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Nrf2-interacting nutrients and COVID-19: 
time for research to develop adaptation 
strategies
Jean Bousquet1,2,3* , Jean‑Paul Cristol4, Wienczyslawa Czarlewski5,6, Josep M. Anto7,8,9,10, Adrian Martineau11, 
Tari Haahtela12, Susana C. Fonseca13, Guido Iaccarino14, Hubert Blain15, Alessandro Fiocchi16, 
G. Walter Canonica17, Joao A. Fonseca18, Alain Vidal19,20, Hak‑Jong Choi21, Hyun Ju Kim22, Vincent Le Moing23, 
Jacques Reynes23, Aziz Sheikh24, Cezmi A. Akdis25, Torsten Zuberbier1 and the ARIA group

Abstract 

There are large between‑ and within‑country variations in COVID‑19 death rates. Some very low death rate settings 
such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of 
fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid‑derived 2)‑like 
2) anti‑oxidant transcription factor. There are many Nrf2‑interacting nutrients (berberine, curcumin, epigallocatechin 
gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial 
damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapa‑
mycin, PPARγ:Peroxisome proliferator‑activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal‑reg‑
ulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity 
of COVID‑19, acting through the endoplasmic reticulum stress or ACE‑Angiotensin‑II‑AT1R axis  (AT1R) pathway. Many 
Nrf2‑interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very 
low COVID‑19 mortality are those with the lowest prevalence of obesity (Sub‑Saharan Africa and Asia). It is tempting 
to propose that Nrf2‑interacting foods and nutrients can re‑balance insulin resistance and have a significant effect on 
COVID‑19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the 
Nrf2 pathway and may be of interest in the mitigation of COVID‑19 severity.
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Introduction
Large differences in COVID-19 death rates exist 
between countries and regions of the same country. 
Like most diseases, COVID-19 exhibits large geograph-
ical variations which frequently remain unexplained. 
The COVID-19 epidemic is multifactorial, and factors 
like climate, population density, social distancing, age, 

phenotype, obesity and prevalence of non-communica-
ble diseases are associated to increased incidence and 
mortality [1]. Diet represents only one of the possible 
causes of the COVID-19 epidemic [2, 3]. Although 
there are many pitfalls in analyzing death rates for 
COVID-19, [3] death rates were low or very low in Cen-
tral European countries, Eastern Asian countries, many 
Sub-Saharan African countries, the Middle East, India 
and Pakistan as well as Australia and New Zealand. This 
geographical pattern is very unlikely to be totally due to 
reporting differences between countries. Some very low 
death rate settings (but not Australia or New Zealand) 
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have a common feature of eating large quantities of fer-
mented vegetables such as cabbage, other members of 
the Brassicaceae family and, in some continents, vari-
ous spices [4]. Notwithstanding the fact that data from 
ecological studies need to be interpreted with caution, 
fermented vegetables or cabbage have been found to be 
associated with low COVID-19 death rates in European 
countries [5–7].

Reactive oxygen species (ROS) exert beneficial and 
toxic effects on cellular functions. Nrf2 is a pleiotropic 
transcription factor protecting against oxidative stress. 
It expresses a wide array of genes involved in immu-
nity and inflammation, including antiviral actions [8]. 
Several Nrf2-interacting natural compounds (e.g. ber-
berine, curcumin, epigallocatechin gallate, genistein, 
quercetin, resveratrol, sulforaphane) and lactobacilli 
acting as antioxidants are effective against insulin 
resistance associated diseases [9]. They may be impor-
tant in the mitigation of COVID-19 [5, 9, 10], acting 
through the endoplasmic reticulum (ER) [11–13] or 
ACE-Angiotensin-II-AT1R axis  (AT1R) pathway [3, 5] 
and leading to insulin resistance (IR), endothelial dam-
age, lung injury and cytokine storm. They may also 
interact with SARS-CoV-2 by other pathways involved 
in IR that may be Nrf2-dependent or -independent 
[11–13].

Obesity is a very important risk factor for COVID-
19 severity [14] and is often associated with diet. There 
may be interactions between obesity, diet and COVID-
19, possibly linked with Nrf2 [15].

The present rostrum follows the first two papers on 
diet and COVID-19 from our group [3, 5]. Specifically, 
we seek to (i) expand discussion on the role of Nrf2-
interacting natural nutrients in IR, (ii) assess the mech-
anisms on ER stress and the  AT1R pathway, and (iii) 
understand how Nrf2-interacting nutrients can inter-
play to mitigate COVID-19.

Nrf2‑interacting nutrients
The most common Nrf2 nutrients include berberine, 
curcumin, epigallocatechin gallate (EGCG), genistein, 
quercetin, resveratrol, sulforaphane mostly found in veg-
etables and fruits, and Lactobacillus in fermented foods 
(Table 1). We did not want to be exhaustive and we did 
not examine other nutrients such as brassinin or the the 
organosulfide diallyl trisulfide.

Herbs, fruits or vegetables such as garlic [16] or kiwi 
can also have antioxidant activities mediated by Nrf2 [9].

Micronutrients such as Zinc, Chromium, Selenium 
[17] and vitamin  D  [18] possess antioxidant activities 
associated, at least partly, with activation of Nrf2.

Cellular response to SARS‑CoV‑2
Endoplasmic reticulum stress response and Coronavirus
The coronavirus infection triggers ER stress responses 
in infected cells associated with increased levels of 
reactive oxygen species (ROS) and unfolded protein 
response (UPR) [19–21]. As a general response, ER 
stress leads to PERK phosphorylation of the elonga-
tion initiation factor 2α (eIF2α) and of Nrf2 [22]. Acti-
vated PERK inactivates eIF2α, leading to a decrease 
in overall protein synthesis. Phosphorylation of PKR 
and PERK has been observed in SARS-CoV-2-infected 
cells [23]. ERK/MAPK and PI3K/AKT/mTOR signal-
ling responses play important roles in Middle East res-
piratory syndrome coronavirus (MERS-CoV) infection 
[24]. The key role in the synthesis of proteins essential 
for these mechanisms belongs to mTOR (mammalian 
target of rapamycin) complexes and signalling path-
ways involved in mTOR regulation including eIF2α 
[25]. mTOR is a serine/threonine protein kinase in the 
PI3K-related kinase (PIKK) family that forms the cata-
lytic subunit of two distinct protein complexes, known 
as mTOR Complex 1 (mTORC1) and 2 (mTORC2). 
The mTOR pathway functions as a central regulator 

Table 1 Origin of Nfr2-interacting nutrients

EGCG, Epigallocatechin gallate

Nutrient Foods containing nutrient

Berberine Benzylisoquinoline alkaloid European barberry, goldenseal, goldthread, Oregon grape, phellodendron, goldenseal, poppy, and 
tree turmeric

Curcumin Curcuminoid (phenol) Turmeric

EGCG Catechin (polyphenol) Green and white tea

Genistein Soy isoflavone Soy‑based foods including tofu, tempeh and miso

Lactobacillus Lactic acid bacteria Fermented foods

Quercetin Flavonoid group of polyphenols Found in many fruits (cranberries, lingonberries, black plums), vegetables (broccoli, capers, kale, red 
onion, radish, sorel, watercress), leaves (fennel), seeds, and grains

Resveratrol Stilbenoid (phenol) Skin of grapes, blueberries, raspberries, mulberries and peanuts

Sulforaphane Isothiocyanate Cruciferous vegetables such as broccoli, Brussels sprouts, and cabbages
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of cell metabolism, growth, proliferation, and survival. 
mTORC1 mainly functions as a nutrient/energy/redox 
sensor and controls protein synthesis, lipid metabo-
lism, and organelle biogenesis [26]. mTORC2 promotes 
the activation of  insulin receptors and insulin-like 
growth factor 1 receptors. mTORC1 and C2 complexes 
are activated by nutrients, growth factors, and inflam-
matory mediators.

ER stress and sustained UPR signalling are major 
contributors to the pathogenesis of several diseases, 
including inflammatory disorders and viral infections 
[27] and can increase the severity of these events [28]. 
ER stress has an important role in cardiovascular and 
metabolic disease, obesity and in diabetes [29, 30] and 
pancreatic ß-cell dysfunction, often through mTOR 
[31]. Oxidative stress is counter-balanced by complex 
antioxidant defence systems regulated by a series of 
multiple pathways, including the UPR, to ensure that 
the response to oxidants is adequate. Nrf2, interrelated 
with the UPR sensor called the pancreatic endoplasmic 
reticulum kinase, is a regulator of cellular resistance to 
oxidants [22, 32].

A recent study showed a disruption of mTOR sig-
nalling with increased levels of mTOR and a down-
regulation of eIF2 signalling in multiple cellular 
compartments of severe COVID-19 patients when 
compared to patients who recovered [33].

AT1R‑associated effects
Angiotensin II (AngII) is the predominant Renin–Angi-
otensin–Aldosterone system (RAAS) component con-
tributing to IR [34]. The angiotensin-converting enzyme 
2 (ACE2) receptor is part of the dual RAAS system 
consisting of an  AT1R axis and an ACE-2-Angiotensin-
(1,7)-Mas axis.  AT1R is involved in most of the effects of 
Ang II, including oxidative stress generation [35], which 
in turn upregulates  AT1R [36]. In metabolic disorders 
and with older age, there is an upregulation of the  AT1R 
axis leading to pro-inflammatory, pro-fibrotic effects in 
the respiratory system, endothelial damage and IR [37]. 
SARS-CoV-2 binds to its receptor ACE2 and exploits it 
for entry into the cell. The ACE2 downregulation, as a 
result of SARS-CoV-2 binding, enhances the  AT1R axis 
[38] likely to be associated with IR [39, 40], but also with 
inflammation [41] and severe outcomes of COVID-19. 
Nrf2 is the most potent antioxidant in humans and can 
block the  AT1R axis [8].

Cross‑talk between the renin‑angiotensin‑aldosterone 
system (RAAS) and the endoplasmic reticulum (Fig. 1)
Several studies have shown an interaction of RAAS and 
ER in insulin resistance. Ang-II increases ER stress in 
adipose tissue [42]. ACE2 regulates intramuscular fat by 
improving ER and mitochondrial function [43]. On the 
other hand, Ang 1–7 protects against Ang II-induced ER 

Fig. 1 Interactions between the renin–angiotensin–aldosterone system and the endoplasmic reticulum in COVID‑19 ( modified from 5)
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stress and endothelial dysfunction via the Mas receptor 
[44]. These mechanisms appear to be of great importance 
in COVID-19 and propose an interaction between ER 
stress and  AT1R/Mas pathways with Nrf2 at the centre of 
the regulatory mechanism.

Moreover, in addition to reducing the production of 
infectious virions, the inhibition of ER glucosidases also 
impairs the entry of selected viruses via a post-receptor-
binding mechanism [45].

Nrf2 in cytokine storm, endothelium and lung damage
The Nrf2  signalling pathway regulates anti-inflamma-
tory gene expression and inhibits the progression of 
inflammation [46]. In particular, the upregulation of 
Nrf2 signalling inhibits the overproduction of IL-6, pro-
inflammatory cytokines, and chemokines as well as limit-
ing the activation of NFĸB.

Failure to protect against oxidative stress-induced cel-
lular damage leads to endothelial dysfunction in cardio-
vascular diseases and other pathologies associated with 
metabolic syndrome. Several antioxidant pathways are 
involved in cellular redox homeostasis, among which the 
Nrf2 signalling pathway is one of the most prominent 
[47].

Nrf2 induces cellular rescue pathways against oxidative 
pulmonary injury, abnormal inflammatory and immune 
responses, as well as apoptosis. The Nrf2 pathway can 
protect against various lung injuries including acute lung 
injury and acute respiratory distress syndrome [48].

Autophagy
Autophagy is the natural cell regulated mechanism lead-
ing to the degradation of components through the action 
of the lysosomal system to remove unnecessary or dys-
functional components. It is a constitutive pathway 
upregulated under stressful conditions including oxida-
tive stress, [49] ER stress or viral infection. One key ele-
ment of viral infection is the fate of the virus in the cell.

While autophagy has been shown to act as an anti-viral 
defence, human viruses use multiple steps in endocytic 
and autophagy pathways to help viral propagation and 
escape immune response [50, 51]. Coronaviruses have 
adapted by producing many strategies to escape or to 
benefit via the inhibition and/or stimulation of autophagy 
[52]. SARS-Cov-2 most  likely impacts autophagy by 
several mechanisms [52–55] including highjacking the 
autophagy machinery for their intracellular survival 
(canonical) [54] and expressing specific proteins to usurp 
components of the autophagy pathway and propagate in 
host cells (noncanonical) [52].

The oxidative stress associated with increases in 
reactive oxygen species (ROS) is interconnected 
with autophagy [56, 57]. Oxidative stress leads to 

oxidative damage of proteins, lipids, and nucleic acids. 
Autophagy is crucial in ROS generation and scav-
enging damaged substrates, which is achieved by the 
release and activation of Nrf2 [58]. A redox independ-
ent cross-talk also exists between the Nrf2-Keap 1 
axis and autophagy through p62, an autophagy adap-
tor protein. p62 activates Nrf2 by a noncanonical 
pathway. p62 binds to Keap 1, the inhibitor of Nrf2, 
and induces Keap 1 degradation by autophagy [56]. 
Intermittent activation of Nrf2 through the canoni-
cal pathway confers cellular protection and functional 
integrity whereas prolonged activation of Nrf2 through 
the noncanonical pathway appears to be detrimental, 
resulting in tissue injuries and inflammation [49]. In 
acute lung injury, autophagy is induced by different 
stimuli including the oxidative stress [57]. However, 
the role of autophagy in acute lung injury still remains 
controversial depending on the underlying cause of the 
lung injury, on the cell types, and on the stage of lung 
injury. mTOR inhibition may be protective.

Complexity of the anti‑oxidant response
It is clear that Nrf2 is only one mechanism of the anti-
oxidant stress and that multiple products can act on 
the anti-oxidant stress of COVID-19. As an example, 
sulforaphane protects against acetaminophen-induced 
hepatotoxicity [59]. Its anti-oxidant and anti-inflam-
matory activity may be enhanced in vitro by combining 
it with some medications used in COVID-19 such as 
acetaminophen [60]. Moreover, other mechanisms such 
as lipid rafts, autophagy, the fatty acid transporter CD36 
and adipokines may play an equally important role.

Nrf2‑interacting nutrients and COVID‑19
Interactions with COVID‑19
Obesity, possibly hypertension, type 2 diabetes (T2D) 
and ageing all represent risk factors for severe COVID-
19 associated with cytokine storm and IL-6, endothelial 
damage in different organs and lung damage.

IR is a pathological condition in which cells fail 
to respond normally to the hormone  insulin. Major 
mechanisms of IR include oxidative stress, inflamma-
tion, insulin receptor mutations, endoplasmic reticu-
lum stress, and mitochondrial dysfunction [61]. In 
COVID-19, IR can be induced by at least ER stress or 
the  AT1R pathways. IR is a key component of the meta-
bolic syndrome, a clustering of at least three of the five 
following medical conditions: abdominal obesity [62], 
high blood pressure [63], high blood sugar, high serum 
triglycerides, and  low serum high-density lipoprotein 
(HDL) [64]. The metabolic syndrome is associated with 
the risk of developing cardiovascular disease and T2D 
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[65, 66]. All nine Nrf2-interacting nutrients had some 
effect—although sometimes weak—against obesity, 
hypertension and T2D (Table 2).

IR is frequently associated with endothelial dysfunc-
tion and has been proposed to play a major role in 
cardiovascular [67], kidney [68] or cerebrovascular dis-
eases [69]. All nine Nrf2-interacting nutrients had an 
effect against endothelial damage.

Ageing is associated with IR [70] and all nine Nrf2-
interacting nutrients had an effect on ageing. All nine 
Nrf2-interacting nutrients reduce IL-6 and cytokines.

Most Nrf2-interacting nutrients have an action on 
mTOR, PPARγ, NFκB, ERK and eIF2α (Table 3).

Table 2 Effect of Nrf2-interacting nutrients on diseases associated with oxidative stress

EGCG: Epigallocatechin gallate

Search strategy: For this table, in order to compare the mechanisms of action and properties of Nrf2-interacting nutrients, a PubMed search was initiated. This was not 
a systematic review, but an attempt to assess whether the impact on the disease has been described

We searched PubMed using the display option “best matches”

We first searched “systematic reviews” by PubMed for the different nutrients and we collected the first “best match” systematic review related to the question

If there was no systematic review, we searched for “reviews” and we collected the first “best match” review related to the question

If there was no review, we searched for papers and we collected the first “best match” paper related to the question

Insulin resistance Lung injury IL‑6 Cytokines

AT1R 
down regulation

Obesity HTA T2D Endothelium 
damage

Ageing

Berberine [161, 162] [162] [162, 173, 174] [175] [176] [173] [173]

Curcumin [105] [163, 164] [177] [178] [179] [180] [181, 182] [183]

EGCG [106] [164] [184] [185] [184] [180] [186, 187] [188]

Genistein [107, 108] [165] [189] [190] [189] [180] [191] [192]

Lactobacillus [168, 169] [193] [194] [195] [196] [197] [198]

Quercetin [163] [199] [200] [184] [180] [201] [202]

Resveratrol [109] [163, 164] [203] [204] [205] [180] [206] [207]

Sulforaphane [170] [208] [208] [209] [180] [210] [211]

Table 3 Mechanisms involved in the antioxidant effects of Nrf2-interacting nutrients

EGCG: Epigallocatechin gallate

The search strategy used in Table 2 was applied in an attempt to assess whether a mechanism of action could be identified

Nrf2 mTOR PPARγ NFκB ERK eIF2α

Effect Activation Inhibition Activation Inhibition Activation Inhibition

Berberine [173] [176] [212] [71] [176] [87]

Curcumin [180, 213] [213, 214] [213] [213] [213] [88]

EGCG [180] [214] [215] [216, 217] [217] [90]

Genistein [180] [218] [219] [220] [221] [222] [91]

Lactobacillus [223] [224] [225] [223] [226]

Quercetin [180] [227] [219] [228] [229] [92]

Resveratrol [180] [214, 230] [219] [220] [109] [93]

Sulforaphane [180] [98, 231] [208] [208] [232] [233]

Table 4 Antiviral effects of Nrf2-interacting nutrients

The search strategy used in Table 2 was applied in an attempt to assess whether 
anti-viral or anti-COVID properties have been described

Antiviral COVID STING

Berberine [71] [71]

Curcumin [72] [234–237]

EGCG [238] [239–242] [243]

Genistein [244] [245]

Lactobacillus [246] [246, 247]

Quercetin [248] [249–253]

Resveratrol [254] [255–259]

Sulforaphane [260] [84]
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Anti‑viral effects
Nrf2-interacting nutrients have large antiviral activities 
demonstrated in humans and animals (Table 4).

Berberine through NFκB and MAPK pathways has 
an anti-viral activity on several viruses, and potentially 
against SARS-CoV-2 [71]. Curcumin can block the entry 
of viruses into cells or its replication in the cell [72]. It 
acts on NFκB [73] or MAPK [74]. EGCG has multiple 
antiviral properties possibly though MAPK [75].

The suppressive effects of EGCG on viral replication 
were abolished in cells with knocked-down Nrf2 expres-
sion [76]. siRNA-mediated depletion of Nrf2 boosted 
HIV infectivity in primary macrophages and reduced the 
anti-viral effects of sulforaphane [77]. In a murine model, 
RSV-induced bronchopulmonary inflammation, epithe-
lial injury, and mucus cell metaplasia as well as nasal epi-
thelial injury were significantly greater in Nrf2(-/-) mice 
than in Nrf2(+ / +) mice. Sulforaphane pre-treatment 
significantly limited lung RSV replication and virus-
induced inflammation in Nrf2(+ / +) but not in Nrf2(-
/-) mice. This effect may be mediated though NFκB [78]. 
Sulforaphane through Nrf2 significantly suppressed the 
hepatitis C virus (HCV) protein and RNA levels in HCV 
replicon cells and infectious system [79]. Caffeic acid 
could modulate Keap1/Nrf2 interaction via increasing 
p62 expression, leading to the stabilization of Nrf2 and 
HO-1 induction, and an elicit IFNα antiviral response to 
suppress HCV replication [80]. HCV genome replication 
was also suppressed in HCV sub-genomic replicon-bear-
ing cells by bardoxolone methyl (BARD), an Nrf2 activa-
tor [81].

Type I IFNs (IFNα and -β) are central to immune-pro-
tection against viral infection [82]. A balanced produc-
tion of type I IFNs is needed for the protection against 
virus, but excessive production is a potent driver of 
pathology [82]. Intracellular DNA and RNA sensors 
are essential in the innate immune response to viruses, 
causing the secretion of type I IFNs, cytokines and 
chemokines from infected cells.  Viral cytosolic DNA is 
recognized by DNA sensors such as cyclic GMP-AMP 
synthase (cGAS) and its downstream signalling effec-
tor stimulator of interferon genes (STING) [83]. Sul-
foraphane through Nrf2 activation decreases STING 
expression and responsiveness to STING agonists while 
increasing susceptibility to infection with DNA viruses 
[84]. Reduction of STING expression by Nrf2 is mecha-
nistically distinct from how Nrf2 reduces the release of 
the pro-inflammatory cytokines IL-1β and IL-6 [84]. Nrf2 
negatively regulates Type I INF responses and increases 
susceptibility to herpes genital infection in mice [85]. Ita-
conate is a crucial anti-inflammatory metabolite that acts 
via Nrf2 to limit inflammation and modulate type I IFNs 
[86].

mTOR and eIF2α
Several Nrf2-interacting nutrients act through mTOR 
or eIF2α. The insulin-sensitizing action of berberine was 
related to reducing ER stress in Hep G2 cells. The levels 
of phosphorylation both on PERK and eIF2α were inhib-
ited in cells pretreated with berberine [87]. In an IR ani-
mal model, curcumin was found to act on eIF2α [88]. The 
induction of the ER stress pathway by green tea EGCG 
in colorectal cancer cells is mediated by the activation 
of PERK [89]. The proteasome inhibitors Bortezomib 
(BZM) and MG132 trigger cancer cell death via induc-
tion of ER stress and UPR. EGCG antagonizes BZM 
toxicity by exacerbating the activation of autophagy 
and eIF2α up-regulation [90]. In rats, genistein protects 
against acute pancreatitis via the activation of an apop-
totic pathway mediated through activation of multiple ER 
stress-related regulators like GRP78, PERK, and eIF2α 
[91]. Quercetin blocks airway epithelial cell chemokine 
expression though eIF2α phosphorylation [92]. Pteros-
tilbene (PT), a natural analogue of resveratrol, inhibits 
hepatocellular cell (HCC) growth without the induction 
of apoptosis in an ER stress- and autophagy-dependent 
manner through the eIF2α pathway [93]. Resveratrol 
modulates response against acute inflammatory stimuli 
in aged mouse brain. ER stress markers demonstrated 
significant changes in resveratrol-treated mice after LPS 
treatment, specifically in eIF2α [94]. Other studies have 
found an effect of resveratrol on eIF2α [95, 96].

Sulforaphane exerts a neuroprotective effect involving 
Nrf2-dependent reductions in oxidative stress, mTOR-
dependent inhibition of neuronal apoptosis, and the 
restoration of normal autophagy [97]. Sulforaphane also 
inhibits mTOR in an Nrf2-independent manner [98].

Kimchi attenuates fatty streak formation in the aorta of 
low-density lipoprotein receptor knockout mice via the 
inhibition of ER stress (via several mechanisms includ-
ing eIF2α) and apoptosis [99]. Nutrients originating from 
Kimchi and its ingredients modulate the Nrf2/PERK sig-
nalling pathway to homeostasis in oxidative stress states. 
Kimchi and its bioactive compound ((3–4′-hydroxyl-
3′,5′-dimethoxyphenyl) propionic acid: HDMPPA), 
which is a metabolite result from fermentation, alleviate 
oxidative stress and inflammatory response not only via 
the Nrf2 pathway, but also via the PERK/CHOP pathway, 
which induced apoptosis of ER, in cardiovascular dis-
ease and ageing models [100–102]. In addition, Arvelexin 
from Brassica rapa and anthocyanin-rich extract from 
red cabbage exert anti-inflammatory properties by the 
inhibition of NF- κB activation and by Nrf2-regulated 
HO-1 induction in macrophages and apolipoprotein 
E-deficient mice [103, 104], suggesting that Nrf2 activa-
tion during inflammation antagonizes the NF-κB path-
way. It is possible that the intake of Kimchi may help to 
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mitigate COVID-19 outcomes by maintaining or restor-
ing the Nrf2 system.

AT1R
Curcumin [105], EGCG [106], genistein [107, 108] and 
resveratrol [109] impact the  AT1R pathway. NADPH oxi-
dases of the Nox family are important sources of ROS 
and important agents in hypertension. They increase 
blood pressure in the presence of Ang II, an important 
and potent regulator of cardiovascular NADPH oxidase, 
via  AT1R. Several natural compounds such as berber-
ine, curcumin, quercitine, resveratrol and others are 
Nox inhibitors [110]. Dietary curcumin supplementation 
can increase antioxidant activity through the induction 
of heme oxygenase-1, a scavenger of free radicals, and 
through the reduction of reactive oxygen species and 
Nox-2 [111]. Sulforaphane reduces Ang II-induced vas-
cular smooth muscle cells through Nrf2 signalling [112].

mTOR and autophagy
The autophagic process is initiated by inactivation 
of the  mechanistic/mammalian target of rapamycin 
(mTOR), the major autophagy suppressor [52]. The role 
of mTOR is unclear in coronavirus infection [52]. Nrf2 
can directly regulate mTOR [113]. Certain mTOR or 
Rac1 inhibitors derived from rapamycin and azathioprine 
activate autophagy [51]. mTOR inhibitors were proposed 
to be tested in COVID-19 [114]. Many Nrf2-interacting 
nutrients are mTOR inhibitors and might have a role in 
autophagy.

TRPA1 and TRPV1
Several Nrf2-interacting nutrients are direct TRPA1 
(transient receptor potential ankyrin 1) [115] or TRPV1 
(transient receptor potential vanilloid 1) activators. 
TRPA1 induces inflammation, plays key roles in the 
physiology of almost all organs and exhibits a high sensi-
tivity of TRPs to oxidants. It is involved in many COVID-
19 symptoms. TRPA1 can be activated by many foods 
(Table  5). There is a substantial overlapping of electro-
philic ligands between TRPA1 and Nrf2. It has been sug-
gested that the two systems might be part of the same 
network, with TRPA1 representing the sensory arm, and 
Nrf2 its biochemical counterpart [115]. However, not 
all Nrf2-interacting nutrients are activators of TRPA1 
and mustard oil, the first TRPA1 agonist found [116], 
does not interact with Nrf2.

In COVID-19, some Nrf2-interacting nutrients may act 
by desensitizing TRPA1 (and possibly TRPV1) receptors 
(Bousquet et al. in preparation).

Complex interactions in oxidative stress
IR induces oxidative stress either through the overpro-
duction of superoxide by ER stress or the activation of 
Ang II-mediated upregulation of nicotinamide adenine 
dinucleotide phosphate (NADPH)-oxidase (NOX) activ-
ity, resulting in the cytosolic production of ROS [117] 
(Fig. 2).

One of the key features of the complex interaction 
between nutrients and the oxidative stress/inflamma-
tory response is the differential regulation of NFκB and 
Nrf2 by the cell redox status [118]. Nrf2 and NFκb are 
present in an inactive form in the cytosol since they are 
linked to an inhibitory compound iNFκB or INrf2 (Keap 
1), both targets of reactive oxygen species [119–121]. 
In the case of a large production of ROS, which would 
overwhelm the antioxidant defence, iNFκB is oxidized 
and catabolized. Furthermore, NFκB is translocated to 
the nucleus and initiates the expression of inflammatory 
proteins such as cytokines, chemokines, adhesion mol-
ecules, cytokine receptors, iNO synthases, lipoxygenases, 
cyclooxygenases and growth factors [122, 123]. Once 
produced, cytokines are able to activate oxidant pro-
duction by the NADPH oxidase complex, leading to an 
oxidative burst, which could in turn enhance NFκB acti-
vation. Thus, NFκB activation results in a directional and 
synergistic linkage of inflammation and oxidative stress 
[120, 124].

The canonical pathway of Nrf2 activation also involves 
changes in the cell redox state [189]. A weak or con-
trolled ROS production results in the degradation of 
Keap 1. Thus, Nrf-2 could be translocated to the nucleus, 
binds to the antioxidant response element and activates 
an antioxidant enzyme such as Heme Oxigenase, SOD 
and catalase or cytoprotective genes [125, 126]. It could 
also reduce the production of ROS [127]. The increase 
in antioxidant defence maintains or restores the cellular 

Table 5 TRPA1 and TRPV1 interactions of Nrf2-interacting 
nutrients

The search strategy used in Table 2 was applied in an attempt to assess whether 
a mechanism of action could be identified

TRPA1 TRPV1

Berberine Antagonist [261]

Curcumin Antagonist [262] Antagonist [262]

EGCG Agonist [263] Antagonist [264]

Genistein Antagonist [265] Antagonist [266]

Lactobacillus Antagonist

Quercetin Agonist [267] Antagonist [268]

Resveratrol Antagonist [269, 270] Antagonist [271]

Wasabi Agonist [272] Agonist [272]

Capsaicin Agonist [273] Agonist [274]
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redox state. In addition, Nrf2 stimulation could down-
regulate NFkB activation [128, 129]. In fact, redox sig-
nalling appears as a black box, controlling both NrF2 
and NfκB activation and thus regulating inflammation 
and reparation. It is now recognized that the regulation 
of both pathways, NfκB and Nrf2, in part linked to the 
redox status, involved a cross talk to bring a coordinated 
inflammatory response [130, 131]. The intensity of the 
ROS insult could be a key factor in the imbalance of the 
NFκB/Nrf2 system [132]. In the case of oxidative stress, 
stimulation of NFκB (associated with a degradation of 
both Keap 1 and Nrf2) results in an amplification loop of 
inflammation. Thus, an imbalance between the NFκB and 
Nrf2 pathways has already been observed in T2D [112] 
or in multiple sclerosis. By contrast, an active and effec-
tive anti-oxidant system could result in a preventive loop 
leading to anti-oxidative and anti-inflammatory response. 
In this context, a positive modulation of Nrf2 by nutri-
ents could act as an «oxidative pre-conditioning» sys-
tem, and the resulting increase in the antioxidant enzyme 
could attenuate ROS deleterious effects and maintain cell 
integrity [133, 134].

This black box redox system could be effective in res-
piratory infection, particularly in COVID-19 [122]. 
Indeed, COVID-19 activates RAAS and induces ER 

stress, resulting in ROS production [32, 33], which could 
be further enhanced by risk factors such as obesity, dia-
betes, and hypertension [135–137]. Interestingly, RAAS 
activation seems related to COVID infection sever-
ity [41]. If the ROS production overwhelms antioxidant 
defence, a vicious circle linking oxidative stress and 
inflammation is initiated leading to a cytokine storm, as 
well as lung and endothelial injury. On the other hand, if 
Nrf2 is activated via nutrients, the antioxidant response 
could maintain or restore an adequate redox status. This 
would lead to an antioxidant and anti-inflammatory 
response resulting in a pauci-symptomatic infection. 
Interestingly, very recently, a similar effect on the Nrf2/
NfkB balance via redox signalling was hypothesized via 
ozone therapy [138].

However, although the therapeutic potential of Nrf2 
raised great hopes in the early 2010s [139], Nrf2 levels 
vary significantly depending on the physiological and 
pathological context. Thus, a properly timed and tar-
geted manipulation of the Nrf2 pathway is critical for an 
effective treatment [140]. Surprisingly, only one Nrf2-
based treatment has been approved: dimethyl fumarate 
[141], not devoid of side effects [142, 143]. This suggests 
that the balance is difficult to reach in drug develop-
ment. Nrf2 overexpression may also be associated with 

Fig. 2 Complex interactions leading to oxidative stress in diabetes (from [117])
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diabetic nephropathy or retinopathy [117]. Recently, 
well-designed clinical trials with bardoxolone, an Nrf2 
antagonist, were cancelled or stopped due to safety con-
cerns [144]. The Nrf2 system plays an important role 
in the body’s natural defence against hyperglycaemia-
induced damage. However, this initial adaptive response 
to counteract the diabetes-driven oxidative stress appears 
to be short-lived, after which the Nrf2 system becomes 
overwhelmed under chronic glucose stimulation [117].

Obesity, diet, Nrf2 and COVID‑19
In general, T2D and obesity prevalence are associated 
and the following has been stated by the NCD Risk Factor 
Collaboration (NCD-RisC) “The upsurge of T2D reflects 
the global obesity epidemic” [145]. However, many coun-
tries in Sub-Saharan Africa or Eastern Asia have a very 
low obesity prevalence that is not necessarily associated 
with a low diabetes prevalence (Fig.  3). These countries 
have the lowest obesity prevalence as well as the low-
est COVID-19 death rates. Obesity is lower in Canada 
than in the US and this may partly explain differences in 
COVID-19 severity between these two countries. Obe-
sity is high in South Africa, possibly explaining the higher 

death rate in this country than in other Sub-Saharan Afri-
can countries.

Many factors can explain this diabetes/obesity para-
dox. Genetic differences between countries are clear. 
However, the RODAM (Research on Obesity & Diabetes 
among African Migrants) study used a unique approach 
of comparing Ghanaians resident in the Netherlands, 
Germany, UK and Ghana to unravel the causes of obe-
sity and T2D among African migrants and non-migrants. 
It showed striking differences suggesting that environ-
mental factors are of great importance. Globally, one in 
10 individuals is affected by T2D. In migrants, there is a 
higher T2D prevalence, the age of onset is younger and 
complications are more severe. One of the main deter-
minants of T2D is obesity, which also disproportionally 
affects migrants [146–149]. In rural Ghanaians, most 
T2D is independent of obesity [150] (Fig. 4). Differences 
in food preferences were found across study sites: (i) in 
rural Ghana, diet concentrated on starchy foods (“roots, 
tubers, and plantain” diet) including cassava, (ii) in urban 
Ghana, nutrition was dominated by animal-based prod-
ucts, and (iii) in Europe, diet was highly diverse [151]. The 
“roots, tubers, and plantain” diet was directly associated 
with increased 10-year cardiovascular disease risk [152] 
but the relationship between diet and T2D was unclear 
[153]. In the national Korean cohort, obesity (50.4%) and 
abdominal obesity (47.8%) are associated with diabetes 
[154].

In COVID-19, obesity is a more severe risk factor 
than T2D [155]. There is a dose-dependent association 
of obesity with worse COVID-19 morbidity requiring 
hospitalization and intensive care and with mortality. 
This particularly applies to patients younger than 50 to 
60 years of age [156]. Obesity is an important independ-
ent risk factor for serious COVID-19 disease [157, 158]. 
The association between BMI and COVID-19-related 

Fig. 3 Prevalence of obesity, diabetes (NCD Risk Factor Collaboration 
(NCD‑RisC, http://ncdri sc.org) and the COVID‑19 death rate (Johns 
Hopkins Coronavirus Resource Center, https ://coron aviru s.jhu.edu) Fig. 4 Links between obesity and diabetes in Ghanaians [150]

http://ncdrisc.org
https://coronavirus.jhu.edu
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mortality was U-shaped, both in type 1 diabetes and in 
T2D (lowest risk for those with a BMI of 25·0–29·9 kg/
m2) [159]. These data suggest differences between these 
two features of the metabolic syndrome for COVID-19 
severity.

Nrf2 is also involved in complications of Type-1 diabe-
tes [160]. All nine Nrf2-interacting nutrients had an effect 
against obesity, often through IR [161–170] (Table 2). In 
addition, Nrf2 may improve adipogenesis and adipocyte 
differentiation [171]. Thus, diet may be important in the 
prevention/management of obesity and, at the same time, 
may reduce the impact of COVID-19.

Conclusions
Interestingly, all nutrients tested had a similar effect on 
IR, cytokine storm, lung injury and endothelial damage. 
They were all active on most of the tested Nrf2 pathways. 
These data strongly suggest a common mechanism of 
action for all nutrients. These effects appear to be highly 
conserved [172]. However, we need to understand the 
differences between obesity and T2D in some countries 
with low obesity prevalence. These mechanisms may help 
to better appraise the potential severity of COVID-19 
(Fig. 5).

It is tempting to propose that Nrf2-interacting foods 
and nutrients can help re-balance IR, and that they can 
have a significant effect on COVID-19 severity, and pos-
sibly also on susceptibility to infection by SARS-CoV-2. 
It is therefore possible that an increasing intake of spe-
cific foods may achieve an optimal natural balance for 

the Nrf2 pathway, since COVID-19 death rates, used as 
a proxy of severity, are low or very low in some countries 
where Nrf2-interacting nutrients are largely used (Fig. 5). 
Understanding the balance between Nrf2-interacting 
foods and nutrients would help to: (i) better understand 
the mechanisms of the oxidative stress in the IR diseases, 
(ii) develop optimal Nrf2-interacting nutrients and diets 
to reduce the prevalence and severity of IR diseases, (iii) 
optimize Nrf2 drug development and (iv) develop these 
strategies to mitigate COVID-19 severity.

There are still many unresolved questions requesting 
research on the time of onset of any efficacy of foods in 
COVID-19, the amount of the food to be administered 
and the interactions with the microbiome.
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