(x)
for some measurable function Λ(B; •) specified uniquely up to a P-null set ◮ moreover, one can find a version such that for fixed x, Λ(•; x) is a locally finite Borel measure → the first order Papangelou kernel ◮ if Λ(•; x) admits a density λ(•; x) with respect to the Lebesgue measure ν(•) on W , the Campbell-Mecke theorem becomes

E w ∈X h(w , X \ {w }) = W Ω h(w , x)dC ! (w , x) = E W h(w , X )λ(w ; X )dν(w ) ◮ the function λ(•; •) is called the Papangelou conditional intensity
◮ the previous result is known as the Georgii-Nguyen-Zessin formula ◮ the case where the distribution of X is dominated by a Poisson process is especially important

Theorem

Let X be a finite point process specified by a density p(x) with respect to a Poisson process with non-atomic finite intensity measure ν. Then X has Papangelou conditional intensity

λ(u; x) = p(x ∪ {u}) p(x) for u / ∈ x ∈ Ω.
Proof.

→ Exercise 18

Importance of the conditional intensity :

◮ intuitive interpretation :

λ(u; x)dν(u) = P(N(du) = 1|X ∩ (dν(u)) c = x ∩ (dν(u)) c ),
the infinitesimal probability of finding a point in a region dν(u) around u ∈ W given that the point process agrees with the configuration x outside of dν(u)

◮ the "conditional reverse" of the Palm distributions ◮ describe the local interactions in a point pattern → Markov point processes Hint :

◮ if λ(u; x) = λ(u; ∅) for all patterns x satisfying x ∩ b(u, r ) = ∅ →
E [E[X |Y ]] = E[X ].
Exercise 14. Let U 1 and U 2 be two independent random variables with uniform distribution on the interval [0

, r ], r > 0. Define a point process X in R 2 as X = m,n∈Z (U 1 + mr , U 2 + nr ), m, n ∈ Z
where Z = {. . . , -1, 0, 1, . . .}. Determine the intensity measure and the Palm distributions of X .

Exercise 15. Let X be a stationary Poisson point process on R d with intensity parameter ρ. Prove that :

K (r ) = ω d r d and L(r ) = r ,
where ω d is the volume of the unit sphere in R d .

Exercise 16. This exercice studies alternative definitions for the Palm distribution and the Gfunction. Let X be a stationary point process in R d with intensity ρ.

a) Show that 

P v (F ) = 1 ρν(A) E u∈X 1{u ∈ A, X +v -u ∈ F }, v ∈ R d , F ∈ F for an arbitrary set A ⊂ R d with 0 < ν(A) < ∞. b) Show that G (r ) = 1 ρν(A) E u∈X 1{u ∈ A, (X \{u})∩b(u, r ) = ∅}, r > 0, for an arbitrary set A ⊂ R d with 0 < ν(A) < ∞.

Cox processes Definition

Let Υ be a random locally finite diffuse measure on (W , B). If the conditional distribution of X given Υ is a Poisson process on W with intensity measure Υ, X is said to be a Cox point process with driving measure Υ. Sometimes X is also called doubly stochastic Poisson process.

Remarks :

◮ if there exists a random field

Z = {Z (w ), w ∈ W } such that Υ(B) = B Z (w )dν(w )
then X is a Cox process with driving function Z ◮ the conditional distribution of X given Z = z is a distribution of the Poisson process with intensity function z ⇒

E[N(B)|Z = z] = B z(w )dν(w )
◮ the first order factorial moment measure is obtained using the law of the total expectation

µ (1) (B) = α (1) (B) = E[N(B)] = E [E[N(B)|Z = z]] = E B Z (w )dν(w ) = E[Υ(B)] = B EZ (w )dν(w )
◮ if ρ(w ) = EZ (w ) exists then it is the intensity function ◮ smilarly, it can be shown that the second order factorial moment measure is

α (2) (B 1 × B 2 ) = E [Υ(B 1 )Υ(B 2 )] = E B 1 Z (u)dν(u) B 2 Z (v )dν(v ) = E B 1 B 2 Z (u)Z (v )dν(u)dν(v ) = B 1 B 2 E [Z (u)Z (v )] dν(u)dν(v ) ◮ if ρ (2) (u, v ) = EZ (u)Z (v ) exists, then it is the product density ◮ the pair correlation function is g (u, v ) = ρ (2) (u, v ) ρ(u)ρ(v ) = E [Z (u)Z (v )] E [Z (u)] E [Z (v )]
◮ depending on Z it is possible to obtain analytic formulas for the second order characteristics (g , K and L) and the interpoint distance characteristic (F , G and J)

◮ the variance VarN(B) is obtained using the total variance law, and it is

VarN(B) = EN(B) + Var B Z (w )dν(w ) ≥ EN(B)
⇒ over -dispersion of the Cox process counting variables ◮ the void probabilities of Cox processes are

P(N(B) = 0)) = E1{N(B) = 0} = E [E1{N(B) = 0}|Z = z)] = E [P(N(B) = 0|Z = z)] = E exp - B Z (w )dν(w ) = E [exp (-Υ(B))]
Trivial Cox process : mixed Poisson processes ◮ Z (w ) = Z 0 a common positive random variable for all locations w ∈ W ◮ X |Z 0 follows a homogeneous Poisson process with intensity Z 0

◮ the driving measure is Υ(B) = Z 0 ν(B)
Thinning of Cox processes :

◮ X is a Cox process driven by Z ◮ Π = {Π(w ) : w ∈ W } ⊆ [0, 1] is a random field which is independent of (X , Z )
◮ X thin |Π → the point process obtained by independent thinning of the points in X with retention probabilities Π ◮ ⇒ X thin is a Cox process driven by Z thin (w ) = Π(w )Z (w )

Log Gaussian Cox processes ◮ introduced independently by astronomers (Coles and Jones, 1991) and statisticians (Møller et. al., 1998)

◮ consider Y = log Z is a Gaussian field ◮ for any integer n > 0, locations ξ 1 , . . . , x n ∈ R d and numbers a 1 , . . . a n ∈ R, n i =1 a i Y (ξ i ) follows a normal distribution ◮ the Cox process X driven by Z = exp(Y ) is a log Gaussian Cox Process (LGCP)
◮ the distribution of (X , Y ) is entirely determined by the mean and the covariance function

m(ξ) = EY (ξ) and c(ξ, η) = Cov (Y (ξ)Y (η))
◮ covariance function :

◮ for simplicity it may be considered translation invariant

c(ξ, η) = c(ξ -η) of the form c(ξ) = σ 2 r (ξ/α) ◮ the function r : R d → [-1, 1] is a correlation function for a Gaussian field iif r is positive definite n i =1 a i a j r (ξ i , ξ j ) > 0 for all ξ 1 , . . . , x n ∈ R d , a 1 , . . . a n ∈ R
◮ weak conditions are required on m and r in order to get

Υ(B) = B Z (ξ)dν(ξ)
for bounded B ⊂ R d . For instance, we may require ξ → Y (ξ) continuous almost surely ◮ as example, this is satisfied by continuous m and r such that

r (ξ) = exp(-ξ δ ), 0 ≤ δ ≤ 2
with δ controlling the smoothness of the realizations of the Gaussian field

◮ δ = 1 : exponential correlation function ◮ δ = 1/2 : stable correlation function ◮ δ = 2 : Gaussian correlation function
◮ there is a one-to-one correspondence between (m, c) and (g , ρ) Rightarrow the distribution of (X , Y ) is uniquely determined by (ρ, g ) → Exercise 19

Cluster processes Definition

Let C be a point process (parent process), and for each c ∈ C let X c be a finite point process (daughter process). Then X = c∈C X c is called a cluster point process.

Definition

Let X be a cluster point process such that C is a Poisson point process and conditional on C , the processes X c , c ∈ C are independent. Then X is called a Poisson cluster point process.

Neyman-Scott processes Definition

Let X be a Poisson cluster point process such that centred daughter processes X cc are independent of C . Given C , let the points of X cc be i.i.d. with probability density function k on R d and N(X c ) be i.i.d. random variables. Then X is called a Neyman-Scott process. If moreover N(X c ) given C has a Poisson distribution with intensity α, then X is a Neyman-Scott Poisson process.

→ drawing + Exercice 20

Theorem

Let X be a Neyman-Scott Poisson process such that C is a stationary Poisson process with intensity κ. Then X is stationary process with intensity ρ = ακ and pair correlation function

g (u) = 1 + h(u) κ , where h(u) = k(v )k(u + v )dν(v )
is the density for the difference between two independent points distributed according to k.

Proof.

→ Exercise 21

Other very known cluster point processes

Matérn cluster process (Matérn 1960(Matérn ,1986)

k(u) = 1{ u ≤ r } ω d r d
is the uniform density on the ball b(o, r )

Thomas process (Thomas 1949)

k(u) = exp -u 2 2ω 2 (2πω 2 ) d/2
is the density for N d (0, ω 2 I d ), i.e. for d independent normally distributed variables with mean 0 and variance ω 2 > 0 ◮ both kernels are isotropic ◮ the Thomas process pair correlation function is

g (u) = 1 + 1 κ(4πω 2 ) d/2 exp - u 2 4ω 2 and its K -function for d = 2 is K (r ) = πr 2 + 1 -exp[-r 2 /(4ω 2 )] κ
◮ other summary statistics can be also computed ◮ the expressions of the summary statistics are more complicated for the Matérn process → drawing the processes ...

Remarks :

◮ usually in applications Z is unobserved 

◮ one cannot distinguish a
(Γ n + w n ) = (Γ 1 + w 1 ) ∪ (Γ 2 + w 2 ) ∪ . . .
The random set Γ 0 is said to be the typical grain. The set Γ is also called the Poisson germ-grain model. 

Definition

The capacity functional the random closed set Γ is

T Γ (K ) = P(Γ ∩ K = ∅)
for K an element of the family K of compact sets in R d .

Theorem

(Choquet theorem). The distribution of a random closed set Γ is completely determined by the capacity functionals T Γ (K ) for all K ∈ K.

Capacity functional of the Boolean model Proposition

The capacity functional of the Boolean model Γ is

T Γ (K ) = 1 -exp -ρE(ν( Γ0 ⊕ K )) .
◮ the reflection of the typical grain :

Γ0 = -Γ 0 = {-w : w ∈ A}, for A ⊂ R d
◮ the Minkowski addition :

A ⊕ B = {u + v : u ∈ A, y ∈ B}, for A, B ⊂ R d
Proof.

→ blackboard: Exercise 23

Basic characteristics of the Boolean model

◮ the volume fraction : the mean fraction of volume occupied by Γ in a region of unit volume

p = P(o ∈ Γ) = 1 -exp[-ρE(ν(Γ 0 ))]
◮ the non-centred covariance LGCP are given by

C (r ) = P(o ∈ Γ and r ∈ Γ) = 2p -1 + (1 -p) 2 exp[ρη Γo ] with η Γo = E[ν(Γ o ∩ (Γ o -r ))] ◮ contact distribution H B (r ) = 1 - 1 -T Γ (
ρ(ξ) = exp(m(ξ) + c(ξ, ξ)/2), g (ξ, η) = exp(c(ξ, η)).
Hint : the moment generating function of the normal distribution with mean m and variance σ 2 is exp(mt + σ 2 t 2 /2).

Exercise 20. In the case of a Neyman-Scott Poisson process as defined during the course, show that X c given C are independent Poisson processes with intensity function ρ(w ) = αk(wc). Hint : compute the void probabilities. 

Gibbs models

Construction of the probability density of a point process : ◮ under these circumstances, the probability distribution of a Gibbs model writes as

◮
P(X ∈ F ) = F p(x)dµ(x)
and by introducing the expression of µ, it is further expressed as

P(X ∈ F ) = = ∞ n=0 exp[-ν(W )] n! W • • • W 1({x 1 , . . . , x n } ∈ F ) × p({x 1 , . . . , x n })dν(x 1 ) . . . dν(x n ), whenever n > 0. If n = 0, we take exp[-ν(W )]1(∅ ∈ F )p(∅). If ν(W ) = 0, then P(X = ∅) = 1.
For applications, we always assume that ν(W ) > 0.

◮ the marked case writes in a similar way by introducing also the marks distribution ν M ◮ usually the probability density is known only up to a constant : p ∝ h = exp(-U)

◮ the normalizing constant or the partition function is given by

α = Ω h(x)dµ(x) that becomes α = ∞ n=0 exp[-ν(W )] n! W • • • W h({x 1 , . . . , x n })dν(x 1 ) . . . dν(x n ) (2)
◮ the previous quantity is not always available under analytical closed form ◮ this is the main difficulty to be solved while ausing this approach ...

Normalizing constant for the Poisson process : Let ρ be the intensity function of a Poisson point process on W . Its probability density up to a normalizing constant is

p(x) ∝ x i ∈x ρ(x i ).
Let Υ(B) = B ρ(w )dν(w ) be the associated intensity measure. By using (2), we get

α = exp[-ν(W )] ∞ n=0 Υ(W ) n n! = exp[Υ(W ) -ν(W )],
that gives for the complete probability density

p(x) = exp[ν(W ) -Υ(W )] x i ∈w ρ(x i )
If the process is stationary ρ(x) = ρ = ct., then the probability density is

p(x) = exp[(1 -ρ)ν(W )]ρ n
Remarks :

◮ the probability density is specified only for finite point processes

◮ the extension to R d of a finite point process specified by a probability density is possible under some conditions (see (Møller and Waagpetersen, 2004, section 6.4)) ◮ two such conditions that are equivalent : Construction of the probability density

◮ specify the interaction functions φ (k) : Ω → R + φ(x i 1 , . . . , x i k ) (k)
for any k-tuplet of objects ◮ the un-normalized probability density is the product of all these functions

h(x) = x i ∈x φ(x i ) (1) • • • {x i 1 ,...,x i k }∈x φ(x i 1 , . . . , x i k ) (k) (3)
◮ clearly, the energy function is obtained by taking

U(x) = -log h(x)
◮ α the normalizing constant is difficult to be determined : untractable mathematical formula ◮ the un-normalized probability densities (3) are suitable for modelling provided they are integrable on Ω ; that is

α = Ω h(x)dµ(x) < ∞.
◮ the following results ensure the integrability of the probability density of a marked point process → the Ruelle stability conditions

Definition

Let X be a marked point process given by the un-normalized probability density h w.r.t the reference measure µ. The process X is stable in the sense of Ruelle, if it exists

Λ > 0 such that h(x) ≤ Λ n(x) , ∀x ∈ Ω. (4) 

Proposition

The un-normalized probability density of a stable point process is integrable.

Proof.

The integrability of h(x) follows directly from the preceding condition :

Ω h(x)µ(dx) ≤ Ω Λ n(x) µ(dx) = ∞ n=0 exp[-ν(W )][Λν(W )]) n n! = exp[ν(W )(Λ -1)].

Definition

Under the same hypotheses as in Prop. 5, a marked point process is said to be locally stable if it exists

Λ > 0 such that h(x ∪ {η}) ≤ Λh(x), ∀x ∈ Ω, η ∈ W × M \ x (5) 

Proposition

A locally stable point process is stable in the sense of Ruelle.

Proof.

It is easy to show by induction that

h(x) ≤ h(∅)Λ n(x) , ∀x ∈ Ω.
The local stability of a point process (5) implies its integrability (4).

◮ the conditional intensity for a point process X with probability density p is

λ(η; x) = p(x ∪ {η}) p(x) = h(x ∪ {η}) h(x) , x ∈ Ω, η ∈ W × M \ x,
taking a/0 = 0 for a ≥ 0 ◮ the conditional intensity is also known in the literature as the Papangelou intensity condition (we have already meet it)

◮ we shall often consider functions h : Ω → [0, ∞[ which are hereditary

h(x) > 0 ⇒ h(y) > 0, for y ⊂ x.
◮ if p is hereditary, then there is a one-to-one correspondence between p and λ Importance of the conditional intensity : key element in modelling ◮ plays a similar role as the conditional probabilities for Markov random fields

◮ integrability

◮ convergence properties of the MCMC algorithms used to sample from p ◮ the process X is attractive if x ⊆ y implies λ(η; x) ≤ λ(η; y), and repulsive otherwise λ(η; x) ≥ λ(η; y), ◮ attractive processes tend to cluster the points, while the repulsive ones tend to distance the points ◮ these conditions are important also for exact MCMC algorithms ◮ there exist processes that are neither attractive nor repulsive ◮ there are processes that are integrable but not locally stable : Lennard -Jones (statistical physics)

Markov point processes

The conditional intensity of an interacting point process is given by

λ(η; x) = φ(η) (1) x i ∈x φ(x i , η) (2) • • • {x i 1 ,...,x i k }∈x φ(x i 1 . . . . , x i k , η) (k+1)
◮ difficult to manipulate ◮ possible simplifications : limit the order of interactions → only pairs of points for instance ◮ limit the range of the interaction : a point interact only with its closest neighbours

Let ∼ be a symmetrical and reflexive relation between points belonging to W × M. This may be a typical neighbourhood relation based on a metric (Euclidean, Hausdorff) or on sets intersection.

Definition

A clique is a configuration x ∈ Ω such that η ∼ ζ for all η, ζ ∈ x.

The empty set is a clique.

Definition

Let X be a marked point process on W × M with probability density p w.r.t the reference measure µ. The process X is Markov if for all x ∈ Ω such that p(x) > 0, the following conditions are simultaneously fulfilled : This process is known in the literature as the Ripley-Kelly Markov process.

Example : The probability density w.r.t to µ of a marked Poisson process on W × M with constant intensity function

(ρ(η) = β > 0) is p(x) = β n(x) exp[(1 -β)ν(W )].
Clearly p(x) > 0 for all configurations x. Its Papangelou conditional intensity is

λ(η; x) = β1{η / ∈ x}.
Hence, the Poisson process is Markov, independently of the interaction functions φ (k) . This agrees with the choice of the Poisson process for modelling a completely random structure.

The following result is known as the spatial Markov property. → drawing

Theorem

Let X be a Markov point process with density p(•) on W and consider a Borel set A ⊆ W . Then the conditional distribution of X ∩ A given X ∩ A c depends only on X restricted to the neighbourhood

∂(A) ∩ A c = {u ∈ W \ A : u ∼ a for some a ∈ A}.
Proof.

→ Exercise 26

The following result is known as the Hammersley-Clifford theorem.

Theorem

A marked point process density p : Ω → R + is Markov with respect to the interaction relation ∼ if and only if there is a measurable function

φ c : Ω → R + such that p(x) = cliques y⊆x φ c (y), α = φ(∅) (6) 
for all x ∈ Ω.

Proof.

→ Exercise 27

Remarks :

◮ the previous result simplifies the writing of the probability density of an interacting point process ◮ taking φ c (y) = 1 whenever y is not a clique leads us to the equivalence of ( 3) and ( 6)

◮ Markov point processes are known in physics community as Gibbs point processes

p(x) = 1 Z exp [-U(x)] = 1 Z exp   - cliques z⊆x U c (z)   ,
with Z the partition function, U the system energy and U c = log φ c the clique potential ◮ all the Markov processes are Gibbs ◮ the reciprocal is not true

Poisson process as a Markov process : the probability density of a Poisson point process is

p(x) = e (1-β)ν(W ) x∈x β.
Hence, the interactions functions applied to cliques are

φ c (∅) = e (1-β)ν(W ) φ c ({u}) = β
with φ c ≡ 1 for the cliques made of more than one object. The potential of the cliques made of a single object is

U c (u) = -log β,
while U c = 0 otherwise. This confirms the lack of interaction in the Poisson process. It validates also, the choice of this process to model patterns exhibiting no particular morphological structure.

Distance interaction model -Strauss model : (Strauss, 1975), (Kelly and Ripley, 1976)

p(x) = αβ n(x) γ sr (x) , α, β > 0, γ ∈ [0, 1]
a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0. The interaction function γ :

W × W → [0, 1] is γ(u, v ) = γ if d(u, v ) ≤ r 1 otherwise
The conditional intensity of adding a point η to x \ {η} is

λ(u; x) = βγ card∂(u)
where

∂(u) = {v ∈ x : d(u, v ) ≤ r }
The Strauss model is a locally stable model with Λ = β and Markov with interaction range r . The interaction functions applied to cliques are

φ c (∅) = α φ c ({u}) = β φ c ({u, v }) = γ(u, v )
and φ c ≡ 1 if the cliques have three or more objects. The interaction potentials are obtained taking U c =log φ c . Widom-Rowlinson or penetrable spheres model : this model is described by the mark space M = {1, 2} and the density

Multi-type pairwise interaction processes

p(x) = α (w ,m)∈x β m (u,1),(v ,2)∈x 1{ u -v > r } (7) w.r.t the standard Poisson point process on W × M with ν M (1) = ν M (2).
The parameters β 1 > 0 and β 2 > 0 control the number of particles of type 1 and 2, respectively. The conditional intensity for adding (w , 1) / ∈ x to the configuration x is λ((w , 1); x) = β 1 1{d(u, w ) > r for all the (u, 2) ∈ x}.

A similar expression is available for adding an object of type 2.

The Widom-Rowlinson is hereditary and locally stable with

Λ = max{β 1 , β 2 }.
Furthermore, λ((w , m); x ′ ) ≥ λ((w , m); x) for all x ′ ⊆ x and (w , m) ∈ W × M. The interaction functions are

φ c (∅) = α φ c ({(w , m)}) = β m φ c ({(u, 1), (v , 2)}) = 1{d(u, v ) > r }
and φ c ≡ 1 if the cliques have two or more objects of the same type.

Multi-type pairwise interaction process : consider M = {1, . . . , I } with I ∈ N and ν M the uniform distribution on M. The probability density w.r.t the standard multi-type process is

p(x) = α (w ,m)∈x β m (u,i ) =(v ,j)∈x γ ij (d(u, v )). ( 8 
)
◮ the parameters β m > 0, m ∈ M control the intensity of the points of type m.

◮ the measurable functions γ ij : [0, ∞) → [0, 1] describe the interaction between each type pair of objects i , j ∈ M ◮ symmetric functions :

γ ij ≡ γ ji for all i , j ∈ M For (w , m) / ∈ x, the conditional intensity is λ((w , m); x) = β m (u,i )∈x γ im (d(u, w )).
This process is locally stable with Λ = max m∈M β m , anti-monotonic and Markov under smooth assumptions on the functions γ ij .

The interaction functions are

φ c (∅) = α φ c ({(w , m)}) = β m φ c ({(u, i ), (v , j)}) = γ ij (d(u, v ))
with φ c ≡ 1 for cliques of three objects and more.

Area interaction model :

(Baddeley and van Lieshout, 1995) 

p(x) ∝ β n(x) γ -ν[Γ(x)] , β, γ > 0 ( 9 

Remarks :

◮ the first probability density based point process producing clusters → alternative to the Strauss process ...

◮ the model should be re-parametrized in order to be identifiable

Proposition

The area interaction process given by (9) is a Markov point process.

Proof.

→ Exercice 28 + Exercice 29

Candy model : Markov chains : a little bit of theory Let (Ω, F, µ) a probability space.

Markov chain : a sequence of random variables {X n } such that :

P(X n+1 |X 0 , . . . , X n ) = P(X n+1 |X n )
The chain is homogeneous if the probabilities from going from one state to another do not change in time.

Transition kernel : a mapping P : Ω × F → [0, 1] such that

◮ P(•, A) is measurable for any A ∈ F ◮ P(x, •
) is a probability measure on (Ω, F) for any fixed x ∈ Ω As on discrete spaces the n-step transition probability kernel is defined iteratively. Let P 0 (x, A) = δ x (A) the Dirac measure defined by

δ x (A) = 1 x ∈ A 0 x / ∈ A,
and, for n ≥ 1 the n-step transition probability kernel is defined inductively ◮ in a very intuitive way, this result states that to get from x to A in n + m steps, the chain must pass through some y on the nth step ◮ in the discrete case the Chapman-Kolmogorov equations may be interpreted as a matrix product ◮ in the general case the kernel P n is an operator acting on both bounded measurable functions and σ-finite measures µ on F via

P n (x, A) = Ω P(x, dy)P n-1 (y , A) x ∈ Ω, A ∈ F.
P n f (x) = Ω P n (x, dy)f (y), µP n (A) = Ω µ(dx)P n (x, A). Definition: invariant measure. A σ-finite measure on (Ω, F) is invariant, if it verifies π(A) = Ω π(dx)P(x, A), A ∈ F.
◮ if an initial condition is sampled according to the invariant distribution π, then the action of the transition kernel will produce new states always distributed according to π ◮ simple verification: ◮ now, consider any starting distribution µ ◮ if a limiting measure γ µ exists in a suitable topology on the space of probability measures, such as

γ µ (A) = lim n→∞ Ω µ(dx)P (n) (x, A) for sets A ∈ F ◮ then γ µ (A) = lim n→∞ Ω µ(dx) Ω P n-1 (x, dy)P(y, A) = Ω γ µ (dy)P(y, A),
hence γ µ is an invariant probability measure.

◮ if the chain has an unique invariant measure π ◮ then

◮ the limit γ µ equals π ◮ it is independent of any initial condition µ ◮ in this case, the invariant measure is the equilibrium distribution of the chain Definition: reversibility. A transition kernel P(x, A) is said to be reversible with respect to a measure π, if the integral ◮ for presenting it, we need first the definition of the stopping time of the chain in a set A.

A B 1 A (x)1 B (y)π(dx)P(x, dy) (10 
Definition: stopping time at A. For any set A ∈ F, the quantity

τ A = min{n ≥ 1 : X n ∈ A}
is called the stopping time at A. If X n / ∈ A for every n, then by convention τ A = +∞.

◮ discrete case: irreducibility means, that all the chain states communicate, that is

P x (τ y < ∞) > 0 ∀x, y ∈ Ω.
◮ continuous state space:

P x (τ y < ∞) = 0
◮ in order to correctly define irreducibility for general state spaces, an auxiliary measure φ is needed Definition: φ-irreducibility. The Markov chain (X n ) is φ-irreducible if there exists a measure φ on F such that, whenever φ(A) > 0, we have P x (τ A < ∞) > 0 for all x ∈ Ω.

An equivalent formulation of the definition of the φ-irreducibility is that for all x ∈ Ω, whenever φ(A) > 0, there exists n > 0 such that P n (x, A) > 0.

◮ a φ-irreducible Markov chain is able to reach any set A which is "big enough", independently of the initial condition ◮ in the following we will give the tools needed for establishing the irreducibility of a transition kernel Definition: small sets. A set C is a small set if there exists n ∈ N ⋆ and a nonzero measure ν n such that

P n (x, A) ≥ ν n (A) (11)
for all x ∈ C and A ∈ F. Whenever the equation ( 11) is verified, the set C is called ν n -small.

Theorem. Let (X n ) be a φ-irreducible chain. For every set A ∈ F such that φ(A) > 0, there exists n ∈ N ⋆ and a small set C ⊂ A such that ν n (C ) > 0. Moreover, Ω can be decomposed in a countable partition of small sets.

◮ proof: (Meyn and Tweedie, 2009) Prop. 5.2.4 pp.105-106

◮ the small sets are tool for "discretizing" a continuous space state ◮ communicating states (i.e. irreducibility): desirable property whenever building Markov chain for sampling probability distributions ◮ cyclic behaviour: naturally considered as undesirable Definition: aperiodic chain. Let P(•, •) be a φ-irreducible transition kernel. Suppose that there is a set A ∈ F, a probability measure ν with ν(A) = 1, a constant ǫ > 0 and an integer n 0 ≥ 1 such that

P n 0 (x, •) ≥ ǫν(•) ∀x ∈ A.
The induced Markov chain is aperiodic if

gcd{m : ∃ ǫ m > 0 such that P m (x, •) ≥ ǫ m ν(•) ∀x ∈ A} = 1.
◮ practical consequence: aperiodic Markov chains may be constructed by simply allowing the Update procedure to remain in the initial state with a positive probability Theorem. Suppose the chain (X n ) has invariant probability measure π. Assume that the chain is π-irreducible and aperiodic. Then there is a set Ω ′ ⊆ Ω such that π(Ω ′ ) = 1 and sup

A∈F |P n (x, A) -π(A)| → 0 (12)
for each x ∈ Ω ′ .

◮ proof: (Athreya et al. 1996), Thm. 1 pp. 72

◮ the results allows to build Update() procedures to sample from π ◮ the result does not prevent the Markov chain of a set of configurations Ω ′′ with π(Ω ′′ ) = 0 for which the limit in ( 12) differs from zero

Recurrence

◮ the recurrence is the Markov chain property that guarantees the non-existence of null-sets, such as Ω ′′ .

◮ it guarantees the independence of a MCMC sampling algorithm with respect to the initial conditions Definition: number of passages. For any set A ∈ F, the quantity

η A = ∞ n=1 1 A (X n )
is the number of passages of (X n ) in A.

Definition: Harris recurrence. A set A is Harris recurrent if

P x (η A = ∞) = 1 for all x ∈ A. The chain (X n ) is Harris recurrent if it is φ-irreducible and if any set A ∈ F such that φ(A) > 0 is Harris recurrent.
◮ Harris recurrence is a "better" property than φ-irreducibility ◮ in practice, the Update mechanisms that are φ-irreducible, they are also Harris recurrent ◮ the following result presents: mathematical tool for proving Harris recurrence, based on the so-called drift condition Theorem. Let (X n ) be a φ-irreducible Markov chain and suppose there exist a small set C ∈ F and function V : Ω → (0, ∞) such that the level sets

C V (α) = {x ∈ Ω : V (x) ≤ α} are small. The chain is Harris recurrent if the drift △V (x) = PV (x) -V (x) is negative for any x / ∈ C , that is : PV (x) = Ω P(x, dy)V (y) ≤ V (x), x / ∈ C .
◮ proof: (Meyn and Tweedie, 2009), Thm. 9.1.8 pp. 206.

Ergodicity

◮ whenever a Harris recurrent Markov chain is simulated through an Update procedure, LLN and CLT can be used with the obtained samples, only after the chain reaches the equilibrium ◮ for the non-perfect MCMC algorithms, i.e. this is impossible ◮ the only thing we know: the chain should reach the equilibrium, but we do not know exactly when this will happen ◮ possible solution to this problem → build an ergodic chain ◮ no need to wait till equilibrium ◮ the only thing needed: enough samples in order to be able to apply the LLN or the CLT apply the LLN or the CLT Definition: ergodicity. The Markov chain (X n ) is ergodic if it is both Harris recurrent and aperiodic.

◮ for ergodic chains, ( 12) holds independently of the initial conditions ◮ the speed of convergence of the chain may be the same for all the initial conditions → the chain is uniformly ergodic ◮ if the speed of convergence depends on the starting a point, we may have a geometrically ergodic chain Definition: total variation norm. The total variation norm of a bounded signed measure ν on (Ω, F) is defined as

ν = sup A∈F ν(A) -inf A∈F ν(A).
The total variation distance between two such measures ν 1 and ν 2 is ν 1ν 2 .

Theorem. Let (X n ) be a Markov chain φ-irreducible and aperiodic. The chain is geometrically ergodic if there exists a function V : Ω → [1, ∞), constants b < ∞ and a < 1, and a small set C ∈ F such that

PV (x) ≤ aV (x) + b1 C (x), ∀x ∈ Ω. ( 13 
)
◮ proof: (Meyn and Tweedie, 2009), Thm. 15.0.1 pp. 363

◮ geometric ergodicity means that the iterations of the transition kernel approach the equilibrium distribution at a geometric speed ◮ it can be shown, that the sets C V (α) are small for any α > 0 → the geometric ergodicity drift condition implies the drift condition for Harris recurrence.

Metropolis-Hastings algorithm

Principle :

◮ consider the chain in the state

x i = x
◮ propose a new state x f = y using the proposal density q(x i → x f )

◮ accept this new state with probability α(x, y ) = min 1, p(y )q(y → x) p(x)q(x → y )

if not remain in the previous state 

◮
M q(x i → x f ) = q(x → x ∪ {ζ}) = p b 1{ζ w ∈ W } ν(W )
◮ proposal density to remove an object : choose uniformly an object from x ∪ {ζ}

q(x f → x i ) = q(x ∪ {ζ} → x) = p d 1{ζ ∈ x ∪ {ζ}} n(x) + 1 ◮ acceptance probability α(x → x ∪ {ζ}) = min 1, p d p(x ∪ {ζ}) p b p(x) × ν(W ) n(x) + 1 (14)
Death : remove an object ◮ the inverse movement of birth

◮ acceptance probability α(x → x \ {ζ}) = min 1, p b p(x \ {ζ}) p d p(x) × n(x) ν(K ) (15) 
A transition kernel doing these transformations is

P(x, A) = p b K b(x, η)α(x, y := x ∪ {η})1{y ∈ A}dσ(η) + p d η∈x d(x, η)α(x, y := x \ {η})1{y ∈ A} + 1{x ∈ A} 1 -p b K b(x, η)α(x, x ∪ {η})dσ(η) -p d η∈x d(x, η)α(x, x \ {η}) ,
where

K = W × M, dσ(η) = dσ((w , m)) = dν(w ) × dν M (m) et 0 < p b + p d ≤ 1. The birth rate is b(x, η) = 1 ν(W ) and the death rate is d(x, η) = 1 n(x)
Remarks : 1. Choose "birth" or "death" with probabilities p b and p d , respectively.

◮
2. If "birth" was chosen, then generate a new object following b(x, η). Accept the new configuration, y = x ∪ {η} with the probability α(x, y) given by (14).

3. If "death" was chosen, then select the object to be removed using d(x, η). Accept the new configuration, y = x \ {η} with the probability α(x, y) given by (15).

4.

Return the present configuration.

Theorem. Let be b, d and q as described previously. Assume that b(x, η) and d(x, η) are strictly positive on their corresponding definition domain, respectively, and 

lim n→∞ u n = lim n→∞ sup η∈W ×M,x∈Ξn d(x ∪ {η}, η) b(x, η) → 0.
(x, η) = p 1 ν(K ) + p 2 b a (x, η),
with p 1 + p 2 = 1 and b a (x, η) a probability density given by

b a (x, η) = 1 n(A(x)) x∈A(x) b(x, η).
◮ the role of b a (x, η) : propose the birth of a new pointin those regions where the interactions between the new born and the other configuration members is favoured or not penalised by the model ◮ A(x) : the set of marked points in a configuration that are not exhibiting yet "good" interactions MH algorithm for sampling the Candy model : dynamics behaviour through the sufficient statistics analysis Principle : discrete case

Let us build a MCMC sampler for π defined on the discrete state space Ω = {ω 1 , ω 2 , . . . , ω m }. The induced Markov chain (X n ) is represented by its transition functiones φ(•, •) such that

X n+1 = φ(X n , V n ), (16) 
where V n are i.i.d random variables.

Key idea :

◮ consider m, (X n (ω i )) all initialised with a different state, that evolve from -T < 0 0 ◮ the chains are coupled : they use the same V n s ◮ if at a certain moment n ∈ -T , . . . , 0 all the chains are in the same state or they coalesced, that is

X n ≡ x
then they will all remain in the same state, till the time 0

◮ the influence of the initial conditions just ... vanished ◮ if the chains are started before the time -T , at infinite, the chains will be all in the same state, at the same moment ◮ it comes out that X 0 is a perfect sampler from the equilibrium distribution π → blackboard : drawing Extraordinary smart idea : ◮ launching m parallel chains is not always feasible ◮ if Ω can be ordered

ω min = ω (1) < ω (2) < . . . < ω (m) = ω max
and if the transition kernel respect this order relation

ω ≤ ω ′ ⇒ φ(ω) ≤ φ(ω ′ )
then only the states ω min and ω max are needed ◮ the behaviour of the other chains is bounded by the extremal chains X n (ω min ) and X n (ω max )

This idea is known under the name Coupling From The Past (CFTP).

Perfect algorithms for sampling marked point processes

Coupling From The Past algorithms : ◮ dominating process : Parameter estimation based on pseudo-likelihood

The pseudo-likelihood of a marked point process X with conditional intensity λ θ (ζ; x) observed on the bounded set W is expressed as

PL W (θ; x) = = x i ∈x λ θ (x i ; x) exp - W ×M λ θ ((w , m); x)ν(dw )ν M (dm) .
→ blackboard : construction of the pseudo-likelihood

The pseudo-likelihood estimator is given by the solution of the equation :

∂PL W (θ; x) ∂θ = 0
Remarks :

◮ the PL is concave for exponential models ◮ no normalising constant needed ...

◮ it "amplifies" the interaction weights : check the formula -for a Strauss process the interactions are counted twice ...

◮ consistency and asymptotic normality of the estimator : if we observe the model in a finite window, then it converges towards the parameters estimated using the pseudo-vraisemblance based on the observation of the "whole" window (Jensen and Møller, 1991)

◮ it can be used to have a "good" initial condition for other more elaborate methods ◮ "good" results for mild interactions : (Mateu and Montes, 2001)

◮ lacks of statistical significance : there is no real link with the true model behind the pattern ◮ except for the Poisson process : in this case the pseudo-likelihood is the true likelihood ◮ easy to be implemented : with the 'first order term' S(u) that describes spatial inhomogeneity and/or covariates effects and the 'higher order' term that describes interobject interaction ◮ refer to the spatstat documentation → caution : definition of the model ...

Applications

Pseudo-likelihood profile analysis : the range parameters >radius = data.frame(r=seq(0.05,0.11, by=0.01)) >pradius = profilepl(radius, Strauss, japanesepines) >plot(pradius,main="Strauss : PL analysis") 

p(x|θ) = h(x|θ) Z (θ) = exp t(x), θ Z (θ)
where h(x|θ), t(x) and θ represent the un-normalized probability density w.r.t. the standard Poisson process, the sufficient statistics vector and the model parameters vector, respectively. The normalising constant Z (θ) is unknown.

→ blackboard : general notions about the exponential family models

The configuration x is entirely observed, hence the log-likelihood with respect a known parameter ψ can be written as follows :

l (θ) = t(x), θ -ψ -log Z (θ) Z (ψ)
It is easy to check, that the normalizing constants ratio is

Z (θ) Z (ψ) = E [exp t(X), θ -ψ ] ,
since we have

Z (θ) Z (ψ) = 1 Z (ψ) Ω h(x|θ)dµ(x) = 1 Z (ψ) Ω h(x|θ) h(x|ψ) h(x|ψ) dµ(x) = Ω h(x|θ) h(x|ψ) h(x|ψ) Z (ψ) dµ(x) = E h(X|θ) h(X|ψ)
The Monte Carlo approximation of the normalizing constants ratio gives :

Z (θ) Z (ψ) ≈ 1 n n i =1 exp t(X i ), θ -ψ ,
where X 1 , X 2 , . . . , X n are samples obtained from p(y|ψ).

Hence, the Monte-Carlo counterpart of the log-likelihood is :

l n (θ) = t(x), θ -ψ -log 1 n n i =1 exp t(X i ), θ -ψ .

Theorem

The log-likelihood of an exponential family model is a convex function.

◮ proof : see (Monfort 1997, Thm.3, pp. 61)

◮ l n (θ) → l (θ) almost sureley
◮ all these suggest that local optimisation procedures applied to l n (θ) may give interesting results

→ Exercise 36

MCMC local optimisation procedures

The gradient of the MCMC log-likelihood is

∇l n (θ) = t(x) -E n,θ,ψ [t(X)]
where

E n,θ,ψ [t(X)] = n i =1 t(X i ) exp t(X i ), θ -ψ n i =1 exp t(X i ), θ -ψ that is the Monte Carlo importance sampling approximation of E θ t(X).
Similarly, the Hessian can be computed too :

-∇ 2 l n (θ) = Var n,θ,ψ [t(X)]
where

Var n,θ,ψ [t(X)] = E n,θ,ψ [t(X)t(X) t ] -E n,θ,ψ [t(X)]E n,θ,ψ [t(X) t ].
Newton-Raphson method :

θ k+1 = θ k -[∇ 2 l n (θ k )] -1 ∇l n (θ k ) (17) for k = 1, 2, . . ., ◮ l n (•) is computed using n samples from p(x|ψ)
◮ the computation of the gradient and Hessian inverse is numerically unstable ◮ useful only if the initial value is close enough from the solution Iterative gradient method :

l n (θ k + ρ(θ k )∇l n (θ k )) = max ρ∈R l n (θ k + ρ∇l n (θ k )) θ k+1 = θ k + ρ(θ k )∇l n (θ k )
where ρ(θ k ) is the optimal step (Descombes et al. '99, Stoica '01).

◮ re-sampling if θ kψ > threshold ◮ obtain a reference value θ 0 close enough to the maximum likelihood estimator Stochastic gradient :

θ k+1 = θ k + ǫ k [t(x) -t(X k )]
where ǫ k > 0 is a decreasing sequence while X k is a sample of p(x|θ k )

◮ very simple, but finding an optimal sequence {ǫ k } is an open problem ◮ L. Younes, G. Winkler : Markov random fields ◮ R. Moyeed and A. Baddeley : point processes

Asymptotic results MCMCML estimation

The random variable √ n( θ nθ) whenever n → ∞, it converges in distribution towards a normal random variable of zero mean and variance

I ( θ) -1 ΓI ( θ) -1 : √ n( θ n -θ) → N (0, I ( θ) -1 ΓI ( θ) -1
).

◮ the matrix

I ( θ) = Var θ [t(X)] = -∇ 2 l ( θ)
is the Fisher information of θ ◮ the matrix Γ is the matrix of the asymptotic covariance of the normalised Monte Carlo gradient √ n∇l n ( θ)

◮ the variance of the components of θθ 0 can be estimated by taking the diagonal elements of the inverse of -∇ 2 l n ( θ n )

◮ it represents the error between the maximum likelihood estimate and the true model parameters ◮ the variance of the components of √ n( θ nθ) can be estimated by taking the diagonal elements of I ( θ) -1 ΓI ( θ) -1

◮ it represents the error between the maximum likelihood estimate and its Monte Carlo counterpart ◮ refer to (Monfort, 1997), (Geyer, 1999) and(van Lieshout andStoica, 2003) for the computation of these matrices Log-likelihood ratio approximation : a) -11 -10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 Algorithm ABC : assume the observed pattern is y, fix a tolerance threshold ǫ and an integer value n.

1. For i = 1 to n do ◮ Generate θ i according to p(θ).

◮ Generate x i according to the probability density

p(x|θ i ) = exp[-U(x|θi )] c(θi )
2. Return all the θ i 's such that the distance between the statistics of the observation and those of the simulated pattern is small, that is ◮ ABC algorithms are useful if enough samples x i are "close" to the observed pattern y

d(t(y), t(x i )) ≤ ǫ

ABC Shadow algorithm

Key points

◮ need : an algorithm with outputs "close" enough to the posterior distribution ◮ tool : build a Markov chain evolving "close" to an equilibrium regime given by p(θ|y)

◮ plan : use the auxiliary variable method ideas Ideal MCMC sampling of the posterior : general MH algorithm ◮ assume the system is in the state θ ◮ choose a new value ψ according to a proposal density q(θ → ψ)

◮ the value ψ is accepted with probability

α i (θ → ψ) = min 1, p(ψ|y)p(ψ) p(θ|y)p(θ) q(ψ → θ) q(θ → ψ)
◮ consider the proposal density ◮ this choice guarantees the ideal chain to be uniformly ergodic and avoids the evaluation of the ratios c(θ)/c(ψ)

q(θ → ψ) = q ∆ (θ → ψ|x) = f ( 
◮ but, it requires the computation of integrals I (θ, ∆, x) ... → blackboard : drawing Shadow chain : approximation of the ideal chain Theorem : if p(x|θ) is a continuously differentiable function in θ ◮ For any fixed θ ∈ Θ and A ∈ T Θ , we have lim

∆→0+ A |q ∆ (θ → ψ) -U ∆ (θ → ψ)|dψ = 0
◮ For any fixed θ ∈ Θ, we have lim

∆→0+ sup ψ∈Θ q ∆ (θ → ψ|x) q ∆ (ψ → θ|x) - f (x|ψ) c(ψ) 1 b(θ,∆/2) (ψ) f (x|θ) c(θ) 1 b(ψ,∆/2) (θ) = 0
uniformly in θ ∈ Θ, with ◮ V ∆ : the volume of the ball b(θ, ∆/2) 

◮ U ∆ = 1 V ∆ 1 b(θ,
α s (θ → ψ) = min 1, p(ψ|y)p(ψ) p(θ|y)p(θ) × f (x; θ)c(ψ)1 b(ψ,∆/2) {θ} f (x; ψ)c(θ)1 b(θ,∆/2) {ψ}
Corollary : the acceptance probabilities of the ideal and shadow chains are uniformly as closed as desired whenever △ → 0 + Proposition : Let P i and P s be the transition kernels for the ideal and the shadow Markov chains using a general ∆ > 0 and a configuration x ∈ Ω. Then, for every ǫ > 0 and every n ∈ N, there exists ∆ 0 = ∆ 0 (ǫ, n) > 0 such that for every ∆ ≤ ∆ 0

|P (n) i (θ, A) -P (n) s (θ, A)| < ǫ uniformly in θ ∈ Θ and A ∈ T Θ .
Algorithm ABC Shadow : assume the observed pattern is y and fix values for ∆ and n and the current state θ 0 1. Generate x according to p(x|θ 0 ) 2. For k = 1 to n do

◮ Generate a new candidate ψ following U ∆ (θ k-1 → ψ).
◮ The new state θ k = ψ is accepted with probability α s (θ k-1 → ψ), otherwise θ k = θ k-1

Return θ n

Remarks :

◮ if several samples are needed, re-start the procedure for the same ∆ and n, with θ 0 = θ n .

◮ depending on ∆, the algorithm approaches the equilibrium regime of the ideal chain :

P (n) s (θ, A) -π(A) ≤ M(x, ∆)ρ n + ǫ.
with π(A) = A p(θ|y)dθ ; M and ρ : ergodicity parameters of the ideal chain ◮ caution : this is not convergence

Application : sampling the posterior of a Gaussian model

The posterior of a Normal model with mean θ 1 and variance θ 2 is 

p(θ 1 , θ 2 |y = Y(ω)) ∝ exp θ 1 θ 2 Y(ω) -Y 2 (ω) 2θ 2 c(θ 1 , θ 2 ) p(θ 1 , θ 2 ) with ◮ y = Y(ω) : observation issued from the supposed model ◮ t(y) = (Y(ω), Y 2 (ω)) : the sufficient statistics vector ◮ if the sample size is m then : t(y) = m i =1 Y i (ω), m i =1 Y 2 i (
⊆ W × M I (A, h, λ) = x i ∈Y A h(x i , X \ x i ) - A λ(η; X)h(η, X)(ν × ν M )(dη)
◮ assuming the sum and the integral in the definition have finite expectations, the Georgii-Nguyen-Zessin formula gives

EI (A, h, λ) = 0 ◮ I is a signed measure ◮ △I (x i ) = h(x i , X \ η) : the innovation increment ('error') attached to a point η ∈ X ◮ dI (η) = -λ(η; X)h(η, X) : the innovation increment attached to a background location η ∈ W × M h-Residuals : for h ≥ 0 functions and A ⊆ W × M R(A, h, θ) = I (A, h, λ) = x i ∈x A h(x i , x \ x i ) - A λ(η; x) h(η, x)(ν × ν M )(dη)
since the function h may depend on the model, h denotes an estimate. Application idea :

◮ consider a parametric model for a marked point process X observed within A ◮ estimate the model parameters (maximum likelihood, pseudo-likelihood)

◮ expect the residuals R(A) to be close to 0 if the model is appropriate

Building residuals : several possible choices for h

◮ raw residuals h(η, x) = 1 R(A, 1, θ) = n(x ∩ A) - A λ(η; x)(ν × ν M )(dη) ◮ inverse residuals h(η, x) = 1/λ(η; x) (equivalent with the Stoyan-Grabarnik diagnostic) R(A, 1 λ , θ) = x i ∈x A 1 λ(x i ; x A ) - A 1{ λ(η; x) > 0}(ν × ν M )(dη)
◮ Pearson residuals h(η, x) = 1/ λ(η; x) (analogy with Poisson log-linear regression)

R(A, 1 λ , θ) = x i ∈x A 1 λ(x i ; x A ) - A λ(η; x)(ν × ν M )(dη)
Remark : the inverse and Pearson residuals we need λ θ(x) (x i ; x) > 0 for all x i ∈ x for any pattern x, while λ θ(x) (η; x) = 0 is allowed for η / ∈ x Properties : Exercice 36. Let X be a Strauss point process on a compact W ⊂ R d given by the probability density w.r.t. the unit rate Poisson point procees :

◮ expectation E R(A, h, θ) = A E h θ(X∪{η}) (η, X)λ(η, X) -h θ(X) (η, X)λ θ(X) (η,
p(x; θ) = α(θ)β n(x) γ s(x)
where n(x) denotes the cardinality of x, s(x) the number of r -close pairs in x and θ = (β, γ) with β > 0 and γ ∈ (0, 1) is the parameter vector of interest a) Specify the normalising constant and write the log-likelihood function.

b) Write the system of equations for obtaining θ.

c) Show that the maximum likelihood estimator solves :

(n(x), s(x)) = (E θ n(X ), E θ s(X ))
Exercice 37. The data set waterstriders within the package spatstat contains three point patterns representing the positions of water striders in a pound. Try to answer the following question : what is the more important factor in the relative position of these insects -the distance w.r.t to its neighbour or the occupied territory ?

In order to answer the question, do the following steps : a) Plot the data. Do a summary statistics analysis in order to propose at least two candidates for modelling ? What type of interaction is exhibited by all these patterns ? b) Use the profile of the pseudo-likelihood and the previous analysis in order to propose a good candidate for the interaction radius. c) Fit the models using ppm.

d) Verify the models using envelope tests.

e) Choose a model using the residual analysis : residuals, qqplot 

Pattern detection and characterisation

The pattern detection problem :

◮ a spatial data set is observed → pattern hidden in the data ?

◮ hypothesis : the pattern is the realization of a random process (MRFs, marked point processes, etc.) Cluster detection in galaxies catalogues : ◮ interaction energy : Strauss and Area-interaction models (random object : trunck of a cone + two hal-spheres) ◮ data energy : local minimum number of galaxies insid the considered random object tests Orbit determination for binary systems (1)

◮
◮ interaction energy :

U I (θ) = log p(θ) = 7 i =1 log p(θ i ),
where θ = (a, e, i , Ω, ω, τ, P) is the vector of orbital parameters ◮ Jeffreys' principle -non-informative independent priors ◮ our choice : uniform distributions over bounded intervals ◮ the intervals were chosen taking into account the a priori knowledge of the objects to be detected ◮ perspective : introduce dependence of the parameters Orbit determination for binary systems (2) ◮ data energy : sum of the distances between the observed positions and the computed positions ; these last ones are computed using the given model parameters Filaments detection (1) : (Tempel, Stoica et. al., 2014) Figure : Detected filamentary pattern (cylinder axes) in a small sample volume within a pattern of galaxies (points).

Filaments detection (2) (Tempel, Stoica et. al., 2014) The movie, showing the MCMC in action is available at :http://www.aai.ee/ elmo/sdss-filaments/

Cluster detection in cosmology : (Tempel, Stoica et. al., 2018) Figure : The distribution of galaxies in supergalactic coordinates (points) and the visit map obtained using the cluster detection process. The thickness of the slice is 4 Mpc around SGX = 0. Red points show galaxies in the Coma cluster while the other coloured points show galaxies in some clusters with at least five members. The grey points show all remaining galaxies.

Cluster detection in epidemiology : sub-clinical mastitis data Test for the filaments existence in galaxy catalogs 

Figure :

 : Figure: Photometric galaxies(green dots), spectroscopical galaxies (red dots) and filaments (blue) : a) photometrical galaxies projected on a sphere, b) photometrical galaxies lines of sight

◮

  W ) n for Borel subsets B 1 , . . . , B n of the compact W . → drawing Properties ◮ this process earns its name from a distributional probability ◮ the r.v. N(B) with B ⊆ W follows a binomial distribution with parameters n = N(W ) = n(x W ) the intensity of the binomial point process, or the mean number of points per unit volume ρ = n ν(W ) ◮ the mean number of points in the set B E(N(B)) = np = ρν(B)◮ the binomial point process is simple ◮ number of points in different subsets of W are not independent even if the subsets are disjointN(B) = m ⇒ N(W \ B) = nm◮ the distribution of the point process is characterized by the finite dimensional distributionsP(N(B 1 ) = n 1 , . . . , N(B k ) = n k ) for k = 1, 2, . . . such that n 1 + n 2 + . . . + n k ≤ n ◮ ifthe B k are disjoint Borel sets with B 1 ∪ . . . B k = W and n 1 + . . . + n k = n, the finite-dimensional distributions are given by the multinomial probabilities

  B) = P(N(B) = 0) = (ν(W )ν(B)) n ν(W ) n Stationary Poisson point process Motivation : what happens if extend W towards R d ? ◮ convergence binomial towards Poisson ◮ → drawing + blackboard Definition : a stationary (homogeneous) Poisson point process X is characterized by the following fundamental properties ◮ Poisson distribution of points counts. The random number of points of X in a bounded Borel set B has a Poisson distribution with mean ρν(B) for some constant ρ, that is P(N(B) = m) = (ρν(B)) m m! exp(-ρν(B)) ◮ Independent scattering. The number of points of X in k disjoint Borel sets form k independent random variables, for arbitrary k Properties ◮ simplicity : no duplicate points ◮ the mean number of points in a Borel set B is E(N(B)) = ρν(B)

B

  ρ(w )dν(w ) < ∞ for bounded subsets B ⊆ W , then we have a inhomogeneous Poisson process with mean E(N(B)) = B ρ(w )dν(w ) = Υ(B) ◮ Υ is called the intensity measure ◮ we have already seen that for the stationary Poisson process : Υ(B) = ρν(B)

Figure :

 : Figure: Poisson based models realizations : a) unmarked, b) multi-type and c) Poisson process of segments.

◮

  if µ = 0 ⇒ classical Poisson process ◮ modelling : several models available for the excitation functions ◮ simulation : thinning method ◮ inference : the conditional intensity allows the consutruction of a likelihood function ◮ application : sismology and epidemiology (extend the definition of the conditional intensity) Exponential model : an example of excitation function for Hawkes processes µ(t) = α exp(-βt)with α < β. The parameter α gives the instantaneous influence of events and β the rate at which it decreases.

Figure :

 : Figure: Number of events and conditional intensity of a Hawkes process, with exponential excitation function with parameters α = 0.6, β = 0.8 et λ = 1.2.

  Package spatstat ◮ Analysing spatial point patterns in 'R' by A. J. Baddeley a) Simulate and print 10 realizations of a Binomial point process with n = 10 points in the square W = [0, 1] 2 . b) Simulate and print 10 realization of a homogeneous Poisson point processes with intensity parameter ρ = 10 in the square W = [0, 1] 2 . Compare the realizations of the previous two processes. What do you observe ? c) Simulate an inhomogeneous Poisson point process given by the intensity

Exercise 8 .

 8 Prove the Campbell-Mecke Theorem. Hint : start by considering indicator functions h(w , x) = 1{(w , x) ∈ A × F } for some bounded Borel set A ∈ B and some F ∈ F. Exercise 9. a) Simulate and print a realization of a Poisson point processes with intensity parameter ρ = 100 on the square W = [0, 1] × [0, 1]. Use the spatstat package to compute and print estimates of the empty space function and of the pair correlation function for a pattern of points obtained by the simulation of the previous process. Compare the obtained values with their corresponding theoretical values. b) Build envelope tests based on these characteristics to compare the observed pattern with the realization of a Poisson process.

◮Figure :

 : Figure: Toy model for explaining the behaviour of the empty space function: the simulated roads have the length, so the same density of roads per unit of surface.

Figure :

 : Figure: Empty space function for characterization the road network evolution in two logging companies.

  the process has 'interactions of range r at u' ◮ in other words, points further than r away from u do not contribute to the conditional intensity at u ◮ integrability of the model ◮ convergence of the Monte Carlo dynamics able to simulate the model ◮ differential characterization of Gibbs point processes → blackboard ◮ the Slivnyak-Mecke theorem links Palm distributions with the distribution of a Poisson point process ◮ this characterization links the Palm distributions with the distributions of a finite point process ◮ this characterization is an essential element for extending finite point process to R d Exercises : Palm theory -interior and exterior conditionning Exercise 12. Prove the Slivnyak-Mecke Theorem. Hint : start by considering the distribution function of Poisson point process in W and compute the desired expectation. Exercise 13. Compute the average number of pairs of points in a stationary Poisson process of intensity ρ on the planar unit square separated by a distance that does not exceed some fixed r < √ 2. a) Do this computation conditionning on the event N(W ) = n. b) Do this computation using the Campbell -Mecke formula.

  Hint : use the Campbell-Mecke theorem Exercise 17. a) Simulate and print a realization of a Poisson point processes with intensity parameter ρ = 100 on the square W = [0, 1] × [0, 1]. Use the spatstat package to compute and print estimates of the G , K and of the J function for a pattern of points obtained by the simulation of the previous process. Compare the obtained values with their corresponding theoretical values. b) Build envelope tests based on these characteristics to compare the observed pattern with the realization of a Poisson process. c) Analyse the data sets : redwoodfull, japanesepines and swedishpines. d) Analyse the behaviour of the different tree species in the data set : lansing.Hint : help(lansing). For the last two points use all the sumary statistics you know.Exercise 18. Prove the Papangelou conditional intensity Theorem.Hint : use the Campbell-Mecke and the Georgii-Nguyen-Zessin formulas.

Exercise 21 .

 21 Prove the stationarity of a Neyman-Scott Poisson process and the computation of its pair-correlation function. Hint : compute the void probabilities Exercise 22. Use the spatstat package to compute and print estimates of the known summary statistics (second order and interpoint distances) for a) Thomas process with parameters α = 10, κ = 10 and ω 2 = 0.01 in a window W = [0, 1] × [0, 1]. b) Matérn cluster process with parameters α = 10, κ = 10 and r = 0.1 in a window W = [0, 1] × [0, 1]. c) LGCP with exponential correlation function and parameters m = 4, σ 2 = 0.2, α = 0.1 d) What is the theoretical intensity of these processes ? Do you see any differences between two realizations of these two processes, respectively ? How, can you use these observations in order to chose an appropriate model for a given data set ? e) Estimate the model parameters of the three precedent models on the data set redwood. f) Compare the three results using an envelope test based on the L function.Hint : Spatstat commands : rThomas, rMatClust, rLGCP,kppm, envelope. Install the package RandomFields.Play with model parameters in order to obtain different configuration topologies.Exercise 23. Prove the capacity functional formula of the Boolean model.Exercise 24. Let Γ be a Boolean process on R d with intensity parameter ρ. Prove the formulas presented in the course, for the volume fraction, the covariance and the contact distribution function.Exercise 25. Prove the stability properties of the Boolean model.

  the independence property of the Poisson based processes does not allow to introduce point interactions ◮ Gibbs models are flexible point processes that allow the specification of point interactions via a a probability density ◮ in the following, let us consider (W , d) a complete, separable metric space such that W ⊂ R d and 0 < ν(W ) < ∞ ◮ let µ be the unit intensity Poisson point process on W ◮ the condition that W has to be finite is required in order to obtain a well defined probability density for the considered Gibbs model ◮ the probability density of a Gibbs model is a Radon-Nykodim derivative w.r.t the Poissonian reference measure µ ◮ within a statistical physics context, the probability density of such a point process has the form p(x) = exp[-U(x|θ)] α(θ) with U(x|θ) the energy function, θ the model parameters and α(θ) = Ω exp[-U(x|θ)]dµ(x) the normalizing constant or the partition function

◮

  local specification for Markov point processes ◮ differential characterisation of Gibbs point process : link Palm distribution and conditional intensity◮ phase transition -if such an extension is possible, does it surely leads to an unique probability measure ?

  (i) p(y) > 0 for all y ⊆ x (hereditary) (ii) p(x∪{ζ}) p(x) depends only on ζ and ∂(ζ) ∩ x = {η ∈ x : η ∼ ζ}.

Figure :

 : Figure: Strauss model realisations for different parameter values : a) γ = 1.0, b) γ = 0.5 and c) γ = 0.0.

Figure :

 : Figure:Bivariate pairwise interaction processes with r = 0.05 and : a)γ 1,2 = γ 2,1 = 1.0, b) γ 1,2 = γ 2,1 = 0.75 and c) γ 1,2 = γ 2,1 = 0. Circles around the points have a radius of 0.025.

Figure :

 : Figure: Area interaction model realisations for different parameter values : a) γ = 1.0, b) γ > 1.0 and c) γ < 1.0.

,Figure : ◮Figure :

 :: Figure: Candy model realisations.

  Theorem: Chapman-Kolmogorov equations. For any m with 0 ≤ m ≤ n,P n (x, A) = Ω P m (x, dy)P n-m (y, A), x ∈ Ω, A ∈ F.Proof: See (Meyn and Tweedie 2009, Thm. 3.4.2 pp.61). It is easy to see thatP n (x, A) = Ω P(x, dy)P n-1 (y, A) Ω P(x, dy) Ω P(y, dz)P n-2 (z, A) Ω P 2 (x, dz)P n-2 (z, A). . . Ω P m (x, dy)P n-m (y, A).

  )P n (y, A),for any n and all A ∈ F.

  ) is symmetric under the interchange of A and B. ◮ applying the previous definition to the formula (10) leads directly to A π(dx)P(x, B) = B π(dx)P(x, A) ◮ hence, the probability of going from A to B equals the probability of going backwards from B to A. ◮ if P(x, Ω) = 1 and B = Ω, it follows immediately π(A) = Ω π(dx)P(x, A), hence, the reversibility of the transition kernel guarantees the invariance of the considered measure ◮ practical point of view: the Update() mechanism should reproduce a reversible transition kernel ◮ the reversibility condition alone → only the construction of a sampling algorithm that needs the initial conditions to be chosen according to the distribution of interest ◮ problem solved: if the Markov chain is irreducible, aperiodic and recurrent Irreducibility ◮ crucial property in the setup of MCMC algorithms ◮ intuitive description: guarantees that from any initial point x ∈ Ω, the chain may reach any region A ∈ F of the configuration space ◮ first measure of the sensitivity of the Markov chain to the initial conditions◮ it leads to convergence conditions of the simulated chain towards the desired equilibrium distribution.

  iterate as many times as we need (... in theory till infinity ...) Properties ◮ α(•, •) is a solution of the detailed balance equation → reversibility is preserved ◮ very few conditions are required for q(• → •) so that the chain has all the convergence properties ◮ q(• → •) should be simple to calculate and to simulate ◮ the knowledge of the normalizing constant of p(•) is not needed → Exercise 30 MH algorithm for sampling marked point processes Idea : the transition kernel propose to add an object to the configuration with probability p b or propose to delete an object from the configuration with the probability p d Birth : add an object ◮ initial state : x i = x an object configuration ◮ final state : x f = x ∪ {ζ} ◮ proposal density to add an object : choose uniformly its location in W and its mark independently according to ν

  the Papangelou intensity appears in the acceptance probability ◮ local stability property guarantees good convergence properties of the Markov chain ◮ → blackboard : discuss reversibility Algorithm y = Update(x)

Fix

  p b , p d ∈ (0, 1) with p b + p d ≤ 1 and let p(x) be the probability density of a marked point process on W × M. The point process is locally stable and p(x) is built w.r.t the standard Poisson process µ. The MH sampler defined previously simulates a Markov chain with invariant measure π = pdµ who is φ-irreducible, Harris recurrent and geometric ergodic. → proof: Exercise 31 Remark : ◮ the same result holds if change moves are introduced with care ... → explain ... Optimality of the MH dynamics ◮ theoretical convergence properties ◮ local computation ◮ no need of the normalising constant ◮ highly correlated samples : only one element changed per accepted transition ◮ allows improvements : transition kernels that "help" the model Tailored to the model proposal distribution b

Figure :

 : Figure: Extremities marked by triangles are connected and further than 1 2 l max + r c to the boundary, those labeled by a black disk are closer than 1 2 l max + r c to the boundary of K .

◮Figure : Figure : Figure :

 ::: Figure: Exact simulation algorithms applied to Strauss model : a) CFTP, b) clan of ancestors, c) Metropolis-Hastings and d) Gibbs.

◮

  this was the motivation to introduce it in the middle of 70s (Besag, 1975) ◮ see (Baddeley, Rubak and Turner, 2016) for implementation details within the spatstat package → Exercise 34 + Exercice 35 Implementation within R spatstat package ◮ stationary Strauss process : log λ θ (ζ; x) = log β + (log γ)t(ζ, x) with t(ζ, x) the number of pairs of objects closer than the distance r in the configuration y ◮ general structure of the conditional intensity log λ θ (ζ; x) = ηS(ζ) + φV (ζ, x),

Figure :

 : Figure: Realization (left) of the reference model given by the parameters in the middle table. The observed values of the sufficient statistics are listed at right.

Figure :

 : Figure: Monte Carlo approximation of the log likelihood function. The X axis represents the variation of a single component. The Y axis represents the values of the Monte Carlo log likelihood with all other components of θ0 fixed : a -θ f ∈ [-11, -7], b -θ s ∈ [-5, -1], cθ d ∈ [1, 5], d -θ o ∈ [-4.5, -0.5], e -θ r ∈ [-4.5, -0.5].

Figure :

 : Figure: Graphical representation of the outputs of an ABC algorithm.

  x|ψ)/c(ψ) I (θ, ∆, x) 1 b(θ,∆/2) {ψ} with ◮ x : outcome of a marked point process driven by the probability density p(x|υ) where υ is any value in Θ. ◮ pattern detection context : f (x|ψ) = exp[-U(x|ψ)] ◮ ∆ > 0 : control parameter ◮ 1 b(θ,∆/2) {•} is the indicator function over b(θ, ∆/2), which is the ball of centre θ and radius ∆/2 ◮ I (θ, ∆, x) = b(θ,∆/2) f (x|φ)/c(φ) dφ.

Figure :

 : Figure: Boxplots and qqplots of the MH and ABC Shadow outpts.

Figure :

 : Figure: Sample path for the Normal posterior. Left colum: the MH algorithm results -from top to bottom the joint parameter path and the θ 1 time series. Right column: the ABC Shadow procedure -from top to bottom the joint parameter path and the θ 1 time series.

Figure :

 : Figure: Raw residual analysis, from left to right : Strauss(r=0.08) and AreaInt(r=0.09)

Figure : Figure :

 :: Figure: Influence of the energy components of the model : a) original image SPOT ; and results obtained using only : the data term (b), the interaction term (c), the complete model (d)

Figure : Figure :

 :: Figure:Cross-section of the considered random object : two half-spheres connected with a truncated cone. The object is fully determined by its centre position, radius r and shape parameter t 1. Shape parameter t gives the aspect ratio of the object along and perpendicular to the line of sight; for t = 1 the object is a ball. For a given r and t the height of the truncated cone is defined as h = 2r (t -1). The shape of the truncated cone is defined by the lines of sights, which are indicated by dashed lines on the figure. The observer is located at far left from the object.

  Figure: Rural region in Malaysia : a) original image; b) obtained results.

ForestFigure :

 : Figure: Forest galleries extraction : a) original image ; b) ground truth ; c)-d) obtained results. Data provided by BRGM.

Figure :

 : Figure: Disease data scores and coordinates for the year 1996 : a) disk configuration obtained using the simulated annealing algorithm ; b) cover probabilities.

Figure : ◮Figure :

 :: Figure: The calculated positions (black circles) are compared with given observed positions (crosses) by the x and y coordinates on sky-plane. Black bars denote the 2.5%-97.5% quantiles interval. Dotted line corresponds to the calculated positions for the orbit, obtained with the entire set of observations.

  two stationary Poisson point processes, they are not absolutely continuous with respect to each other, except if one process has unit intensity or if they have the same intensity

	◮ two inhomogeneous Poisson point processes with strictly
	positive intensities, they are absolutely continuous with
	respect to each other

the law is completely known → analytical formulas ◮ the Poisson process is invariant under independent thinning ◮ easy procedure for simulate non-stationary Poisson process ◮ completely random patterns : null or the default hypothesis that we want to reject ◮ independence → no interaction → no structure in the data ◮ ◮ more complicate models can be built → specifying a probability density p(x) w.r.t. the reference measure given by the unit intensity Poisson point process. This probability measure is written as

Table of contents

 of Cours

6. Poisson based point processes : Cox and Boolean processes Cox processes Cluster processes Boolean model Capacity functional.Choquet theorem Exercises : Poisson based point processes Cours 6. Poisson based point processes. Direct application of counting measures and Palm distributions for point process analysis ◮ counting measures → summary statistics for point pattern characterization ◮ two categories : interpoint distances (F , G and J) and second order characteristics (ρ, K and L) ◮ possible extension of the summary statistics : marks, non-stationary processes, different observation spaces W case and spatio-temporal ◮ non-parametrical estimation of the summary statistics : kernel estimation and management of the border effects + numerical sensitivity and computational cost ◮ central limit available : statistical tests ◮ envelope simulation based tests : reject a particular model ◮ summary statistics for parameter estimation of a given model : ◮ these statistics are an "equivalent" of the moments in probability theory, hence they do not entirely determine the model to be estimated ◮ (Baddeley and Silverman, 1984) ◮ (Bedford and Berg, 1997) ◮ good exploring tool : spatstat ◮ outline important characteristics of a point pattern : clustering, repulsion, completely randomness ◮ it is difficult to differentiate between interaction and inhomogeneity if only one realisation is available ◮ need for models able to reproduce these characteristics ◮ counting or choosing a typical point is not always obvious : consider random measure theory

  Random objects "centred" around Poissonian points → germs and grains ◮ germs : a stationary Poisson point process X of intensity ρ on R d ◮ grains : a sequence of i.i.d. random compact sets Γ 1 , Γ 2 , . . .

Cox process X from its corresponding Poisson process X |Z whenever a single realisation of X is available ◮ open question : which of the two models might be most appropriate, i.e. whether Z should be random or "systematic"/deterministic ◮ prior knowledge of the observed phenomenon ◮ Bayesian setting of the intensity function ⇒ Cox processes ◮ if we want to investigate the dependence of certain covariates associated to Z , these may be treated as systematic terms, while unobserved effects may be treated as random terms ◮ Cox process: more flexible models for clustered patterns than inhomogeneous Poisson point processes ◮ parameter estimation methods: minimum contrast, Palm distributions, composite likelihood ◮ based on the K function and the Palm distributions ◮ spatstat: the kppm function → Exercise 22 Boolean model and independent of X The Boolean model is the random set obtained by the replacement of the germs by the appropriately shifted corresponding set, and taking the set union as it follows Γ = ∞ n=1

  in general, for random sets it is rather difficult to use moment and factorial measures ↔ it is not possible to "count" points ◮ un-marked and marked point processes are particular random sets

	The Boolean model observation is an incomplete observation of a
	marked point process, since the locations points is not available Remarks :
	◮ classical references : Matheron (1975), Molchanov (1997),
	Boolean model of random discs Lantuéjoul (2002), Chiu et al. (2013) Boolean model : what is really observed
	a)	b)
	Figure: Boolean model of random discs : marked point process
	(complete) and random sets perspectives.

◮ important practical applications → one of the first models of complex patttern ◮ Neyman-Scott processes are Boolean models as well ◮ very convenient models since they allow the analytical computation of quantities describing them → this is due mainly to the independence properties allowed in the construction of the process ◮ independence ↔ no objects interactions ↔ no structure Capacity functional.Choquet theorem ◮

Table of contents

 of Cours 7. Gibbs models.

	Gibbs models
	Construction of the probability density
	Markov point processes
	Exercises : Gibbs models

Table of contents

 of Cours 8. Markov chains. Definitions, properties, algorithms.

	Markov chain Monte Carlo algorithms Basic MCMC algorithm
	Principles of the MCMC algorithm :
	◮ simulates a Markov chain
	Algorithm ◮ the Update function reproduces the transition kernel of the
	Monte Carlo simulation Markov chains : a little bit of theory Metropolis-Hastings algorithm MH algorithm for sampling marked point processes Perfect or exact simulation Spatial birth-and-death processes Exercises : Markov chains. Definitions, properties, algorithms. Problem : sampling or simulation probability distributions π(A) = A p(x)dµ(x) that are not available in closed form ↔ normalising constant analytically intractable Markov chain x = My first MCMC sampler (T ) ◮ the output x T is asymptotically distributed according to π 1. choose an initial condition x 0 2. for i = 1 to T , do whenever T → ∞ ◮ if the simulated Markov chain has good properties → statistical inference is possible { x i = Update(x i -1 ) ◮ several solutions : Gibbs sampler, Metropolis-Hastings, birth and death processes, stochastic adsorption, RJMCMC, exact } 3. return x T . simulation (CFTP, clan of ancestors, etc.)

  table. The observed values of the sufficient statistics are listed at right.

	Results : estimation of the parameters from the reference
	configuration given by the Candy model
	Initial param-	Iterative	Monte Carlo
	eters	method	MLE
	θ i f = -9.5 θ i s = -4.0 θ i d = 1.5 θ i o = -3.5 θ i r = -3.5	θ0 f = -8.37 θ0 s = -2.74 θ0 d = 2.46 θ0 o = -2.13 θ0 r = -2.42	θn f = -8.32 θn s = -2.73 θn d = 2.47 θn o = -2.17 θn r = -2.42
	Asymptotics : estimation errors (central limit theorems available)
	Asymptotic standard MCSE	
	deviation of MLE	
	0.51	0.002	
	0.23	0.003	
	0.17	0.001	
	0.30	0.002	
	0.31	0.005	

  ∆/2) {ψ} : uniform probability density Application : simulate the shadow chain that approximate the ideal chain◮ first part : use U ∆ (θ → ψ) instead of q ∆ (θ → ψ) forproposing new values ◮ second part : approximates the computation of the proposal density ratio while simplifying the normalizing constant ratio ◮ the shadow Markov chain accepts new states with the probability :

Table :

 : Estimation errors computed for the MAP estimates obtained from the galaxy pattern.Let X be a locally stable marked point process on W × M.

	Synthesis parameter estimation Model validation : residual analysis for point processes
	ABC Shadow parameter estimation : Estimation errors r 0.01 0.02 0.03 0.04 Monte Carlo maximum likelihood : ◮ approximate algorithm that samples "close" to the posterior 0.05 0.06 Open questions : 0.07 Asymptotic standard deviation σ log β 0.20 0.17 0.13 0.11 0.10 0.10 0.08 σ log γ 0.26 0.28 0.27 0.30 0.34 0.40 0.52 Monte Carlo standard deviation σ MC log β 0.001 0.002 0.001 0.002 0.002 0.002 0.003 σ MC log γ 0.002 0.003 0.004 0.006 0.008 0.012 0.024 Pseudo-likelihood estimation : ◮ easy to compute ◮ good alternative whenever nothing else can be done ◮ consistency and central limit theorems : difficult to interpret ◮ no properties concerning the sufficient statistics of the model using the PL estimates of the parameters ◮ work of J. Mateu and P. Montes : comparison with maximum likelihood ◮ general statistical framework ◮ numerically unstable → but re-sampling is guaranteed to convergence, since the log-likelihood is convex ◮ the asymptotics are related to the true model ◮ property : the expectation of the sufficient statistics computed by the model with the ML parameters equals the ◮ interesting numerical results : comparable with classical ◮ range parameters MCMCML inference ◮ parameters of the mark distribution ◮ relatively low computational cost : MCMCML needs ◮ posterior sampling re-sampling ◮ incomplete data : EM algorithms converges towards the first ◮ complementary tool → applications : ◮ initialisation point for more rigorous methods local maximum → a lot of references available ... ◮ ABC methods : empirical methods for parameter estimation ◮ statistical testing observed sufficient statistics ◮ model validation ◮ open problem : range parameters → control the sufficient statistics

h-Innovations : for nonnegative functions h and A

Table of contents

 of Cours 10. Pattern detection and characterisation.

	Statistical pattern detection
	Does the detected pattern really exist ?
	Exercises : Pattern detection and characterisation.

  Test for the cluster existence epidemiological data Permuted data : keeping the same farm locations while exchanging the score disease Results : ◮ sufficient statistics for the data from the year 1996 : n(y) = 74.10, ν[Z (y)] = 312.46, no = 555.08 ◮ maximum values of the sufficient statistics for 100 simulated data fields n(y) = 2.36, ν[Z (y)] = 13.83, no = 2.62Interpretation : this test does not say if the pattern is well detected, but it says that there is something to be detected ... Orbit determination validation : position prediction for the obtained parameter values

	Permuted data : keeping the same number of galaxies while
	spreading them uniformly (binomial point process)
	Data Sufficient statistics NGP150 NGP200 NGP250
	n2	4.13	5.83	9.88
	n0	15.88	21.19	35.82
	n1	21.35	35.58	46.49
	Simulated data (100 binomial catalogs) Sufficient statistics NGP150 NGP200 NGP250
	max n2	0.015	0.05	0.015
	max n0	0.54	0.27	0.45
	max n1	0.39	0.24	0.33

Part of the theoretical and practical exercises is due to the generous help of Zbyněk Pawlas from Charles University in Prague and Marie-Colette van Lieshout from CWI Amsterdam.
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Spatial birth-and-death processes

Theoretical background : continuous time Markov chains → the very nice book of S. Resnick (2005) ◮ history : the first MCMC sampler for marked point processes ◮ the simulation of locally stable marked point process is rather simple : thinning procedure ◮ the simulated pattern is "hidden" in a dominating Poisson process

Algorithm

Let p be the probability density w.r.t. the standard Poisson process, of a locally stable marked point process on W × M. Its corresponding Papangelou conditional intensity bound is Λ. Set X (0) = x 0 for some configuration x 0 ∈ Ω with p(x 0 ) > 0. For n = 0, 1, . . ., if X (n) = x, do :

◮ the sojourn time T (n) in the state X (n) is exponentially distributed with mean

◮ the next transition is a death with probability n(x) n(x)+Λν(W ) , obtained by selecting one point η from the current configuration with probability 1 n(x) , and then deleting it, that is x = x \ {η} ◮ with probability Λν(W ) n(x)+Λν(W ) the next transition is a birth, obtained by generating a new point η according to the probability density 1 ν(W ) and accepting it with probability λ(η;x) f) Plot the evolution of the mean, the confidence intervalls, the p-values and the empirical levels for the confidence intervals and the tests, while the number of samples increases.

g) Suppose that we do not know what is the sampled distribution, build a test to verify the values obtained from the empirical mean. As before, build and plot confidence intervals, statistical tests and empirical levels for the samples mean.

Exercise 31. Prove the convergence of the MH sampler for marked point processes.

Exercice 32. Look at the following code lines and explain the role of each function : mo=list(cif="strauss",par=list(beta=100,gamma=0.1,r=0.1), w=square(1)) X=rmh(model=mo,start=list(n.start=100), control=list(nrep=10000,nsave=100,nburn=100, track=TRUE)) plot(X,cols="blue",main="Strauss model") b) Simulate 1000 samples using the CFTP dynamics and plot the time series evolution and diagnostics corresponding to the sufficient statistics.

c) Compare the sufficient statistics samples using exploratory analysis tools (boxplots, qqplots, histograms) and also statistical tests (Kolmogorov-Smirnoff).

d) How many samples do we need in order to obtain Metropolis-Hastings based patterns that may be considered "good enough" ? Candy model : : The observed sufficient statistics computed for the galaxy pattern, depending on the range parameter r . For all these parameters n(y) remains constant, while a r (y) depends on r .

Table of contents

◮ the area interaction model : p(y|θ) ∝ β n(y) γ ar (y) with

5.5 6.0 6.5 7.0 7.5 8.0 8.5

Posterior of log (beta) parameter

Range r = 0.01, ..., 0.07 

Some conclusion and perspectives

Spatial models and random geometry :

◮ Markov marked point processes allow statistical and morphological description of the pattern ◮ good synthesis properties ◮ limitations : models remain just models ...

Perspectives :

◮ stochastic processes and random geometry (marked point processes, random fields) → modelling, simulation, statistical inference ◮ temporal dimension ...

◮ applications : astronomy and environmental sciences

Exercises : Pattern detection and characterisation. , k ∈ N.

d) Test the algorithm dependence on the set of initial conditions given by x 0 = {0.5, 8, 25}.