
HAL Id: hal-03049273
https://hal.science/hal-03049273

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Falsification of Cyber-Physical Systems with
Constrained Signal Spaces

Benoît Barbot, Nicolas Basset, Thao Dang, Alexandre Donzé, James
Kapinski, Tomoya Yamaguchi

To cite this version:
Benoît Barbot, Nicolas Basset, Thao Dang, Alexandre Donzé, James Kapinski, et al.. Falsification of
Cyber-Physical Systems with Constrained Signal Spaces. NASA Formal Methods, May 2020, Moffett
Field, United States. pp.420-439, �10.1007/978-3-030-55754-6_25�. �hal-03049273�

https://hal.science/hal-03049273
https://hal.archives-ouvertes.fr

Falsification of Cyber-Physical Systems with Constrained
Signal Spaces

Benoı̂t Barbot1, Nicolas Basset2, Thao Dang2, Alexandre Donzé3, James Kapinski5,
Tomoya Yamaguchi4

1 Univ Paris Est Creteil, LACL, 94000, Creteil, France
2 VERIMAG/CNRS, Université Grenoble Alpes, France

3 Decyphir SAS, France
4 Toyota Motors North America R&D, USA

5 Unaffiliated

Falsification has garnered much interest recently as a way to validate complex CPS
designs with respect to a specification expressed via temporal logics. Using their quanti-
tative semantics, the falsification problem can be formulated as robustness minimization
problem. To make this infinite-dimensional problem tractable, a common approach is
to restrict to classes of signals that can be defined using a finite number of parameters,
such as piecewise-constant or piecewise-linear signals with fixed time intervals). A major
drawback of this approach is that when the input signals must satisfy non-trivial temporal
constraints, encoding these constraints into bounded domains for parameters can be diffi-
cult. In this work, to better capture temporal constraints on the input signal space, we use
timed automata (TA) and make use of a transformation that allows sampling TA traces by
sampling points in the unit box. We exploit this transformation to efficiently encode con-
strained CPS signals in the robustness minimization problem. This transformation also
allows us to define an effective coverage measure of the constrained signal space so as to
provide quantitative guarantees when no falsifying behaviour is found. In addition, this
coverage is used to improve the black-box optimisation performance by detecting situa-
tions where the search is stuck near a local optimum. The approach is demonstrated on a
∆Σ modulator and a model of car automatic transmission subject to constraints describ-
ing usual driving patterns.

1 Introduction

Cyber-physical systems (CPS) are found in many safety-critical applications, like aircraft,
medical devices, and automobiles, hence it is vital that they behave in a manner consistent
with their design expectations. CPS models are growing rapidly in complexity and size,
which often go beyond the scalability of formal verification techniques based on exhaus-
tive analysis. As of today, industrial validation is carried out mostly by sampling a finite
number of input stimuli and checking the corresponding behaviors obtained by model
simulation or system execution.

Another approach to CPS validation is requirement falsification using black-box opti-
mization. Falsification can be thought of as testing where requirements are expressed in a
formal specification language such as metric temporal logic (MTL) and signal temporal
logic (STL) [32, 35], which are appropriate for specifying behaviors defined using real-
valued signals over dense time. A key feature of such logics is that they are equipped
with quantitative semantics, and for a given behavior, a real value, called the robustness,

quantifies the property satisfaction level of the behavior [20, 24]. Using such semantics,
the falsification problem can be formulated as a robustness minimization problem, so as
to automatically find behaviors that violate (falsify) the property. Falsification techniques
have been applied to many CPS systems and are finding applications in industry (see a
recent survey [9]), with the development of tools like S-TaLiRo and Breach [4, 17]. This
optimization-based approach is faced with the following major challenges.First, the exist-
ing optimization solvers expect decision variables in a space of finite dimension whereas
the search space of the CPS falsification problem includes continuous-time input signal
spaces of infinite dimension. This gives rise to the problem of encoding CPS signal spaces.
A common practice so far (initiated in [17, 37]) is to restrict to classes of signals that can
be defined using a finite number of parameters. Another major challenge is that, for cases
where the inputs must satisfy non-trivial temporal constraints, encoding these constraints
into bounded domains for parameters can be difficult. Ad hoc rejection sampling methods
become inefficient when the portion of signals satisfying the constraints is small. Also,
the cost function (that is, the robustness) is often non-convex and contains discontinuities,
and for such problems, in general there are no algorithms that can guarantee to find a
global optimum. Hence, we can see the importance of approximation quality measures of
behavior sets, in order to quantify how complete the search is. Therefore another chal-
lenge is to define meaningful coverage measures. When the input signals are subject to
complex temporal constraints, the resulting constrained signal space may be difficult to
encode and measure.

In this paper we address the above challenges in the following two ways: (1) intro-
ducing in the optimization-based falsification framework a new encoding of input signal
spaces subject to temporal constraints specified using timed automata [3]; (2) this encod-
ing method also leads to a new coverage measure for constrained signal space, which we
use to improve the efficiency of an iterative black-box optimization procedure. For clarity
of explanation, before describing our contributions and comparing them with the current
state of the art, we provide an overview of the existing approaches and their limitations.

2 Requirement Falsification Problem

CPS Models and Specification. We model the behaviors of a CPS using the following
input-output mapping:

y = F(u), (1)

where u ∈ U is a function of time that represents the input signals to the system, that is
u : I → U , where I is an interval of the form [0, T] with T ∈ R>0, and U is some metric
space of finite dimension. Note that initial conditions as well as other parameters (some
finite set of variables influencing the system’s behavior) can be captured as constant input
signals. Similarly, we assume that each output signal y ∈ Y is a function I → Y , where Y
is some metric space of finite dimension. To specify the correct or expected behaviors for
the system (1) in an unambiguous form that can be efficiently measured and quantified,
we use the Signal Temporal Logic (STL) language [35].

Overview of STL. An STL formula ϕ consists of atomic predicates along with logical
and temporal connectives. Atomic predicates are defined over signal values and have the

2

form f(y(t)) ∼ 0, where f is a scalar-valued function over the signal y evaluated at time
t, and ∼∈ {<,≤, >,≥,=, 6=}. Temporal operators “always” (�), “eventually” (♦), and
“until” (U) have the usual meaning and are scoped using intervals of the form (a, b), (a, b],
[a, b), [a, b], or (a,∞), where a, b ∈ R≥0 and a < b. If I is a time interval, the following
grammar defines the STL language.

ϕ := > | f(y(t)) ∼ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 : ∼∈ {<,≤, >,≥,=, 6=} (2)

The ♦ operator is defined as ♦Iϕ , >UIϕ, and the � operator is defined as �Iϕ ,
¬(♦I¬ϕ). When omitted, the interval I is taken to be [0,∞). Given a signal y and an STL
formula ϕ, we use the quantitative semantics for STL, which is defined formally in [20].
The quantitative semantics defines a function ρ such that a positive sign of ρ(ϕ, y, t)
indicates that (y, t) satisfies ϕ, and its absolute value estimates the robustness of this
satisfaction. If ϕ is an inequality of the form f(y) > b, then its robustness is ρ(ϕ, y, t) =
f(y(t)) − b. When t is omitted, we assume t = 0 (i.e., ρ(ϕ, y) = ρ(ϕ, y, 0)). For the
conjunction of two formulas ϕ := ϕ1 ∧ ϕ2, we have ρ(ϕ, y) = min (ρ(ϕ1, y), ρ(ϕ2, y)),
while for the disjunction ϕ := ϕ1 ∨ϕ2, we have ρ(ϕ, y) = max (ρ(ϕ1, y), ρ(ϕ2, y)). For
a formula with until operator as ϕ := ϕ1UIϕ2, the robustness is computed as ρ(ϕ, y) =
maxt′∈I

(
min

(
ρ(ϕ2, y, t

′),mint′′∈[t,t′] (ρ(ϕ1, y, t
′′))
))
.

Falsification Problem. Given a system model such as (1) and a requirement ϕ specified
as an STL formula, we want to find an input u ∈ U such that y = F(u) does not satisfy ϕ,
denoted y 6|= ϕ. Such a behavior y is called a counter-example, which is identified when
ρ(ϕ, y) < 0. This is usually solved by formulating the following optimization problem:

min
u∈U

ρ(ϕ, y) s.t. y = F(u)

This formulation has been the focus of numerous research [9]. We next discuss the chal-
lenges in solving this optimization problem and some existing approaches.

Input Signal Encoding. The input signals are taken from an infinite-dimensional space
(i.e., they can be a partial functions over a continuous time-domain), one thus needs a fi-
nite encoding of the signals. As mentioned earlier, most of the existing approaches restrict
to classes of input signals that are finitely parameterizable, that is, input signals u can be
uniquely characterized by a finite set of parameters. Therefore, the infinite-dimensional
optimization problem (3) becomes finite-dimensional. For example, a right-continuous
piecewise constant input signal u with discontinuities occurring at monotonically increas-
ing instants t1, . . . , tm where 0 = t1 < tm < T , can be uniquely characterised by m
values vi = u(ti). By fixing the number m of time intervals, the time points t1, . . . , tm
and the corresponding signal values are the decision variables for the search.

Minimizing the Robustness. Fixing an input signal parametrization, the optimization
problem (3) becomes finite-dimensional but is still challenging for a number of reasons.
First, the input-output mapping F is not specified explicitly; rather, it enforces that y is
the output signal of the dynamical system model F , given the input signal u. As F can be
a nonlinear hybrid system modelled using heterogenous formalisms (such as Simulink/S-
tateflow), the output y can only be determined approximately using numerical simulation.

3

This also gives rise to the hard problem of determining the gradients of the cost func-
tion, often required by traditional continuous optimization techniques. Additionally, the
cost function ρ is often non-convex and contains discontinuities. For such problems, in
general there are no algorithms that can guarantee to find a global optimum [26]. Hence,
the robustness minimization step is often done using the black-box optimization approach
because it does not require derivative information [38]. This approach relies on the search
techniques, called metaheuristics [21], which aim to combine the strengths of existing
algorithms for discrete and continuous domains. Such a search consists of a sequence of
moves from one candidate solution to another. In each move if the candidate satisfies the
falsification goal, a counter-example is found, otherwise, the candidate is updated. The
updating heuristics in general perform well for simple search spaces, for instance, multi-
dimensional boxes, or linear algebraic constraints [38]. This is one reason why in practice
the input signal parametrization is often chosen in such a way that induces a search space
that is a box. These essential ideas are summarized by the following abstract algorithm.

Algorithm 1 Optimization-based Falsification Algorithm
k = 1, ρm = +∞
Select a set Us ⊂ U of input signals
repeat

ρm = min{ρm,minu∈Us{ρ(ϕ, y) | y = F(u)}}
if ρm < 0 then

Report the falsifying behavior. Exit
end if
k = k + 1
Us = Update(Us) . (using black-box optimization)

until k = Kmax

No falsifying behavior found.

Quantitative Guarantees. When no falsifying behavior is found, it is of great interest to
provide a quantitative guarantee expressed by a measure of the set of behaviors that was
tested. Such a ‘coverage’ measure was proposed only for point spaces (see related work
on coverage measures in Section 5), which are appropriate only for properties defined
over the system states (such as, safety). It is thus useful to use a more general notion of
signal/function space coverage, a problem that we address in this work.

Limitations of the Existing Solutions and Our Approach. Concerning signal encoding: us-
ing fixed parametrizations restricts the searchable space, and the falsification performance
depends on the selected parametrizations, which requires validation engineers to use in-
tuition to select the number of intervals and their duration. Furthermore, as mentioned
in the introduction, input signals in practical applications are often subject to constraints
imposed by their generators. Examples of such signals include noises from specific en-
vironments or controls from under-actuated controllers. In these cases the input signals
must satisfy non-trivial temporal constraints, and encoding these constraints in the forms
that can be efficiently handled by the existing optimizers can be difficult; the optimizers

4

often treat such constraints using ad hoc manners, such as using rejection sampling. Lit-
tle attention has been given to these considerations in the falsification-related literature
but [16, 39] propose some strategies that involve incrementally increasing the number of
time intervals. If these constraints are not taken into account, there are two consequences.
First the optimizers can come up with trivial non-realistic solutions, such as Zeno be-
haviors switching between extreme values. Second, the unconstrained search space may
be too conservative compared to the valid search space, which makes rejection sampling
inefficient, as we will show in an example involving a rather intuitive temporal constraint.

In this work, to capture temporal constraints on the input signal space, we use timed
automata (TA) [3]. Such constraints are previously considered in a procedure to uniformly
generate random signals [6], which relies on the calculation of a transformation from
the unit box to timed polytopes (allowing sampling timed words of a TA by sampling
points in the unit box) [5]. We extend this transformation to encode constrained input
signal spaces, which constitutes a crucial ingredient in the optimization process. Unlike
the work [6] where the falsification process is based on a given set of uniformly sampled
timed words, in this work we perform optimization in a search space that satisfies both
signal timed pattern and value constraints. In other words, this encoding allows us not only
to consider signals uniformly but also to perform best-case search strategies according
to an objective function, which enhances the falsification performance as shown by the
experimental results. This transformation also allows us to define an effective coverage
measure of the constrained signal space in order to provide quantitative guarantees. In
addition, this coverage will be used to improve the black-box optimization performance
by detecting situations where the search is trapped near a local optima and to make online
decisions about when and how to switch from one optimization strategy to another.

The remainder of the paper is organized as follows. In Section 3 we briefly recall timed
automata [3] and the transformation from the unit box to timed polytopes [5, 6]. We then
show how this transformation can be used to encode constrained signals and to define
coverage measures for the space of such signals. Section 5 describes the falsification al-
gorithm and Section 6 presents our experimental results.

3 Preliminaries on Timed Automata and Timed Word Generation

3.1 Timed Automata

A timed automaton A = (Q,X,Σ,∆, Inv, i0) is a tuple where Q is a finite set of lo-
cations with i0 as initial location; X is a finite set of clocks which are assumed bounded
by a constant M ∈ N; ∆ is a finite set of transitions. Each transition is the form δ =
(q, ψ, a, r, q′) where q, q′ ∈ Q are the source and destination locations; ψ is the guard,
and a ∈ Σ is a label; r is the reset map; Inv associates with each location q a conjunction
of clock constraints, called the invariant of q. A state ofA is a pair (q,x) where q ∈ Q and
x is a clock valuation6. The transitions of the automaton are of two types: timed transitions
and discrete transitions. Timed transitions correspond to the evolution of the clocks within
a location as long as the clock valuation satisfies the invariant of the location. Concerning
discrete transitions, if the transition δ = (q, ψ, a, r, q′) is enabled at the state (q,x) (that

6 A clock valuation, denoted by the letter x in bold, is a vector of clock values, while xi denotes
the ith clock of the automaton, as in Fig. 1

5

is x satisfies the guard ψ), the discrete transition from q to q′ can take place (if the clock
valuation after applying the reset map r satisfies the invariant Invq′ of q′). The reset map
r is determined by a subset of clocks B ⊆ X and this transition resets to 0 all the clocks
in B and does not modify the other clocks. The initial state of A is (i0,0). A trace is
an alternating sequence (i0,x0)

a1,τ1−−−→ (q1,x1) . . .
an,τm−−−−→ (qm,xm) of states and timed

transitions with the following updating rules: qi is the successors of qi−1 by transition
δi, the vector (xi−1 + (τi, . . . , τi)) must satisfy the guard of δi and applying the reset
map to it gives xi. This trace is labelled by the timed word γ = (τ1, a1), . . . , (τm, am)
where ai are transition labels and τi are time delays between two consecutive transitions,
(τ1, . . . , τm) is called a timed vector and (a1, . . . , am) a discrete pattern. Given a dis-
crete path α = δ1, . . . , δn of A the set of timed vectors (t1, . . . , tn) ∈ [0,M]n such that

(i0,0)
t1,δ1−−−→ (q1, t1) . . .

tn,δn−−−→ (qn, tn) is called the timed polytope associated to the
path α. The set of timed words that label all the traces from the initial state is called the
timed language ofA. As an example, we consider the TA in Fig. 1 that will be used in our

q4

q5

q6

q3q2q1q0

b,
x1 > 8
x1 := 0

c,
x2 > 8
x2 := 0

d,
x3 > 8
x3 := 0

a,
x4 > 8
x4 := 0

b, x1 := 0 c, x2 := 0 d, x3 := 0

Fig. 1. A timed automaton used in our experiments. To avoid overloading the figure, a global clock
x (reset to 0 at each transition) and the global invariants x1, x2, x3, x4 < 12 and x < 4 are not
depicted.

experiments. This automaton models a quasi-periodic pattern of signals with uncertain
period ranging between 8 and 12. It has the property that after entering the cycle the time
lapse between 4 consecutive transitions is contained in the interval [8, 12]. Intuitively, the
traces of this automaton are loosely periodic as transitions cannot be taken too early or
too late. Moreover the global invariant condition x < 4 (not depicted in Fig. 1) ensures
that each duration is bounded from above by 4. An example of timed word in the timed
language is (3.4, b)(3.6, c)(1.1, d)(2.3, a)(3.3, b).

3.2 Transformation from the unit box to a timed polytope

We want that the exploration within the domains of optimization variables reflects the
exploration within the timed language, in terms of coverage. To this end, we will use a
volume-preserving transformation developed in [5, 6], which is briefly recalled in the fol-
lowing. The reader is referred to a more detailed summary of the method in the Appendix.

From a timed automaton A we can define inductively the volume vn of the language
of words of length n accepted by the automaton. Indeed, in [5] we show that by decom-
posing the automaton into a zone graph with additional constraints ensuring that guards
of the automaton are linear, the volume vn can be written as a ratio of two polynomials
and computed efficiently (in polynomial time). Then, the transformation in question is

6

defined as the cumulative probability distributions for sequentially sampling each transi-
tion and time delay. This is exactly the transformation that we need to encode a signal
space constrained by a timed automaton. Indeed, to generate a timed word of length n,
one starts with a sequence (ui)

2n
i=1 ∈ [0, 1] of real values, which corresponds to a point

in the unit box of dimension 2n. Starting from the initial state of the automaton and the
clock valuation equal to 0, the transition and the delay at step i are chosen using the in-
verse transform method for the distribution sampling with the reals (u2i, u2i+1) over the
distribution indexed by (n− i). We also remark that in previous work [6] three tools were
used to perform this sampling: Prism [34] for computing the zone graph, SageMath [42]
for computing distributions and Cosmos [7] for the sampling. In the present work, the tool
WordGen [8] combining the three steps has been developed which greatly increases the
usability of the method.

4 Encoding Constrained Signal Space in the Optimization Problem

A timed automaton can naturally provide a qualitative description, annotated with timing
information, for a class of CPS signals of interest. In addition, we can consider quanti-
tative constraints on signal values by associating them with the transitions labels of the
automaton. More concretely, each transition label a is associated with a predicate of the
form πa(v) ≤ 0 where v ∈ R is the signal value.

To perform optimization over the space of such signals, we need an efficient represen-
tation of this space. For simplicity of explanation, we focus only on the signals corre-
sponding to the timed words of A having a single discrete pattern α = (a1 · · · am). The
timed polytope Pτ , defined by the delays τ between the transitions that are subject to
the clock constraints (imposed by the guards, resets and invariants along the transition
sequence), is the search space for timed words with the fixed pattern α. To couple it with
the search space for signal values, we couple Pτ with the set of signal values satisfying
the associated predicates: Pv = {v | ∀i ∈ {1, . . . ,m} πai(v) ≤ 0}. In this work, we
assume that each πai is an interval predicate7, and the set Pv is thus a box, called a val-
ued box. Hence, this coupling of time and value constraints leads to a polytope in R2m:
Π = {(τ, v) | τ ∈ Pτ ∧ v ∈ Pv}, called a timed-valued polytope. The signal constructed
from any point (τ, v) in Π is guaranteed to satisfy the constraints specified by the timed
automaton A and its associated predicates. Thus the constrained signal space in question
is encoded by this timed-valued polytope.

To generate candidate solutions from a timed-valued polytope, as mentioned earlier, we
make use of the transformation that maps the unit box to this timed polytope and extend it
to a timed-valued polytope, in order to reduce the search space to a box domain (instead
of complex polytopic domains). Indeed, since a timed-valued polytope Π is the product
of a timed polytope Pτ and a valued box Pv , it is not hard to see that the transformation
for Π , denoted by S, is composed of Sτ for the timed polytope Pτ and Sv for the valued
box Pv . Note that Sv is simply an affine function transforming Pv to the unit box [0, 1]m.
In short, using the transformation S, the initial search domain, which is a timed-valued
polytope, becomes the unit box [0, 1]2m. Let us write it as the product of two unit boxes,
that is Bτ × Bv .

7 Using more general predicates, such as linear predicates, leads to a more complicated problem
of defining the transformation from the unit box, which we plan to consider in future work. This
is indeed related to the problem of uniform sampling within a convex polytope.

7

This transformation was implemented in the tool WordGen to generate a timed word
from a point in the unit box Bτ . Then, to construct CPS signals corresponding to a given
timed word, we use the tool Breach [18]. This tool is also used to simulate the system
behaviours and evaluate their robustness. To recap, the input signal construction is done
as follows:

1. Pick a point pτ in the unit box Bτ . Pick a point pv in the unit box Bv .
2. Use WordGen to generate a timed word w from pτ .
3. Use Breach to generate a signal u from w and pv .

Note that the above first step is done by the procedure of updating candidate input signals.
This procedure is based on a combination of metaheuristics that we discuss in the sequel.

5 Guided Combination of Metaheuristics

One natural strategy for updating candidate solutions is to use methods related to gradient
descent, wherein new points are selected based on some estimate of the gradient of the
cost function near promising previously evaluated points. Such a descent strategy may
not lead to a global optimum, leaving the search stuck around a local optimum. When
this occurs, it is possible to restart the search from a new set of candidate solutions, but
this can become expensive when there are many local optima. Metaheuristics [21] are
one way to go about this problem, by accepting from time to time candidates that do
not improve the cost function value. In this work we propose a method for combining a
number of well-known metaheuristics. The method switches between two different types
of solvers or search algorithms which, borrowing the terminology from [11, 21], are called
exploitation-driven and exploration-driven.

The exploitation-driven algorithms try to make greedy changes (often small) around the
current candidate. We make use of a number of well-known solvers in this type8, namely
Simulated Annealing [31], Global Nelder-Mead algorithms [2, 36], and CMAES (Covari-
ance Matrix Adaptation Evolution Strategy) [28]. This type of solver is used to explore
locally around promising candidates. On the other hand, the exploration-driven solvers
explore the parameter space widely, and thus quickly enlarge the exploration space. Such
solvers are particularly useful to help the search escape a local optimum, where the cost
value has stagnated. The exploration-driven solver we use in this work is based on the
low-discrepancy and uniform sampling method in [6].

It is of great interest to be able to synergize exploration and exploitation by adaptive
switching between the two strategies using appropriate measures for exploitation and ex-
ploration performance. The trade-offs between exploitation and exploration have been
explored for the purposes of falsification for CPS [33]. Exploitation performance can be
measured by the reduction in the cost value (that is the robustness value). Exploration per-
formance can be measured using the notion of search space coverage. For our framework,
we introduce in the subsequent section a signal space coverage measure.

8 The exploitation-driven and exploration-driven characterization refers only to the behaviors
of the solvers seen on a global level, since the above-mentioned metaheuristics contain both
exploitation-driven and exploration-driven aspects.

8

5.1 Signal Space Coverage Measure

We define a signal space coverage measure based on a partition of the variable domains,
called cell occupancy. A similar measure was already used in our previous work [1] but
was restricted to the parameter space corresponding to the space of signal values over
fixed time parametrizations. Equiped with the transformation from the unit box, we can
now extend it to signals. Let G be a partition of the unit box [0, 1]2m into Nt rectangular
cells with equal side length. Cell occupancy is based on the ratio between the number No
of cells occupied by points and the total number Nt of cells. Then, the cell occupancy

measure is given as
logNo
logNt

. Logarithm functions are used because the total number of

cells could be very large as compared to the number of occupied cells. A major advantage
of the cell-occupancy measure is that it is easy to compute; however, it is clear that when
the cell size is large this measure does not reflect levels of uniformity or equi-distributivity
as the Kolmogorov-Smirnov statistic [6].

Related Work on Coverage Measures. In the context of CPS a signal space coverage
measure should be defined over continuous-time signals, such as the input signal space
or the system behaviour space. The latter option is more difficult because the space of all
possible system behaviours is in general unknown. When an input signal space is finitely
parameterized, a point coverage measure can be defined on its associated parameter space.
Measures like dispersion try to capture the size of the empty space between points that
have been explored [23]. A related and simple measure, partitions the search space into
cells and measures the proportion of cells that are occupied by explored points [41]. This
method is related to the combinatorial entropy notion from the domain of physics to mea-
sure the degree of randomness in a distribution of points [27]. The star discrepancy mea-
sure from statistics to measure the degree to which a set of points are equidistributed [29],
was also used for measuring the coverage of reachable states [1, 15, 22]. In this work
where the specification imposes on the input signals complex temporal constraints, the
resulting parameter space is difficult to define. However, using the above-described vol-
ume preserving transformation any point coverage can be defined over the unit box and
carried over to the signal space. Hence, we can use in principle any existing point cover-
age. In this work, we choose to use the cell occupancy measure, since it can be efficiently
computed for high dimensional search spaces encountered in our case studies.

5.2 Algorithm for Guided Combination of Metaheuristics

We describe our algorithm for guided combination of metaheuristics, summarized in Al-
gorithm 2. The guiding is based on the robustness and coverage measures.

The algorithm is organized in iterations, and in each iteration the solvers (or meta-
heuristics) are sequentially called, based on the current search results. Throughout the
search process, we maintain a set G of intermediate visited states. By ‘visited state’, we
mean the pair (p, ρ) where p is a candidate point (in the search domain which is the
unit box) and ρ is its associated cost value, and by ‘intermediate’ we mean the points
successively computed by the solver scheme. The procedure starts with Exploitation,
which runs each of the exploitation-driven solvers and updates the set G of visited states.
Then updateCoverage updates the coverage c of G (using the cell-occupancy measure).

9

Algorithm 2 Abstract Algorithm for Combining Metaheuristics
. s: solver index; Sρ: set of exploitation-driven solvers; G: set of visited states; ρ∗ and

c: sequences such that ρ∗[k] and c[k] are respectively the best robustness value and the coverage
value up to iteration k

k = 1
while k ≤ kmax do
{ρ∗, G} = Exploitation(Sρ, G) . run all the exploitation-driven solvers
c = updateCoverage(c,G)
blocking = DetectBlocking(c, ρ∗) . based on coverage and robustness
if (blocking) then

s = Rand
(ρ∗, G) = Run(s, Ts) . run a sampling-based solver for Ts time

end if
k ++

end while

Next, the procedure DetectBlocking determines whether the search has entered a block-
ing situation. If it has, the exploration-based search Rand, using quasi-random (that is,
low-discrepancy) or uniform methods, is run for Ts seconds.

Switching to Exploration to Escape a Local Minimum. The search is said to be blocking, if
it does not improve the cost value after some execution time limit, without increasing the
coverage. Such a blocking situation often indicates a local optimum, and an exploration-
driven solver, either the uniform or low-discrepancy sampling methods, is used to escape
it. We monitor the coverage and robustness evolution, to detect if they do not increase and
decrease respectively by some predefined amounts, for a predefined number of iterations.
Due to the monotonicity of the coverage and robustness evolution with respect to the
number of visited points, the detection can be done by comparing the coverage and the
robustness values of the current iteration to those of the previous iteration.

Exploitation to Improve Best Candidates. An exploitation-driven solver with index s runs
from a set P of initial points for Ts time (see Algorithm 2). The corresponding best
cost value is stored in ρ∗. The reason we store the visited states is that they can reflect
the relation between the cost function and the decision variables and can thus indicate
promising regions, so as to derive good initializations for subsequent solvers.

Solver Initialization. We select initial points for a solver using the following heuristics:

– Select an initial point or a population of initial points from the best points obtained
from previous iterations.

– Pick initial points according to a distribution that is dynamically updated based on the
previous results, as inspired by the population based methods such as the CMAES.
As described above, after each iteration we keep the points visited in the previous it-
erations. We select a set of best points, the robustness values of which are below some
threshold, and use them to define the sampling distribution for new candidates. Let p
be a parameter point and pi denote its ith coordinate. For any point p in G, let [p

i
, pi]

be the bounding interval such that each coordinate pi ∈ [p
i
, pi]. In the kth iteration,

10

the sampling distribution of pi can be a normal distribution N (pki , σ
k
i), where the

mean pki is one of the most promising candidates from the previous iteration, selected
based on the robustness value. The standard deviation σki in the kth iteration can be
determined by: σki = (pi − pi)(

1
Nk)

k/n which decreases iteration after iteration. The
number Nk of candidates can vary, being large at the beginning and decreasing grad-
ually. In the first iteration where no information is available, we can sample candidate
points according to the uniform distribution.

6 Experimentation

We use two case studies to evaluate our algorithms: a model of ∆Σ modulator and an
automatic transmission control system, through which we show the efficiency of using
the encoding constrained signal space, and evaluate the advantage of combining differ-
ent metaheuristics. The combination algorithm is implemented in MATLAB® and uses 4
metaheuristics (integrated in Breach [19]): Simulated Annealing (SA) [31], CMAES [28],
a globalized version of the Nelder Mead algorithm proposed by Luersen and Le Richec
[2] abbreaviated by LRNM, and another globalized version of the Nelder Mead algorithm
combining the classical Nelder Mead algorithm [36] with some corner searches, abb-
reaviated by GNM. The tool Breach [19] also provides robustness evaluation and signal
construction from timed words. The generation of timed words from points in the unit
box is done by the tool WordGen. Our experiments were performed on a computer with a
1.4GHz processor with 4GB RAM, running MATLAB® R2015a 64-bit version.

∆Σ Modulator. We illustrate the application of our method of encoding constrained
signal space with a ∆Σ modulator which is an important component of analog-to-digital
converters. Practical quantizers have a limited input and output ranges which may lead
them to saturation, and we want to check whether the output ever saturates. We use a
behavioral model of a second-order modulator specified using Simulink®, which takes
into account most non-idealities [12], including sampling jitter, integrator noise, and op-
amp parameters (finite gain, finite bandwidth, slew-rate and saturation voltages). There
exist simplified discrete-time ∆Σ modulator models without non-idealities, for which it
is possible to derive its dynamics equations and thus can be solved using optimization
[14] and statistical model-checking [13]. However, this Simulink model is heterogeneous,
including embedded MATLAB code and mixing discrete-time and continuous-time com-
ponents; it is too complex for existing formal verification tools. We consider the falsifi-
cation of the absence of saturation of some quantizer signal Out under a certain class of
nearly oscillatory inputs In. Formally In and Out must satisfy for some ts ≥ 0 and ∀t ≥ 0,

|Out(t)| < 2 (3)
∃T ∈ [8ts, 12ts] such that In(t+ T) = In(T) (4)

Encoding (3) as an STL formula is trivial: ϕ¬sat = �|Out| < psat. However, enforc-
ing that In satisfies (4) is not so simple. For instance, unbounded periodic properties are
known to be beyond STL expressivity [35], and this is before considering that periods
may be uncertain. We consider two approaches: one based on the above-described TA
framework and another using only STL formulas. In both approaches, we use a signal

11

generator interpolating the signal values between points of a periodic discrete sequence
of the form: u0 τ0 u1 τ1 u2 τ2 u3 τ3 u0 τ4 u1 τ5 u2 τ6 u3 τ7 u0 τN uN̂ . . . The
value In(t) is obtained by finding k such that

∑k
0 τi ≤ t <

∑k+1
0 τi and interpolating

between uk and uk+1 where k is the remainder of k/4. Since the discrete sequence ui is
periodic, the resulting signal satisfies (4) iff ∀i, 8ts ≤ τi + τi+1 + τi+2 + τi+3 ≤ 12ts.
Note that this constraint is satisfied by the delays of the timed words of our TA of Fig. 1.
Hence by using WordGen to generate timed words and mapping labels a, b, c, d to values
u0, u1, u2, u3 we obtain the desired signals. To cross-validate this approach, we used

Fig. 2. Example traces for the ∆Σ modulator output (bottom) using inputs signals with random
timings (top) and timings based on timed words from the TA of Fig. 1 (middle)

a simple formula: ϕper = ♦[0,tend](up → upnext) ∧ ♦[0,tend](down → downnext),
where up = In1[t] > 1.9 and upnext = �[7.5∗ts,12.5∗ts](up), and down and downnext
are defined similarly. We then defined the falsification problem as

min
v
ρ(ϕ¬sat,Out(v)) (5)

s.t. In(v) |= ϕper. (6)

where v is a parameter vector. In the TA based approach, v ∈ Pv as described in Sec-
tion 4 whereas in the TA-free approach, v encodes directly delays between values, i.e.,
v ∈ {(τ0, . . . , τN) | τi ∈ [0, 4ts]}, and in this case the solver is responsible for the
satisfaction of constraint (6). Breach implements a simple ”optimized rejection” strat-
egy where the constrained optimization problem (5-6) is basically replaced by a un-
constrained minv(J(v)) where J(v) = ρ(ϕ¬sat,Out(v)) if ϕper is satisfied and J(v) =
−ρ(ϕper, In(v)) otherwise. In other words, when in an infeasible region, Breach actively
tries to satisfy ϕper with the current optimization strategy. This is a rejection strategy in the
sense that when ϕper is not satisfied, v is not used, i.e., Out(v) is not computed to avoid
useless simulations. With these settings, we could confirm that the TA-based approach
indeed generated only inputs satisfying ϕper, for arbitrarily long inputs. In addition, the

12

optimized rejection approach only works for short horizons. For instance, we considered
simulations of duration 1e−6 seconds with ts = 1e−8 seconds. To be able to satisfy ϕper
we had to set the horizon tend to 3e−7 seconds, i.e. considering only about 3 periods.
Longer horizons would result in the solver rejecting most of considered inputs, which can
be explained by a small ratio of the volume of the language of valid inputs w.r.t. that of
the language of all inputs.

For the saturation threshold psat = 2 used in the model [12], the property ϕ¬sat was eas-
ily falsified in our optimization setting. In addition, we could compare the performance
of different metaheuristics by continuing the optimization after falsification. Using our
previous algorithm [6] based purely on a set of 10000 uniformly generated signals, the
highest absolute output value is 2.32032. However, using the combined metaheuristics
after exploring only 826 signals, a higher value, 2.322586, is found. More concretely, we
fixed the saturation threshold psat to be 2.325 in ϕ¬sat and ran the metaheuristics with
the option of stopping at the first falsifying trace that is found. With some fixed seed9

(100 in this case), all the stand-alone metaheuristics could not falsify the property, but
the combined metaheuristics could (see Table 1). The combined metaheuristics first used
Simulated Annealing and then LR Nelder Mead, which got stuck in a blocking situation
where the robustness is not improved and the coverage does not increase significantly. It
then switched to the CMAES metaheuristics but used the points explored by the previous
metaheuristics to estimate a good initial distribution for this CMAES solver which could
then falsify the property. The CMAES method seemed to have the best performance for
this example, among the stand-alone metaheuristics, for this examples, we thus compared
it with the combined metaheuristics using different seeds. The comparison results are
summarized in Table 2, which indicates that the combined metaheuristics algorithm out-
performed the stand-alone CMAES for seeds 1000 and 10000, and was less performant
for seed 5000. This shows how initializations can affect the performance of the meta-
heuristics, and the combination guided by coverage and robustness can be thought of as
a heuristic (on top of the metaheuristics) that tries to use the information gained through
the search to lead it towards promising initializations.

Table 1. Using the different methods on the ∆Σ model with seed 100

Search method Min robustness; Max (|Out|) Nb fct eval Comp time (s)
CMAES 0.003746; 2.321254 10000 6103.282974

SA 0.027244; 2.297756 10000 8036.702422
GNM 0.031889; 2.293111 10000 6763.065164

Uniform Rand 0.00338031; 2.32161969 10000 4539.560286
LRNM 0.07562901; 2.24937099 10000 4854.569456

Combined Meta. -0.002414; 2.327414 826 431.434701

Automatic Transmission Control. This model [30] has been used as a benchmark for
evaluating hybrid systems validation techniques10. Here we extend it to capture con-
straints on the input signals that reflect usual driving patterns, based on the data from

9 The seed here refers to the index for a sequence of random numbers in MATLAB.
10 See http://cps-vo.org/node/12116

13

Table 2. Comparing the combined metaheuristics and the CMAES with different seeds

Search method Seed Min robustness; Max (|Out|) Nb fct eval Comp time (s)
CMAES 1000 0.002282; 2.322718 10000 6430.215422

Combined Meta. 1000 -0.00323532; 2.32823532 936 489.150343
CMAES 5000 -0.00164623; 2.32664623 1081 463.796410

Combined Meta. 5000 -0.00201822; 2.32701822 1100 536.904802
CMAES 10000 0.00226337; 2.32273663 10000 7747.896409

Combined Meta. 10000 -0.000305395; 2.324694605 766 310.282428

the study in [40]. The system has two inputs: throttle α and brake β, and two outputs:
the engine speed w (RPM) and the vehicle speed v (mph). We consider the input signals
that satisfy the constraints of the timed automaton with two clocks x and y in Fig. 3.
‘Coasting’ means that both the brake and acceleration pedals are not pressed, that is the

s0 acceleration s1 coasting

s2 brakings3 coasting

2 < y, {x, y}

1 < y, {x, y}

1 < y, {x, y}

2 < y, {x, y} 1 < y < 2, {y}

1 < y < 2, {y}1 < y ∧ 3 < x < 10,
{x, y}

1 < y ∧ 3 < x < 10, {x, y}

Fig. 3. A timed automaton describing the driving patterns of interest. A global invariant y < 15
(meaning that the location changes within at most 15 seconds) is not depicted.

two inputs are 0. The loop consisting of locations s0, s3 describes accelerating behaviors
with coasting. At the location ‘acceleration’, braking can happen after accelerating for
at least 2 and not more than 19 seconds, indicated by the transition from ‘acceleration’
to ‘braking’. The loop between ‘braking’ and ‘coasting’ models the fact that the driver
can push and release the brake pedal successively a number of times to adjust the vehicle
speed. The clock x which is not reset in the transitions between ‘braking’ and ‘coasting’
allows to measure the time staying in this loop before returning to ‘acceleration’ by one
of the two transitions both guarded by x > 3. In other words, the driver must stay in the
braking-coasting (s1-s2) loop for at least 3 seconds. The transition labels are associated
with the following range constraints on the input signal values: s0 to s3 (acceleration to
coasting), α = 0, β = 0; s3 to s2 (coasting to brake) α = 0, β = [100, 325]; s3 to s0
(coasting to acceleration) α = (0, 500], β = [100, 325]; s0 to s2 (acceleration to braking)
α = 0, β = 0; s1 to s2 (coasting to brake) α = 0, β = [100, 325]; s2 to s1 (brake to
coasting) α = 0, β = 0; s2 to s0 (brake to acceleration) α = (0, 500], β = 0; s1 to s0
(coasting to acceleration) α = (0, 500], β = 0. In terms of values, we use piece-wise
constant signals satisfying the ranges associated to the transition labels. The property to
check states that if the gear is 3 the vehicle speed should not be too slow, which is de-
scribed by a STL formula: φ = �[20,100]¬((gear = 3)∧ (v < vmin)). We seek a driving
behavior (that is the input signals of throttle and brake) that leads to a violation of this
property. For vmin = 19.76 (mph) the combined metaheuristics algorithm falsified it af-
ter 326 seconds, while GNM alone took 974 seconds and CMAES took 650 seconds to
falsify. This experiment shows that these metaheuristics, when used alone, spent much
time around local optima.

14

Fig. 4. A falsifying trace of the automatic transmission control system found by the combined meta-
heuristics algorithm. The (red) cross on the last plots indicates the instant of worst violation as com-
puted by the diagnostics algorithm of [25] which allows ignoring quantitative information from the
gear signal to focus on the speed signal only, which explains why robustness is not plotted in certain
intervals.

7 Conclusion
We presented a new falsification algorithm based on a method for encoding input sig-
nals subject to timed automaton constraints. We defined a coverage measure for such
constrained signal spaces. We also proposed a combination of different metaheuristics
to exploit their complementary properties. Switching between the metaheuristics, based
on the coverage information, allows escaping local optimum situations. We successfully
demonstrated the efficacy and advantage of the new algorithms through two case studies.
Ongoing work includes considering the usage of other coverage measures, such as com-
binatorial entropy. Furthermore, the metaheuristic switching currently depends on global
coverage and robustness improvement thresholds determining blocking situations, and a
biased switching can be defined using local coverage measures based on multi-resolution
partitions. We also plan to use ideas from the racing algorithms [10] for identifying and
dropping inferior candidates during the search.

15

Bibliography

[1] Arvind S. Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiao-
qing Jin. Classification and coverage-based falsification for embedded control sys-
tems. In Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, pages 483–503, 2017.

[2] Marco A.Luersen and Rodolphe Le Richec. Globalized nelder-mead method for
engineering optimization. Computers and Structures, 82(23):2251 – 2260, 2004.
Computational Structures Technology.

[3] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[4] Yashwanth Annapureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankara-
narayanan. S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems.
In TACAS, pages 254–257, 2011.

[5] Benoı̂t Barbot, Nicolas Basset, Marc Beunardeau, and Marta Kwiatkowska. Uni-
form sampling for timed automata with application to language inclusion measure-
ment. In Quantitative Evaluation of Systems - 13th International Conference, QEST
2016, Quebec City, QC, Canada, August 23-25, 2016, pages 175–190, 2016.

[6] Benoı̂t Barbot, Nicolas Basset, and Thao Dang. Generation of signals under tem-
poral constraints for CPS testing. In NASA Formal Methods - 11th International
Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings, pages 54–
70, 2019.

[7] Benoı̂t Barbot, Béatrice Bérard, Yann Duplouy, and Serge Haddad. Integrat-
ing Simulink models into the model checker Cosmos. In Victor Khomenko and
Olivier H. Roux, editors, Application and Theory of Petri Nets and Concurrency,
pages 363–373. Springer International Publishing, 2018.

[8] Benoı̂t Barbot. WordGen. https://git.lacl.fr/barbot/wordgen,
2019.

[9] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos,
Oded Maler, Dejan Nickovic, and Sriram Sankaranarayanan. Specification-based
monitoring of cyber-physical systems: A survey on theory, tools and applications. In
Lectures on Runtime Verification - Introductory and Advanced Topics, pages 135–
175. Springer, 2018.

[10] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A racing
algorithm for configuring metaheuristics. In Proceedings of the 4th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO’02, pages 11–18, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[11] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Comput. Surv., 35(3):268–308,
September 2003.

[12] S. Brigati, F. Francesconi, P. Malcovati, D. Tonietto, A. Baschirotto, and F. Mal-
oberti. Modeling Sigma-Delta modulator non-idealities in Simulink. In ISCAS’99.
Proceedings of the 1999 IEEE International Symposium on Circuits and Systems
VLSI, volume 2, pages 384–387 vol.2, May 1999.

[13] Edmund M. Clarke, Alexandre Donzé, and Axel Legay. On simulation-based proba-
bilistic model checking of mixed-analog circuits. Formal Methods in System Design,
36(2):97–113, 2010.

[14] Thao Dang, Alexandre Donzé, and Oded Maler. Verification of analog and mixed-
signal circuits using hybrid system techniques. In Formal Methods in Computer-
Aided Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA,
November 15-17, 2004, Proceedings, pages 21–36, 2004.

[15] Thao Dang and Tarik Nahhal. Coverage-guided test generation for continuous and
hybrid systems. Formal Methods in System Design, 34(2):183–213, 2009.

[16] Jyotirmoy V. Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic
local search for falsification of hybrid systems. In ATVA, volume 9364 of Lecture
Notes in Computer Science, pages 500–517. Springer, 2015.

[17] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In CAV, pages 167–170, 2010.

[18] Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010., pages 167–170, 2010.

[19] Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, pages 167–170, 2010.

[20] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-
valued signals. In Formal Modeling and Analysis of Timed Systems - 8th Inter-
national Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,
2010. Proceedings, pages 92–106, 2010.

[21] Johann Dreo, Patrick Siarry, Alain Petrowski, and Eric Taillard. Metaheuristics for
hard optimization : methods and case studies. Springer-Verlag, 2006.

[22] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Patrick Kapinski, Xiao-
qing Jin, and Jyotirmoy V. Deshmukh. Efficient guiding strategies for testing of
temporal properties of hybrid systems. In NASA Formal Methods - 7th International
Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, pages
127–142, 2015.

[23] Joel M. Esposito, Jongwoo Kim, and Vijay Kumar. Adaptive rrts for validating
hybrid robotic control systems. In WAFR, 2004.

[24] G.E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications. In
Proceedings of FATES/RV, volume 4262 of LNCS, pages 178–192. Springer, 2006.

[25] Thomas Ferrère, Dejan Nickovic, Alexandre Donzé, Hisahiro Ito, and James Kapin-
ski. Interface-aware signal temporal logic. In HSCC, pages 57–66. ACM, 2019.

[26] Christodoulos A. Floudas and Panos M. Pardalos, editors. Encyclopedia of Opti-
mization, Second Edition. Springer, 2009.

[27] D.M. Gabbay, P. Thagard, J. Woods, J. Butterfield, and J. Earman. Philosophy of
Physics: Handbook of the Philosophy of Science. Elsevier Science, 2006.

[28] N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano,
P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary
computation. Advances on estimation of distribution algorithms, pages 75–102.
Springer, 2006.

[29] Stefan Heinrich. Some open problems concerning the star-discrepancy. Journal of
Complexity, 19(3):416 – 419, 2003. Oberwolfach Special Issue.

17

[30] Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Benchmarks for tempo-
ral logic requirements for automotive systems. In 1st and 2nd International Work-
shop on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek
2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek 2015, Seattle, WA, USA,
April 13, 2015., pages 25–30, 2014.

[31] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
SCIENCE, 220(4598):671–680, 1983.

[32] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Syst., 2(4):255–299, October 1990.

[33] Jan Kuřátko and Stefan Ratschan. Combined global and local search for the falsifica-
tion of hybrid systems. In Axel Legay and Marius Bozga, editors, Formal Modeling
and Analysis of Timed Systems, pages 146–160, Cham, 2014. Springer International
Publishing.

[34] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilis-
tic real-time systems. In Proc. CAV’11, 2011.

[35] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In FORMATS/FTRTFT, pages 152–166, 2004.

[36] John A. Nelder and Roger Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[37] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivanciec,
Aarti Gupta, and George J. Pappas. Monte-carlo techniques for falsification of tem-
poral properties of non-linear hybrid systems. In HSCC’10 - Proceedings of the
13th ACM International Conference on Hybrid Systems: Computation and Control,
pages 211–220, 2010.

[38] Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: a re-
view of algorithms and comparison of software implementations. Journal of Global
Optimization, 56(3):1247–1293, Jul 2013.

[39] Simone Silvetti, Alberto Policriti, and Luca Bortolussi. An active learning ap-
proach to the falsification of black box cyber-physical systems. In Nadia Polikarpova
and Steve Schneider, editors, Integrated Formal Methods, pages 3–17, Cham, 2017.
Springer International Publishing.

[40] Gyubin Sim, Seongju Ahn, Inseok Park, Jeamyoung Youn, Seungjae Yoo, and
Kyunghan Min. Automatic longitudinal regenerative control of evs based on a driver
characteristics-oriented deceleration model. World Electric Vehicle Journal, 10:58,
09 2019.

[41] P. Skruch. A coverage metric to evaluate tests for continuous-time dynamic systems.
Central European Journal of Engineering, 1(2):174–180, 2011.

[42] W. A. Stein et al. Sage Mathematics Software (Version 6.9). The Sage Development
Team, 2015. http://www.sagemath.org.

18

8 Appendix

8.1 Timed Language Volume and Uniform Generation of Timed Words

From a timed automatonAwe can define inductively the volume of the language of words
of length n accepted by the automaton over the state (q,x) of the automaton:

v0() = 1;

v
(q,ψ,a,r,q′)
n (x) =

∫
x+(t,...,t)|=ψ

vn−1 (q
′, r(x+ (t, . . . , t), r)) dt;

vn(q,x) =
∑
δ∈∆q

vδn(x) where ∆q is the set of transitions starting from q.

(7)

The function r produces a new clock valuation by resetting the clocks in r and keeping the
others unchanged. The function v(q,ψ,a,r,q

′)
n (x) is the volume of the set of timed words

starting at x which are generated by the transition (q, ψ, a, r, q′). The function vn(q,x)
is the volume of the set of timed words starting at (q,x) that are generated by all pos-
sible transitions from q. Indeed this volume definition is not operational in this form,
in [5] we show that by decomposing the automaton into a zone graph with additional
constraints ensuring that guards of the automaton are linear, the volume vn can be com-
puted efficiently in polynomial time and it can be written as a ratio of two polynomials.
Next the transformation is defined as the cumulative probability distributions (CDF) for
sequentially sampling each transition and time delay as follows: in state (q,x) the next
transition δ is chosen with probability vδn(q,x)/vn(q,x). Once the transition is chosen,
the delay t is distributed according to the following cumulative probability distribution:
1− vδn(x+(t, . . . , t))/vδn(x). In other words, these distributions define the inverse of the
transformation from the timed polytope of a given discrete pattern to the unit box. Indeed,

q2

q1

q0

b,
{x},

1<x<2

a,
{y},

1<y<2

b, {x}, x<2

s4 : 1 < y − x < 2

s1 :−2<y − x<−1 s2 : −1 < y − x < 0

s3 : 0 < y − x < 1

s0 :x=y

b, {x}, [1, 2],
7
2
, 7
2
(t− 1)

b, {x}, [0, 1],
17
6
, 2t+ t2 − t3

6

b, {x}, [1, 2],
7
2
, 7
2
(t− 1)

b, {x}, [0, 1],
17
6
, 2t+ t2 − t3

6

b, {x}, [1, 2],
7
2
, 7
2
(t− 1)

b, {x}, [1− x, 1], 7x−x2
2
− x3

6
,

−17
6

+ 7x−x2
2
−+2t+ t2 − t3+x3

6

a, {y}, [0, 1],
17
6
, 2t+ t2 − t3

6

a, {y}, [1, 2], 7
2
,

7
2
, 7
2
(t− 1)

a, {y}, [1− y, 1], 7y−y2
2
− y3

6
,

−17
6

+ 7y−y2
2

+ 2t+ t2 − t3+y3

6

a, {y}, [1, 2],
7
2
, 7
2
(t− 1)(a) (b)

Fig. 5. On the left (a) a simple quasi-periodic automaton, and on the right (b) the stochastic process
used for sampling its timed words. The states are labelled by the invariants on the clocks. To explain
the labels associated to the transitions, let us consider the transition from location s0 to s3. This
transition is labelled by b (action name), {x} (set of clocks to reset), [0, 1] (guard on the delay τ
(waiting time)); 17

6
(weight to define the probability of taking the transition); 2t+t2− t

3

6
(cumulative

probability distribution for sampling the delay τ).

to generate a timed word of length n, one starts with a sequence (ui)
2n
i=1 ∈ [0, 1] of real

values, which corresponds to a point in the unit box of dimension 2n. Starting from the

19

initial state of the automaton and the clock valuation equal to 0, the transition and the de-
lay at step i are chosen using the inverse transform method for the distribution sampling
with the reals (u2i, u2i+1) over the distribution indexed by (n− i).

Table 3. Sampling of the stochastic process of Fig. 5(b) with point
(0.3, 0.2, 0.7, 0.4, 0.6, 0.7, 0.1, 0.5, 0.1, 0.9) in R10 yielding timed word
(0.252, b), (1.4, a), (1.7, b), (0.564, a), (0.949, b). The columns C1 and C2 are the coordi-
nates in the unit cube, in each state the available transitions are depicted with their associated
weights. The selected transition according to C1 is underlined. Exact values are given when
possible otherwise they are written with 3 decimals. Note that the computation is not exact when it
depends on values which are roots of polynomials

state C1 available transitions C2 CDF delay

s0, x = 0, y = 0 0.3 (b−→ s3,17/6); (b−→ s4,7/2) 0.2 (12t+ 6t2 − t3)/17 0.252
s3, x = 0, y = 0.252 0.7 (a−→ s1,7/2);(a−→ s2, 0.850) 0.4 t− 1 1.4

s1, x = 1.4, y = 0 0.6 (b−→ s3,17/6); (b−→ s4,7/2) 0.7 t− 1 1.7
s4, x = 0, y = 1.7 0.1 (a−→ s2,17/6),(a−→ s1,7/2) 0.5 (12t+ 6t2 − t3)/17 0.564

s2, x = 0.564, y = 0 0.1 (b−→ s3,1.785),(b−→ s4,7/2) 0.9 −0.093t
3 + 0.560t2

+1.120t− 0.587
0.949

Example 1. Fig. 5(b) shows a stochastic process used to sample timed words according
to the above-mentioned cumulative probability distributions for the timed automaton de-
picted in Fig. 5(a). Compared to the timed automaton of Fig. 1, this automaton is simpler
since its loop has only 2 discrete states. For each edge, vδ3 is computed. Table 3 shows
how a timed word can be sampled from the stochastic process. Here we detail the first
two steps of the computation using this stochastic process. We can construct a timed word
of length 2 using a point, say (0.3, 0.2, 0.7, 0.4), in the unit box in R4. Starting from the
initial state s0 (see the first line of Table 3) two transitions are available, one leading to
state s3 with weight 17/6 and one to state s4 with weight 7/2. Using the first coordinate
0.3 of the point, we compute 0.3 ∗ (7/2 + 17/6) = 1.9 which is smaller than the weight
of the first transition so it is chosen. The time delay τ is computed by inverse sampling of
the CDF by solving (2t + t2 − t3/6) ∗ 6/17 = 0.2 (where 0.2 is the second coordinate)
with the constraint t ∈ [0, 1] which yields t ≈ 0.252. The timed word thus begins with
(0.252, b). Then from state s3 (with clock valuation x = 0; y = 0.252) two transitions are
available to state s1(with weight 7/2) and s2 (with weight 17/6), we can repeat the same
procedure to compute the next transition and delay, by using the next coordinate 0.7 the
transition to s1 is chosen and then equation (t−1) = 0.4 is solved yielding a delay of 1.4
by using the last coordinate 0.4. The resulting timed word is (0.252, b), (1.4, a). From the
last line of Table 3 it can be observed that both the weights and the CDFs depend on the
clock values.

20

