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Abstract

Protein phosphorylation acts as an efficient switch controlling deregulated key signaling
pathways in cancer. Computational biology aims to address the complexity of reconstructed
networks but overrepresents well-known proteins and lacks information on less-studied
proteins. We developed a bioinformatic tool to reconstruct and select relatively small networks
that connect signaling proteins to their targets in specific contexts. It enabled us to propose
and validate new signaling axes of the Syk kinase. To validate the potency of our tool, we
applied it to two phosphoproteomic studies on oncogenic mutants of the well-known PIK3CA
kinase and the unfamiliar SRMS kinase. By combining network reconstruction and signal
propagation, we built comprehensive signaling networks from large-scale experimental data
and extracted multiple molecular paths from these kinases to their targets. We retrieved
specific paths from two distinct PIK3CA mutants, allowing us to explain their differential impact
on the HERS receptor kinase. In addition, to address the missing connectivities of the SRMS
kinase to its targets in interaction pathway databases, we integrated phospho-tyrosine and
phospho-serine/threonine proteomic data. The resulting SRMS-signaling network comprised
casein kinase 2, thereby validating its currently suggested role downstream of SRMS. Our
computational pipeline is publicly available, and contains a user-friendly graphical interface
(http://dx.doi.org/10.5281/zenodo0.3333687).
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Statement of significance of the study

This study applies and validates a novel bioinformatic pathway extraction and analysis tool on
two phosphoproteomic studies on the signaling of oncogenic mutants of the PIK3CA kinase
and the SRMS kinase. By combining network reconstruction and signal propagation analysis,
we build comprehensive cell signaling networks from substantial experimental data and
extract multiple molecular pathways from a kinase to its targets. These various alternatives,
ranked by their biological significance, enable us to conceive of molecular hypotheses
requiring experimental validation. The results of this study demonstrate here that our
framework can be applied to explore substantial amounts of phosphoproteomic data at the
network level.
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1 Introduction

Aberrant protein phosphorylation contributes to tumor initiation and progression. Despite the
development of targeted kinase inhibitors, it remains difficult to predict how tumors will respond
to them; which inhibitors to combine; and how to overcome acquired drug resistance. A major
shortcoming is the poor molecular understanding of the kinase signaling networks and remains
a challenging bioinformatical task.

Pathway-oriented databases, such as KEGG '3, Pathway Commons ¥ and Reactome ),
contain regulatory relations between proteins, allowing large-scale reconstruction of signaling
networks. These databases rely on curation and updating of the interactions. These databases
suffer from the overrepresentation of well-studied proteins and the lack of information on less-
known proteins. Discovery of signaling pathways and molecular cross-talk is based on
experiments and efficient bioinformatic tools that are able to exploit new experimental data
and correct the extant biases in the databases. Several tools, such as Netwalker and
Pathlinker, were used for the analysis of large-scale networks ©71. Netwalker is a software
application suite with random walk-based network analysis methods for network-based
comparative interpretations of genome-scale data. Pathlinker computes the k-shortest simple
paths in a network from a source to a target with an option for weighting the edges in the
network.

We recently developed a new bioinformatic pipeline that combines the advantages of these
two existing methods. Additionally, we integrated our methodology with the reconstruction of
a large network composed of the elements of existing database pathways, which are enriched
in targets previously identified by phosphoproteomic experiments. This step, prior to network
analysis by subnetwork-extraction, avoids the major drawback of the aforementioned over- or
underrepresentation. This methodology was applied to the reconstruction and signal
propagation analysis of the Syk kinase signaling network in breast cancer cells . The method
allows reconstruction of a kinase-related network from the global phosphoproteomic data
obtained by mass spectrometry. The input to our method was a list of Syk-dependent
differentially tyrosine-phosphorylated proteins ©l. We selected the pathways from existing
databases, enriched in Syk-targets, to recreate a global network of signaling proteins. This
large network still contains numerous unessential proteins, and we developed a reduction
algorithm by selecting the most appropriate potential paths from Syk to its targets. We first
associated weights to the interaction network edges. These weights promoted network-
directed edges coming from a protein kinase or phosphatase to an identified target and
demoted edges with no biological relevance. We then refined these weights by taking into
account the topology of the network and optimizing signal propagation, by a random walk with
restart (RWR). Subnetworks, related to specific biological processes and based on the Syk-
target Gene Ontology, were then extracted. This workflow generated valuable results and
allowed us to validate the involvement of Syk in actin-mediated adhesion and motility via
cortactin and ezrin.

In this study, we further develop the functionality of our bioinformatic tool by adapting and
applying it to two phosphoproteomic studies on the signaling of oncogenic PIK3CA
(phosphatidyl-inositol 3-kinase) mutants and the SRMS (Src-related tyrosine kinase lacking
C-terminal regulatory tyrosine and N-terminal myristoylation sites) kinase. We optimized the
automation of our initial Python code to facilitate the implementation of our bioinformatic
method. This approach enables us to retrieve specific signaling molecular paths from two
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distinct PIK3CA mutants to the HERS3 receptor. We also generated the proximal and distal
signaling networks of the SRMS protein tyrosine kinase comprising secondary signaling
intermediates by integrating phospho-tyrosine and phospho-serine/threonine proteomic data.
We integrate these improvements into our workflow and propose a graphical interface allowing
one to apply this bioinformatic pipeline to other phosphoproteomic analyses.

2 Materials and Methods

2.1 Phosphoproteomic data for the bioinformatic workflow

The bioinformatic workflow input is a list of the UniProt Accession Numbers (AC) of proteins
that have been identified as differentially phosphorylated (named “targets”) between
experimental conditions perturbing the concerned kinase (named “source”).

Identification of specific paths from PIK3CA mutants to the receptor tyrosine kinase HER3
(section 3.2) involved the following: The quantitative phosphoproteomic analyses comparing
the control or isogenic breast cancer cell lines that express the E545H or H1047R PIK3CA
mutants were performed as reported "% After protein extraction, trypsin digestion, and anti-
phosphotyrosine immuno-affinity chromatography enrichment, the SILAC-labeled peptides
were identified and quantified by LC-MS/MS. The datasets of the protein targets of the E545H
or H1047R PIK3CA mutants are displayed in Supplementary Tables S1-4 and were obtained
from Supplementary Tables S1-4 of the original work "%, The sources are the E545H or
H1047R PIK3CA mutants.

Reconstruction of the SRMS signaling network by integration of multiple phosphoproteomic
data sets (section 3.3) involved: The label-free quantitation-based phosphoproteomic analysis
using cells expressing GFP alone (the empty vector control) or cells expressing wild-type GFP-
SRMS was performed as described ['"l. After protein extraction, the proteins were digested by
dual enzymatic digestion (Trypsin/Lys-C) and the phosphopeptides were enriched using TiO2
resin. The dataset containing the indirect targets of SRMS (proteins differentially
phosphorylated on serine and threonine) is displayed in Supplementary Table S5 and was
obtained from Supplementary Tables S4-5 of the original work '], The dataset containing the
direct substrates of SRMS is displayed in Supplementary Table S6 and was obtained from
Supplementary Table S8 of the original work ['?. The source is SRMS to search the paths from
SRMS to the CK2 subunits. The sources are the four CK2 subunits to search the paths from
CK2 to the indirect targets of SRMS.

2.2 Online databases

UniProt AC mapping from UniProt.org/downloads (2017/02)

HGNC dataset from genenames.org/cgi-bin/statistics (2017/02)

GO ontology from geneontology.org/page/download-ontology (go-basic.obo, 2017/02)

GO annotation from geneontology.org/page/download-annotations (goa_human.gaf,
2017/02)

KEGG: www.kegg.jp, release 84 (2017/10)
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Pathway commons: pathwaycommons.org release 8 (2018/01)
2.3 Pathway database selection

We used pathways from the KEGG [ and Pathway Commons ¥ databases. For PIK3CA
reconstruction, we first selected the more enriched pathways in the lists of targets (using a
Fisher exact test) and included the pathways containing targets not covered by significantly
overrepresented pathways from the same database ®. As SRMS signaling has not been
characterized, we kept all the pathways without selection and added the links from SRMS to
its identified direct substrates ['?. The selected pathways were combined, resulting in a larger
directed network forming the prior-knowledge network. Each node corresponds to a unique
protein and edges to all its interactors in the different selected pathways.

2.4 Functional protein annotations

For PIK3CA reconstruction, the components of the network with tyrosine kinases
(G0O:0004713) and tyrosine phosphatases (G0:0004725) GO terms were annotated as
phospho-tyrosine modifiers and we extended the list of phospho-tyrosine modifiers from 123
proteins to 207 manually verified proteins. For SRMS, those proteins present in the
serine/threonine kinase activity list (GO:0004674) were annotated as kinase proteins.

2.5 Search path from source to targets

The reconstructed, embedded, large network contains thousands of nodes and edges and
billions of path possibilities. We constrained the path research by using an ad hoc distance
and edge weights.

The path research is based on a weighted near-shortest-path analysis that employs a modified
version of Dijkstra’s shortest path algorithm. To define the edge weights, we combine
functional annotation with random walk for weight refinement.

As targets are differentially phosphorylated, we promote edges from a kinase or phosphatase,
in correlation with the functional annotation for each dataset studied, to a target by adding a
smaller weight to the corresponding edges (adapted from &l). Conversely, we demote edges
reaching a target identified as differentially phosphorylated but that did not originate from a
kinase or phosphatase (for the complete list of ad hoc weights used in this study, see the Supp
Figure S1).

Random walk analysis allows the weights to be refined by taking into account network
topology. This analysis allows the avoidance of multiple paths with exactly the same length
and favors plausible paths containing crossroad proteins. We simulated a random walk with
return on the network twice; firstly using equal weights for all edges and a secondly using the
ad hoc weights. The equilibrium node probabilities, in the two cases, are used to modulate the
ad hoc weights and eliminate biases created by topology (for details, see ©l). Contrary to its
usual implementation ', we do not use the random walk method to prune the network but to
refine its initial weights. The final path selection was performed using Dijkstra’s algorithm. The
Dijkstra algorithm identifies the shortest path from source to every target. As alternative paths
can also be interesting, we slightly modified this algorithm from its original form.
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In this modified algorithm, not only the shortest paths but also longer paths are accepted. The
“overflow”, defined as the extra distance measured as percentage of the shortest path,
necessary to include near-shortest paths, is a parameter of the method. The overflow is zero
for the shortest paths. The choice of shortest paths is sufficient on the first analysis to test that
all targets were connected to the source. To refine the analysis for specific targets, the
overflow value should be set empirically, by continuously increasing it from zero until new,
alternative paths are selected.

2.6 Subnetwork extraction

Sets of alternative paths define subnetworks in the prior large network. Finally, it is also
possible to extract subnetworks according to groups of GO terms representing relevant
processes and functions, for example cell adhesion and motility ! or a selected subset of
targets. This approach was used to separate networks, by processes and functions, or to
reduce the network size to explore, more deeply, alternative paths (e.g. HERS3 in the PIK3CA
mutant study).

2.7 Network visualization, comparison and analysis

Cytoscape 3.7 (http://www.cytoscape.org/) was used to visualize and explore the networks
and to generate figures ['. For alignment and comparison of the networks obtained for
PIK3CA mutants we used DyNet, the Cytoscape plug-in ['®. The parameters were set as
follows. Initial layout: Prefuse Force Directed Layout; Treat networks as: Directed networks;
Find corresponding nodes by: name; Find corresponding edges by: interaction.

To retrieve information about the putative in vivo kinases and the functional effects of
phosphorylation on the activity of the target proteins that were identified with differentially
phosphorylated peptides, we manually consulted the site-specific annotation database
PhosphoSitePlus '],
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3 Results and Discussion

3.1 Improvement of network reconstruction and shortest path
analysis

The original Python code (https:/github.com/aurelien-naldi/NetworkReconstruct) was
modified to optimize the automatic network reconstruction and extraction of all subnetworks
within the same improved application program. We also integrated all the pathways from
Pathway Commons (Reactome, Panther, and PID) with the KEGG’s pathways (Figure 1). The
selection of signaling pathways in databases can be expanded as much as is necessary to
maximize the path possibilities (step 1). This selection could be necessary when the resulting
prior-knowledge network lacks connectivity from source to targets. We then embedded the
pathways to create a directed network (step 2). If no selection is applied to step 1, a large
network will be generated containing all known database pathways. We also included the
possibility of adding protein interactions from experimental data directly to the prior-knowledge
network, which is particularly useful if there is a lack of connectivity of the source to the prior-
knowledge network (e.g., when the source is poorly described in pathway databases). We
applied both options in the case of the SRMS kinase, adding the interactions from SRMS to
its substrates (see subsection 3.3 for more details). To detect the most relevant paths and to
eliminate unnecessary interactions (step 3), we used the strategy of the weighted shortest
path search. This added the possibility of promoting edges according to the type of
phosphoproteomic data (see the material and methods). The topology of the network is still
taken into account by refining the weight of the protein interactions with the random walk
procedure. The subnetwork extraction has also been integrated within the script and can be
applied to retrieve those paths from the source to all experimentally identified targets and to
those involved in specific cellular processes (based on their Gene Ontology), or to a particular
list of proteins of interest (step 4). The overflow, admitting the shortest paths and allowing the
inclusion of alternative paths, has also been made modular. This option is important in network
biology to understand the etiology of drug mechanisms and drug resistance. The application
of this bioinformatic methodology is illustrated below and applied to two phosphoproteomic
studies.

3.2 Identification of specific paths from PIK3CA mutants to the
receptor tyrosine kinase HER3

As a first validation of our improved method for analyzing the molecular paths from a protein
to its targets, we selected a study published in Proteomics that uses a mass spectrometry-
based phosphoproteomic approach to identify unique mediators of the oncogenic PIK3CA
signaling "%, PIK3CA is an attractive target for cancer therapy because its activity is often
dysregulated in cancer. The p110a catalytic subunit of PI3K, encoded by the PIK3CA gene,
is one of the most frequently mutated oncogenes in breast cancer ['®. Two recurrent oncogenic
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“hotspot” mutations, E545H and H1047R, occur in the helical and the kinase domains of the
PIK3CA protein 9. Although the implications of PIK3CA mutations in cell transformation have
been established %, the mechanisms of how they lead to increased oncogenic features have
not been determined to date . Figure 1 of Blair and colleagues (2015) depicts the experimental
strategy applied to analyze the impact of each of these two mutations on the cell signaling of
human breast epithelial cells. A differential phosphorylation pattern was observed between
the two PIK3CA mutants. The authors focused on their distinct impact on HER3 that is
specifically phosphorylated on the Y1328 residue in the presence of the H1047R mutant or on
the Y1159 residue in the presence of the E545H mutant. Thus, HER3 could be a molecular
intermediate that conducts the signal from the H1047R mutant, but not the E545H mutant, to
the MAP kinase pathway.

To identify the specific paths from each of the PIK3CA mutants to the HER3 receptor, we
reconstructed the signaling networks of each PIK3CA mutant using quantitative
phosphoproteomic comparison with the control condition. To explain the different
consequences of the two mutants, we considered the same source, but with different targets,
in our network reconstruction process, leading to two distinct prior networks (Supp Tables S1-
2). We then applied our analytic method to select the more reliable paths linking the PIK3CA
mutants to their targets in each network. The superposition of these two “shortest path”
networks revealed paths specific for the E545H PIK3CA (red edges and nodes) or H1047R
PIK3CA mutant (green edges and nodes) (Figure 2A). Among the shared targets (white
diamonds), some were reachable by paths specific to the E545H PIK3CA mutant (red edges
to white diamonds) or to the H1047R PIK3CA mutant (green edges to white diamonds). These
properties highlight differences between the signaling networks of each PIK3CA mutant and
allow us to formulate molecular hypotheses that can be experimentally verified. Next, we
focused on the paths linking PIK3CA to HERS3 in each network and found the same path for
the two mutants, linking PIK3CA to HERS3 through the tyrosine kinases PTK2 (focal adhesion
kinase 1) and FYN (Figure 2B). Although this result suggests the indirect impact of PIK3CA
on the tyrosine phosphorylation of HERS3, it did not explain the differential regulation of HER3
by the two PIK3CA mutants. Enlarging our selection to the near shortest paths, an alternative
path through the SRC kinase was detected (Supp Figure S2A-B) but was still shared by the
two mutants.

According to Blair and colleagues (2015), comparing quantitative differences between the
E545H and H1047R PIK3CA mutants allows one to focus on the unique signaling alterations
of these two mutations. We therefore refined our analysis by selecting only the
phosphoproteomic differences between the E545H and H1047R mutants (Supp Tables 3-4).
We reconstructed the PIK3CA mutant networks and searched for paths leading to HER3. The
path from the E545H mutant to HER3 remained identical, but the path from the H1047R
mutant was profoundly modified, with the MET receptor kinase serving as the final component
linked to HER3 (Supp Figure S2C). MET was experimentally identified in the
phosphoproteomic screen and the interaction between MET and HER3 has been shown to
confer resistance of cancer cells to EGFR pharmacological inhibitors ', Nevertheless, the
previous step of this path was the interaction between the ligand for the receptor-type KIT
kinase (KITLG) and MET, and KITLG has not been described as an activator of MET. This
interaction was retrieved from three KEGG pathways as a general mechanism describing the
activation of receptor tyrosine kinases by extracellular growth factors (RAS, PI3K-AKT and
RAP1). We enlarged the selection to the near shortest paths and, searching for more relevant
interactions upstream of MET, we identified the hepatocyte growth factor (HGF) MET ligand
that is linked to the H1047R PIK3CA mutant by STAT3, MAPK1 and PTK2 (Figure 2C and
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Supp Figure S3). The majority of components in this path were experimentally identified in the
phosphoproteomic screen (diamond nodes). We retained this hypothetical path that describes
an autocrine and/or paracrine signaling mechanism with the production of extracellular HGF
leading to phosphorylation of HER3 by MET. This example clearly demonstrates that our
method is useful to retrieve the molecular signaling pathways from protein kinases to their
targets, identified by a phosphoproteomic screening, at a level of detail and plasticity for which
interesting biological hypotheses may be generated, explored, and tested.

3.3 Reconstruction of the SRMS signaling network by integration
of multiple phosphoproteomics data

SRMS is a nonreceptor protein-tyrosine kinase that belongs to the BRK family kinases. While
discovered in 1994, little information on the biochemical, cellular and physiopathological roles
of SRMS has been reported ?2. SRMS is highly expressed in breast cancers compared to
normal mammary cell lines and tissues and SRMS is a candidate serum biomarker for gastric
cancer 2324 Recently, Goel-and colleagues " attempted to uncover SRMS-regulated
signaling by identifying differentially phosphorylated peptides on serine or threonine by mass
spectrometry. The phosphorylation of these SRMS-indirect targets indicates the regulation of
protein-serine/threonine kinase signaling intermediates by SRMS. Phosphorylation motif
analysis suggested that casein kinase 2 (CK2) may represent a key downstream target of
SRMS "], Interestingly, CK2 has been characterized as a crucial player in cancer biology and
an attractive target for anticancer drug design 2526,

To identify the molecular paths linking SRMS to its indirect targets through CK2, we applied
our methodological workflow to reconstruct the SRMS-associated network using the proteins
differentially phosphorylated on serine and threonine (Supp Table S5). Despite a resulting
network of a consistent size (5216 edges and 760 nodes), SRMS was isolated from the major
region of this network and only linked to the BRK/PTKG6 kinase (Figure 3A and Supp Figure
S4). We assumed that this lack of connectivity from SRMS to its signaling network was a
consequence of its underrepresentation in signaling databases and searched to add direct
protein interactions of SRMS to the network. Goel and colleagues " identified novel candidate
SRMS substrates using phosphotyrosine antibody-based immunoaffinity purification in large-
scale, label-free, quantitative phosphoproteomics and validated a subset of the SRMS
candidate substrates by high-throughput peptide arrays ['2. We enriched the set of SRMS
targets used for the pathway selection step of the network reconstruction with the SRMS-
candidate substrates (steps 1-2 of our methodological workflow) (Supp Table S6). We also
added the direct interactions, from SRMS to its substrates, to the set of network interactions,
increasing the size of the resulting protein interaction network (6321 edges and 1307 nodes)
(Supp Figure S5). Consequently, we searched for the molecular paths from SRMS to its
indirect targets. Despite the reconnection of SRMS to the major part of the directed network,
only two of its indirect targets were reachable from SRMS (Figure 3B).

Our network reconstruction procedure is based on the generation of a prior-knowledge
interaction network composed of the components and interactions described in the public
databases of signaling pathways. While such networks are often assembled using complete
pathway or interaction databases, we select only the enriched pathways in the list of
phosphoproteomic data. Consequently, this restriction reduces the number of irrelevant

10
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interactions and better assesses the relevance of the identified pathways. In the case of
SRMS, however, we did not obtain enough coverage to connect SRMS to its indirect targets.
For this reason, we enlarged the prior-knowledge interaction network to the components and
interactions described in the public databases of all signaling pathways without selecting those
enriched in the list of phosphoproteomic data. Then, we searched for the molecular paths from
SRMS to its indirect targets in the resulting prior-knowledge interaction network (111736
edges and 8313 nodes). Among the 60 indirect targets of SRMS, 29 were present in this
network and 16 were now reachable from SRMS. Since CK2 was identified as one of the major
potential SRMS-secondary signaling intermediates, we included CK2 in the list of SRMS-
indirect targets and searched for the most relevant molecular paths from SRMS to its indirect
targets. In agreement with Goel and colleagues 'Y, we retrieved CK2 as a candidate
intermediate protein-serine/threonine kinase to propagate the signal to the SRMS-indirect
targets (Figure 3C). CK2 is composed of two a and two 8 subunits that appear in our network
as CSNK2A1, CSNK2A2, CSNK2A3 and CSNK2B. These subunits are reachable from SRMS
through CDK2 (cyclin-dependant kinase 2), a potential SRMS substrate, and propagate the
signal to PSMA3 and RAD23A, two indirect SRMS targets, PSMA3 being a known substrate
of CK2 71 Three other SRMS-candidate substrates are involved in propagating the signal to
the SRMS-indirect targets; the CDK1 (cyclin-dependant kinase 1), the GEFs VAV2, and
DOKA1. Interestingly, CDK1 was also retrieved as a candidate intermediate kinase by Goel and
colleagues " 'and DOK1 has been described as an SRMS substrate 2%, To test whether CK2
could propagate the signal from SRMS to all of its indirect targets, we searched the paths from
the four CK2 subunits to the SRMS-indirect targets. All of the targets were reachable from
each CK2 subunit, suggesting that the role of CK2 as a downstream intermediate of SRMS
could be even more prominent. We merged these paths with the path from SRMS to CK2 to
obtain a SRMS-signaling network with paths that could confirm the role of CK2 as an
intermediate of SRMS (Supp Figure S6). These networks now allow us to formulate molecular
hypotheses that require experimental validation to explore the functional role of each of the
CK2, CDK2, CDK1 and DOK1 kinases as signaling intermediates of the SRMS kinase.

3.4 Graphical interface

The bioinformatic workflow presents compelling results and provides valuable indications to
study protein signaling pathways based on phosphoproteomic data. Used first to study Syk
kinase signaling in breast cancer, we demonstrate here that this workflow can be more widely
applied to other kinases and other types of data (direct substrates, serine/threonine
phosphorylations) with appropriate modifications. Moreover, we have developed a graphical
interface that combines the different options and adaptations that were included in this study
(Supp Figures S7-8 and Supplementary text) (http://dx.doi.org/10.5281/zenodo0.3333687).

11
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4 Concluding Remarks

In this study, we demonstrate that our recently developed bioinformatic pipeline can be
generally adapted to other phosphoproteomic datasets and allow us the discovery of
candidate mechanisms that explain how signals propagate in large networks of signaling
proteins. Further improvements, such as the consideration of the phosphorylated sites and
the quantitative phosphoproteomic data, would be necessary to advance towards
spatiotemporal dynamic models of signaling and behavior. Taking into account the site of
phosphorylation rather than the entire protein would lead to the possibility of predicting the
protein kinase upstream of each detected phosphorylation, by analyzing the phosphorylation
motifs. Additionally, the impact of phosphorylation on the activity of the identified targets could
be retrieved from phosphorylation databases and used to refine the inference of signal
propagation. Finally, introducing the quantitative dimension of the phosphoproteomic data
would permit the quantification of the static response of the signaling network to specific
perturbations, by the bias of, for instance, modular response [?® or static response analysis
methods °. The results of this study may open the path towards a dynamic description of
signaling that uses detailed representations of the interaction mechanisms and can integrate
temporal fluctuations at the system level 1301,

12
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Figure legends

Figure 1. Workflow of the network construction and signal
propagation analysis.

This workflow allows us to uncover potential signaling paths, from a kinase of interest to a list
of proteins identified by phosphoproteomic experiments. Step1: Select pathways from KEGG
and Pathway Commons databases. Step 2: Embed the selected pathways to create a prior-
knowledge interaction network. Step 3: Search for paths from the source to its experimentally
identified targets by a combination of weighted shortest paths and random walk methods. Step
4: Focus on the more biologically relevant paths to a subset of targets or to a unique target.

Figure 2. Identification of specific paths from the PIK3CA mutants to
the receptor tyrosine kinase HERS.

The protein interaction networks are composed of nodes and edges. Nodes represent the
proteins whose diamond or rounded rectangle shape correspond to the experimentally
identified targets or to the proteins of the pathway databases, respectively. The edges of the
networks represent the protein interactions whose target arrow shape corresponds to the sign
of the interaction (Delta, positive interaction; T, negative interaction; Circle, unknown
consequence).

(A) Alignment and comparison of the signaling networks of the E545H and H1047R PIK3CA
mutants obtained from the quantitative phosphoproteomic comparison of each mutant with the
control condition. The source of the signal (PIK3CA) is displayed in yellow. Red edges and
nodes are specific for the E545H mutant. Green edges and nodes are specific for the H1047R
mutant. White nodes and gray edges are common to both networks.

(B) Subnetwork of the signal propagation from the PIK3CA mutants to HER3 extracted from
the signaling networks of the E545H and H1047R mutants obtained from the quantitative
phosphoproteomic comparison of each PIK3CA mutant with the control condition.

(C) A subset of the near shortest paths from the H1047R to HER3 extracted from the signaling
network of the H1047R mutants obtained from the quantitative phosphoproteomic differences
between the E545H and H1047R mutants.

Figure 3. Reconstruction of the SRMS-signaling network by
integration of multiple phosphoproteomics data

The protein interaction networks are composed of nodes and edges. Green nodes with
rounded rectangle shapes represent the proteins experimentally identified as potential direct
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substrates of SRMS (phosphorylated on tyrosine residues). Red diamond-shaped nodes
represent the experimentally identified indirect targets of SRMS (phosphorylated on
serine/threonine residues). The edges of the networks represent the protein interactions
whose target arrow shape corresponds to the sign of the interaction (Delta, positive interaction;
T, negative interaction; Circle, unknown consequence).

(A) SRMS subnetwork isolated from the prior-knowledge network obtained from embedding
the database pathways enriched in the list of SRMS-indirect targets.

(B) Subnetwork of the signal propagation from SRMS to its direct substrates (green round
rectangles) and to its indirect targets (red diamonds). This subnetwork is extracted from the
prior-knowledge network enriched with the -direct SRMS substrates.

(C) Subnetwork of the signal propagation from SRMS to its direct substrates (green round
rectangles) and to its indirect targets (red diamonds). This subnetwork is extracted from the
prior-knowledge network enlarged to the components and interactions described in the public
databases of all signaling pathways. The CK2 subunits are light blue in color.
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Supporting Information to Buffard, et al.

Supplementary Text

Graphical interface

In this section, we briefly present the different implemented options for the graphical interface (Suppl
Figure 7). First, the user selects the data file (Browse button) containing the UniProt AC of the
differentially phosphorylated proteins (step a) and the output folder. Then, the user chooses (1) the
pathway databases by ticking the boxes allowing the choice of KEGG, Pathway Commons or both;
(2) the pathway selection mode, by ticking radio buttons (the “all pathways” option will embed all
pathways from the selected databases) (step b). To avoid the lack of connectivity of the source in the
prior-knowledge network, we also included the possibility of directly adding protein interactions (e.g. with
a kinase and its substrates). The protein components of these added interactions will be taken into
account for the pathway selection only if the “enriched pathways” mode has been selected (step c). Next,
the user sets all the parameters for the shortest path search from a source to the list of the differentially
phosphorylated proteins: the source node (e.g., UniProt AC Q9H3Y6 for SRMS), the list of proteins for
promoted edges (a personalized list and/or a selected pre-established list of kinase/phosphatase). The
“overflow option” allows one to retrieve the near-shortest paths instead of the “strict” shortest paths to
generate a set of alternatives, selecting all paths for which the total distance is up to xx% higher than
that of the shortest path (step d). Finally, the “shortest path” extraction can be tuned by selecting a
subset of targets and/or categories (regrouped GO terms) (step e€). We have already included some GO
term groups representing relevant processes and functions in cancer. All generated networks are able
to be explored and manipulated using Cytoscape.

Legends to supplementary figures

Supplementary Figure 1. List of ad hoc weights of edges

An ad hoc weight is introduced on each edge based on the nature of the source and target node. “Normal”
edges have a distance of 5 (d = 5), edges coming out of identified proteins (d = 3), edges reaching an



identified protein while coming out of a tyrosine kinase or phosphatase (d = 2) or combining these two
conditions (d = 1). Edges reaching a target identified as differentially phosphorylated, but which did not
come from a kinase or phosphatase (d = 8), even if they came out of another identified protein (d = 6).

Supplementary Figure 2. Identification of specific paths from the PIK3CA
mutants to the receptor tyrosine kinase HER3.

The protein interaction networks are composed of nodes and edges. The nodes represent the proteins
whose diamond or rounded rectangle shape correspond, respectively, to the experimentally identified
targets or to the proteins of the pathway databases. The edges of the networks represent the protein
interactions whose target arrow shape corresponds to the sign of the interaction (Delta, positive
interaction; T, negative interaction; Circle, unknown sign).

(A) Subnetwork of the signal propagation from the E545H mutant to HER3, extracted from the signaling
network obtained from the quantitative phosphoproteomic comparison between the E545H mutant and
the control condition. This subnetwork contains all the near-shortest paths allowing a 20% overflow.
(B) Subnetwork of the signal propagation from the H1047R mutant to HERS3, extracted from the signaling
network obtained from the quantitative phosphoproteomic comparison between the H1047R mutant and
the control condition. This subnetwork contains all the near-shortest paths allowing a 20% overflow.
(C) Subnetwork of the signal propagation from the H1047R mutant to HERS3, extracted from the signaling
network of this mutant obtained from the quantitative phosphoproteomic differences between the E545H
and H1047R mutants.

Supplementary Figure 3. Signal propagation from the H1047R PIK3CA

mutant to HERS3.

Subnetwork of the signal propagation from the H1047R mutant to HER3, extracted from the signaling
network of this mutant obtained from the quantitative phosphoproteomic differences between the E545H
and H1047R mutants. This subnetwork contains all the near-shortest paths allowing a 20% overflow.
The protein interaction networks are composed of nodes and edges. Nodes represent the proteins
whose diamond or rounded rectangle shape correspond, respectively, to the experimentally identified
targets or to the proteins of the pathway databases. Edges of the networks represent the protein
interactions whose target arrow shape corresponds to the sign of the interaction (Delta, positive
interaction; T, negative interaction; Circle, unknown consequence).



Supplementary Figure 4. SRMS prior-knowledge network obtained from
embedding the database pathways enriched in the list of SRMS indirect
targets.

The protein interaction networks are composed of nodes and edges. The red diamond-shaped nodes
represent the experimentally identified indirect targets of SRMS (phosphorylated on serine/threonine
residues). The edges of the networks represent the protein interactions whose target arrow shape
corresponds to the sign of the interaction (Delta, positive interaction; T, negative interaction; Circle,

unknown consequence).

Supplementary Figure 5. SRMS prior-knowledge network enriched with the

SRMS-indirect targets and the SRMS direct substrates.

The protein interaction networks are composed of nodes and edges. The green rounded rectangle-
shaped nodes represent the proteins experimentally identified as potential direct tyrosine-
phosphorylated SRMS substrates. Red diamond-shaped nodes represent the experimentally identified
indirect targets of SRMS (phosphorylated on serine/threonine residues). Edges of the networks
represent the protein interactions whose target arrow shape corresponds to the sign of the interaction
(Delta, positive interaction; T, negative interaction; Circle, unknown consequence).

Supplementary Figure 6. Subnetwork of the paths from SRMS to its indirect

targets and through the four CK2-subunits.

The protein interaction networks are composed of nodes and edges. The green rounded rectangle-
shaped nodes represent the proteins experimentally identified as potential direct tyrosine-
phosphorylated SRMS substrates. The red diamond-shaped nodes represent the experimentally
identified indirect targets of SRMS (phosphorylated on serine/threonine residues). The CK2 subunits
are light blue in color. Edges of the networks represent the protein interactions whose target arrow shape
corresponds to the sign of the interaction (Delta, positive interaction; T, negative interaction; Circle,
unknown consequence).



Supplementary Figure 7. Graphical interface

Outline of the graphical interface steps and options. Steps (a) to (e) must be entered by the user as
inputs for the different corresponding steps of the workflow (black arrows). Step (f) represents the
workflow output results, creating files corresponding to the different subnetworks created by the user’s
entries and choices (in step (e)). These files can be visualized and manipulated with Cytoscape
(cytoscape.org).

Supplementary Figure 8. Diagrammatic representation of the algorithm

The algorithm is dependent on the user input. Input and output are represented by parallelogram,
alternatives by diamond. Optional inputs and outputs are represented by dashed lines.
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