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Abstract

We derive novel error estimates for Hybrid High-Order (HHO) discretizations of Leray–Lions
problems set in W1,p with p ∈ (1, 2]. Specifically, we prove that, depending on the degeneracy of
the problem, the convergence rate may vary between (k + 1)(p − 1) and (k + 1), with k denoting
the degree of the HHO approximation. These regime-dependent error estimates are illustrated by a
complete panel of numerical experiments.
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1 Introduction
We consider Hybrid High-Order (HHO) approximations of Leray–Lions problems set in W1,p with
p ∈ (1, 2]. For this class of problems, negative powers of the gradient of the solution can appear in the
flux. Depending on the expression of the latter, this can lead to a (local) degeneracy of the problem when
the gradient of the solution vanishes or becomes large.

In this work, we prove novel error estimates that highlight the dependence of the convergence rate on
the two possible cases of degeneracy simultaneously, and we do not differentiate these two degeneracies
any longer. Specifically, we show that, for the globally non-degenerate case, the energy-norm of the
error converges as hk+1, with h denoting the mesh size and k the degree of the HHO approximation. In
the globally degenerate case, on the other hand, the energy-norm of the error converges as h(k+1)(p−1),
coherently with the estimate originally proved in [66, Theorem 3.2]. We additionally introduce, for each
mesh element T of diameter hT , a dimensionless number ηT that captures the local degeneracy of the
model in T and identifies the contribution of the element to the global error: from the fully degenerate
regime, corresponding to a contribution in O(h(k+1)(p−1)

T ), to the non-degenerate regime, corresponding
to a contribution in O(hk+1

T ), through all intermediate regimes. Estimates depending on local regimes
have been established in linear settings (see, e.g., [99, 1010] for advection–diffusion–reaction models and [44]
for the Brinkman problem), but, to the best of our knowledge, their extension to non-linear models such
as Leray–Lions problems is entirely new.

Error estimates for the lowest-order conforming finite element approximation of the pure p-Laplacian
have been known for quite some time; see, e.g., the founding work [1111], in which O(h1/(3−p)) error
estimates are obtained in the case p ≤ 2 considered here. These estimates were later improved in [22] to
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O(h), for solutions of high (and global) regularity – in the space W3,1(Ω) ∩ C2,(2−p)/p(Ω). The above
results have been extended to non-conforming finite elements in [1515]. A glaciologymodel is considered in
[1212], corresponding to a non-degenerate p-Laplace equation (with flux satisfying (22) below with δ = 1),
and error estimates for the conforming finite element approximation have been obtained: O(h) if the
solution is in H2(Ω), and O(hp/2) if it belongs to W2,p(Ω). A common feature of all these studies, in
which sharp error estimates are derived (which do not degrade too much as p gets far from 2), is that they
only consider low-order schemes on 2D triangular meshes and with continuity properties – either all along
the edges for the conforming method, or at the edges midpoints for the non-conforming method. To our
knowledge, for higher-order methods that may involve fully discontinuous functions and are applicable
to generic polytopal meshes, such as HHO, no sharp error estimates are known and only convergence in
h(k+1)(p−1) has been established so far. This paper therefore bridges a gap between the results available
for the low-order finite element methods and HHO methods. In passing, even though we focus on the
HHO method, our approach could in all likelihood be extended to other polytopal methods such as, e.g.,
the Mimetic Finite Difference method [11] or the Virtual Element method [33]; see the preface of [88] for an
up-to-date literature review on this subject.

The rest of the paper is organized as follows. In Section 22 we establish the continuous setting,
including novel assumptions on the flux function weaker than the ones considered in [66, Section 3.1]. In
Section 33 we briefly recall the discrete setting upon which rests the HHO scheme described in Section
44. The main result of this paper is contained Section 55. Finally, Section 66 contains a complete panel of
numerical tests illustrating the effect of local degeneracy on the convergence rate.

2 Continuous setting
2.1 Flux function

Let Ω ⊂ Rd, d ∈ N∗, denote a bounded, connected, polytopal open set with Lipschitz boundary ∂Ω. We
consider the Leray–Lions problem, which consist in finding u : Ω→ R such that

−∇·σ(·,∇u) = f in Ω, (1a)
u = 0 on ∂Ω, (1b)

where f : Ω → R represents a volumetric force term, while σ : Ω × Rd → Rd is the flux function.
The flux function is possibly variable in space and depends on the potential u : Ω→ R only through its
gradient. The following assumptions characterize σ.

Assumption 1 (Flux function). Let a real number p ∈ (1, 2] be fixed and denote by

p′ B
p

p − 1
∈ [2,+∞)

the conjugate exponent of p. The flux function satisfies

σ(x, 0) = 0 for almost every x ∈ Ω, (2a)

σ(·, ξ) : Ω→ Rd is measurable for all ξ ∈ Rd . (2b)

Moreover, there exist a degeneracy function δ ∈ Lp(Ω, [0,+∞)) and two real numbers σhc, σsm ∈ (0,+∞)
such that, for all τ, η ∈ Rd and almost every x ∈ Ω, we have the continuity property

|σ(x, τ) − σ(x, η)| ≤ σhc (δ(x)
p + |τ |p + |η |p)

p−2
p |τ − η |, (2c)

and the strong monotonicity property

(σ(x, τ) − σ(x, η)) · (τ − η) ≥ σsm (δ(x)
p + |τ |p + |η |p)

p−2
p |τ − η |2. (2d)

Some remarks are in order.
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Remark 1 (Flux at rest). Assumption (2a2a) expresses the fact that the flux at rest is zero, and can be relaxed
taking σ(·, 0) ∈ Lp′(Ω)d. This modification requires only minor changes in the analysis, not detailed for
the sake of conciseness.

Remark 2 (Relations between the continuity and monotonicity constants). Inequalities (2c2c) and (2d2d) give

σsm ≤ σhc. (3)

Indeed, let τ ∈ Rd be such that |τ | > 0. Using the strong monotonicity (2d2d) (with η = 0) along with (2a2a),
the Cauchy–Schwarz inequality, and the continuity (2c2c) (again with η = 0) and (2a2a), we infer that

σsm (δ
p + |τ |p)

p−2
p |τ |2 ≤ σ(·, τ) · τ ≤ |σ(·, τ)| |τ | ≤ σhc (δ

p + |τ |p)
p−2
p |τ |2

almost everywhere in Ω, hence (33).

Remark 3 (Degenerate case). We note the following inequality: For all x, y ∈ Rn, n ∈ N∗, and all
α ∈ [0,+∞),

(α + |x | + |y |)p−2 |x − y | ≤ |x − y |p−1. (4)

To prove (44), notice that, if α + |x | + |y | > 0, using a triangle inequality to write |x | + |y | ≥ |x − y |

together with the fact that R 3 t 7→ tp−2 ∈ R is non-increasing (since p < 2) and α ≥ 0, we infer
that (α + |x | + |y |)p−2 ≤ |x − y |p−2, which, multiplying by |x − y |, gives (44). Since (44) is valid when
α + |x | + |y | > 0, we can extend the left-hand side by continuity (with value 0) in the singular case
α + |x | + |y | = 0 and this estimate remains valid.

Inequality (2929) below together with (44) ensures that properties (2c2c)–(2d2d) are well-formulated by
extension also when δ(x)p + |τ |p + |η |p vanishes. As a consequence, σ(x, ·) : Rd → Rd is continuous
for a.e. x ∈ Ω. The relation (44) will also play a key role in the proof of Theorem 1010 below.

Example 4 (p-Laplace flux function). A typical example of flux function is σ(x, τ) = |τ |p−2τ, for which
(11) is the p-Laplace equation −∇·(|∇u|p−2∇u) = f . This flux function satisfies Assumption 11 with
degeneracy function δ = 0, see e.g. [88, Lemma 6.26].

Example 5 (Carreau–Yasuda flux function). Another example of function σ which satisfies Assumption
11, inspired by the rheology of Carreau–Yosida fluids, is obtained setting, for almost every x ∈ Ω and all
τ ∈ Rd,

σ(x, τ) = µ(x)
(
δ(x)a(x) + |τ |a(x)

) p−2
a(x)

τ, (5)

where µ : Ω→ [µ−, µ+] is a measurable function with µ−, µ+ ∈ (0,+∞) corresponding to the local flow
consistency index, δ ∈ Lp(Ω, [0,+∞)) is the degeneracy parameter, a : Ω → [a−, a+] is a measurable
function with a−, a+ ∈ (0,+∞) expressing the local transition flow behavior index, and p ∈ (1, 2] is
the flow behavior index. It was proved in [55, Appendix A] that σ is a p-power-framed function (with
a straightforward analogy to replace the degeneracy constant σde therein by the degeneracy function δ)
with

σhc =
µ+

p − 1
2

[
−

(
1
a+
− 1

p

)	
−1

]
(p−2)+ 1

p and σsm = µ−(p − 1)2
(

1
a−
− 1

p

)⊕
(p−2)

,

where ξ⊕ B max(0; ξ) and ξ	 B −min(0; ξ) denote, respectively, the positive and negative parts of a
real number ξ. As a consequence, the flux function (55) matches Assumption 11.
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2.2 Weak formulation

We define the following space for the potential embedding the homogeneous boundary condition:

U B W1,p
0 (Ω).

Assuming f ∈ Lp′(Ω), the weak formulation of problem (11) reads: Find u ∈ U such that

a(u, v) =
∫
Ω

f v ∀v ∈ U, (6)

where the diffusion function a : U ×U → R is defined such that, for all v,w ∈ U,

a(w, v) B
∫
Ω

σ(·,∇w) · ∇v. (7)

Proposition 6 (Well-posedness and a priori estimate). Under Assumption 11, the continuous problem (66)
admits a unique solution u ∈ U that satisfies the following a priori bound:

‖∇u‖Lp (Ω)d ≤

(
2

2−p
p CPσ

−1
sm ‖ f ‖Lp′ (Ω)

) 1
p−1
+min

(
‖δ‖Lp (Ω); 2

2−p
p CPσ

−1
sm ‖δ‖

2−p
Lp (Ω)

‖ f ‖Lp′ (Ω)

)
. (8)

where the real number CP > 0, only depending on Ω and on p, is such that, for all v ∈ W1,p
0 (Ω), the

Poincaré inequality ‖v‖Lp (Ω) ≤ CP‖∇v‖Lp (Ω)d holds.

Proof. For the existence and uniqueness of a solution to (66) see, e.g., [1313, Section 2.4]. To prove the a
priori bound (88), use the strong monotonicity (2d2d) of σ, (66) written for v = u, and invoke the Hölder and
Poincaré inequalities to write

σsm

(
‖δ‖

p

Lp (Ω)
+ ‖∇u‖p

Lp (Ω)d

) p−2
p
‖∇u‖2

Lp (Ω)d
≤ a(u, u) =

∫
Ω

f u ≤ CP‖ f ‖Lp′ (Ω)‖∇u‖Lp (Ω)d,

that is,

N B
(
‖δ‖

p

Lp (Ω)
+ ‖∇u‖p

Lp (Ω)d

) p−2
p
‖∇u‖Lp (Ω)d ≤ CPσ

−1
sm ‖ f ‖Lp′ (Ω). (9)

Observing that ‖∇u‖Lp (Ω)d ≤ 2
2−p
p max

(
‖∇u‖Lp (Ω)d ; ‖δ‖Lp (Ω)

)2−p
N , we obtain, enumerating the cases

for the maximum and summing the corresponding bounds,

‖∇u‖Lp (Ω)d ≤ (2
2−p
p N)

1
p−1 + 2

2−p
p ‖δ‖

2−p
Lp (Ω)

N . (10)

On the other hand, we have N ≥ 2
p−2
p ‖∇u‖p−1

Lp (Ω)d
if ‖∇u‖Lp (Ω)d ≥ ‖δ‖Lp (Ω). Thus we have, for any

value of ‖∇u‖Lp (Ω)d ,

‖∇u‖Lp (Ω)d ≤ (2
2−p
p N)

1
p−1 + ‖δ‖Lp (Ω). (11)

Combining (99) with the minimum of inequalities (1010) and (1111) gives (88). �
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3 Discrete setting
3.1 Mesh

For any set X ⊂ Rd, denote by hX its diameter. A polytopal mesh is defined as a coupleMh B (Th, Fh),
where Th is a finite collection of polytopal elements T ∈ Th such that h = maxT ∈Th hT , while Fh is a finite
collection of hyperplanar faces. It is assumed henceforth that the mesh Mh matches the geometrical
requirements detailed in [88, Definition 1.7]. Boundary faces lying on ∂Ω and internal faces contained in
Ω are collected in the sets F b

h
and F i

h
, respectively. For every mesh element T ∈ Th, we denote by FT

the subset of Fh collecting the faces that lie on the boundary ∂T of T . For every face F ∈ Fh, we denote
by TF the subset of Th containing the one (if F ∈ F b

h
) or two (if F ∈ F i

h
) elements on whose boundary F

lies. For each mesh element T ∈ Th and face F ∈ FT , nTF denotes the (constant) unit vector normal to
F pointing out of T .

Our focus is on the h-convergence analysis, so we consider a sequence of refined meshes that is
regular in the sense of [88, Definition 1.9], with regularity parameter uniformly bounded away from zero.
The mesh regularity assumption implies, in particular, that the diameter of a mesh element and those of
its faces are comparable uniformly in h, and that the number of faces of one element is bounded above
by an integer independent of h.

3.2 Notation for inequalities up to a multiplicative constant

To avoid the proliferation of generic constants, we write henceforth a . b (resp., a & b) for the inequality
a ≤ Cb (resp., a ≥ Cb) with real number C > 0 independent of h, of the parameters δ, σhc, σsm in
Assumption 11, and, for local inequalities, of the mesh element or face on which the inequality holds. We
also write a ' b to mean a . b and b . a. The dependencies of the hidden constants are further specified
when needed.

3.3 Projectors and broken spaces

Given X ∈ Th ∪ Fh and l ∈ N, we denote by Pl(X) the space spanned by the restriction to X of scalar-
valued, d-variate polynomials of total degree ≤ l. The local L2-orthogonal projector πlX : L1(X) → Pl(X)
is defined such that, for all v ∈ L1(X),∫

X

(πlXv − v)w = 0 ∀w ∈ Pl(X). (12)

When applied to vector-valued functions in L1(X)d, the L2-orthogonal projector mapping on Pl(X)d acts
component-wise and is denoted in boldface font as πl

X . Let T ∈ Th, n ∈ [0, l + 1], and m ∈ [0, n]. The
following (n, p,m)-approximation properties of πlT hold: For any v ∈ Wn,p(T),

|v − πlT v |Wm,p (T ) . hn−m
T |v |W n,p (T ). (13a)

The above property will also be used in what follows with p replaced by its conjugate exponent p′. If,
additionally, n ≥ 1, we have the following (n, p′)-trace approximation property:

‖v − πlT v‖Lp′ (∂T ) . h
n− 1

p′

T |v |W n,p′ (T ). (13b)

The hidden constants in (1313) are independent of h and T , but possibly depend on d, the mesh regularity
parameter, l, n, and p. The approximation properties (1313) are proved for integer n and m in [77, Appendix
A.2] (see also [88, Theorem 1.45]), and can be extended to non-integer vales using standard interpolation
techniques (see, e.g., [1414, Theorem 5.1]).

The additional regularity on the exact solution in the error estimates will be expressed in terms of the
broken Sobolev spaces

Wn,p(Th) B
{
v ∈ Lp(Ω) : v|T ∈ Wn,p(T) ∀T ∈ Th

}
.

The corresponding seminorm is such that |v |W n,p (Th ) B
( ∑

T ∈Th |v |
p

W n,p (T )

) 1
p for all v ∈ Wn,p(Th).
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4 HHO discretization
4.1 Hybrid space and norms

Let an integer k ≥ 0 be fixed. The HHO space is, with usual notation,

Uk
h B

{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) : vT ∈ P

k(T) ∀T ∈ Th and vF ∈ P
k(F) ∀F ∈ Fh

}
.

The interpolation operator Ik
h

: W1,1(Ω) → Uk
h
maps a function v ∈ W1,1(Ω) on the vector of discrete

unknowns Ik
h
v defined as follows:

Ikhv B ((π
k
T v|T )T ∈Th, (π

k
Fv|F )F ∈Fh ).

For all T ∈ Th, we denote by Uk
T and IkT the restrictions of Uk

h
and Ik

h
to T , respectively, and, for all

vh ∈ Uk
h
, we let vT B (vT , (vF )F ∈FT ) ∈ Uk

T denote the vector collecting the discrete unknowns attached
to T and its faces. Furthermore, for all vh ∈ Uk

h
, we define the broken polynomial field vh ∈ P

k(Th)

obtained patching element unknowns, that is,

(vh)|T B vT ∀T ∈ Th .

For all q ∈ (1,+∞), we define on Uk
h
the W1,q(Ω)-like seminorm ‖·‖1,q,h such that, for all vh ∈ Uk

h
,

‖vh ‖1,q,h B

( ∑
T ∈Th

‖vT ‖
q
1,q,T

) 1
q

(14a)

with ‖vT ‖1,q,T B

(
‖∇vT ‖qLq (T )d

+
∑
F ∈FT

h1−q
F ‖vF − vT ‖

q

Lq (F)

) 1
q

for all T ∈ Th. (14b)

The following boundedness property for IkT is proved in [88, Proposition 6.24]: For all T ∈ Th and all
v ∈ W1,p(T),

‖IkT v‖1,p,T . |v |W 1,p (T ), (15)
where the hidden constant depends only on d, the mesh regularity parameter, p, and k.

The discrete potential is sought in the subspace of Uk
h
embedding the homogeneous boundary

condition:
Uk

h,0 B
{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
.

The following discrete Poincaré inequality descends from [77, Proposition 5.4] (cf. Remark 5.5 therein):
For all vh ∈ Uk

h,0,
‖vh ‖Lp (Ω) . ‖vh ‖1,p,h . (16)

By virtue of this inequality, ‖·‖1,p,h is a norm on Uk
h,0 (reason as in [88, Corollary 2.16]).

4.2 Reconstructions

For all T ∈ Th, we define the local gradient reconstruction Gk
T : Uk

T → P
k(T)d such that, for all vT ∈ Uk

T ,∫
T

Gk
T vT · τ =

∫
T

∇vT · τ +
∑
F ∈FT

∫
F

(vF − vT ) (τ · nTF ) ∀τ ∈ Pk(T)d . (17)

By design, the following relation holds (see [88, Section 7.2.5]): For all v ∈ W1,1(T),

Gk
T (I

k
T v) = πk

T (∇v). (18)

The local potential reconstruction rk+1
T : Uk

T → P
k+1(T) is such that∫

T

(∇rk+1
T vT −Gk

T vT ) · ∇w = 0 for all w ∈ Pk+1(T) and
∫
T

rk+1
T vT =

∫
T

vT . (19)

Composed with the local interpolator, this reconstruction commutes with the elliptic projector; see [88,
Sections 1.3 and 2.1.1–2.1.3].
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4.3 Discrete diffusion function

The discrete diffusion function ah : Uk
h
×Uk

h
→ R, discretizing the function a defined by (77), is such that,

for all vh,wh ∈ Uk
h
,

ah(wh, vh) B
∑
T ∈Th

(∫
T

σ(·,Gk
TwT ) ·G

k
T vT + sT (wT , vT )

)
. (20)

Above, for all T ∈ Th, sT : Uk
T ×Uk

T → R is a local stabilization function. To state the assumptions on
this function, we introduce the mesh skeleton ∂Mh B

⋃
F ∈Fh F and set

Lp(∂Mh) B
{
µ : ∂Mh → R : µ |F ∈ Lp(F) ∀F ∈ Fh

}
,

‖µ‖Lp (∂Mh ) B

( ∑
T ∈Th

hT
∑
F ∈FT

‖µ |F ‖
p

Lp (F)

) 1
p

.
(21)

Assumption 2 (Local stabilization functions). There exists ζ ∈ Lp(∂Mh; [0,∞)) such that, for all T ∈ Th
and all vT ,wT ∈ Uk

T ,

sT (wT , vT ) B hT

∫
∂T

ST (·,∆
k
∂TwT ) ∆

k
∂T vT , (22)

where ST : ∂T × R→ R is a measurable function satisfying, for all v,w ∈ R and almost every x ∈ ∂T ,

|ST (x,w) − ST (x, v)| . σhc (ζ(x)
p + |w |p + |v |p)

p−2
p |w − v |, (23a)

(ST (x,w) − ST (x, v)) (w − v) & σsm (ζ(x)
p + |w |p + |v |p)

p−2
p |w − v |2, (23b)

ST (x, 0) = 0, (23c)

while the boundary residual operator ∆k
∂T

: Uk
T → Lp(∂T) is such that, for all vT ∈ Uk

T ,

(∆k
∂T vT )|F B

1
hT

[
πkF (r

k+1
T vT − vF ) − π

k
T (r

k+1
T vT − vT )

] ∀F ∈ FT (24)

with potential reconstruction rk+1
T defined by (1919).

Example 7 (Stabilization function). Local stabilization functions that match Assumption 22 can be ob-
tained setting, for all T ∈ Th, all w ∈ R, and all x ∈ ∂T ,

ST (x,w) B γT (ζ(x)
p + |w |p)

p−2
p w, (25)

with γT ∈ [σsm, σhc] (see (33)). It can be checked that ST is a non-degenerate p-power-framed function
satisfying (2323); see [55, Appendix A] for a proof.

Leveraging the results in [66], and additionally using hF ' hT for all F ∈ FT , it can be checked that,
for all q ∈ (1,+∞),

‖Gk
T vT ‖

q

Lq (T )d
+ hT ‖∆k

∂T vT ‖
q

Lq (∂T )
' ‖vT ‖

q
1,q,T ∀vT ∈ Uk

T . (26)

Additionally, ∆k
∂T

is polynomially consistent, i.e.,

∆
k
∂T (I

k
Tw) = 0 ∀w ∈ Pk+1(T)d . (27)
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4.4 Discrete problem

The discrete problem reads: Find uh ∈ Uk
h,0 such that

ah(uh, vh) =
∫
Ω

f vh ∀vh ∈ Uk
h,0. (28)

5 Error analysis
In this section, after establishing a stability result for the discrete function ah, we prove the error estimate
that constitutes the main result of this paper.

5.1 Strong monotonicity of the discrete diffusion function

We recall the following inequality between sums of power (see [55, Eq. (15)]): Let an integer n ≥ 1 and a
real number m ∈ (0,+∞) be given. Then, for all a1, . . . , an ∈ (0,+∞), we have

n−(m−1)	
n∑
i=1

am
i ≤

(
n∑
i=1

ai

)m
≤ n(m−1)⊕

n∑
i=1

am
i . (29)

Lemma 8 (Strong monotonicity of ah). For all vh,wh ∈ Uk
h
, setting eh B vh − wh, it holds

‖eh ‖
2
1,p,h . σ

−1
sm

(
‖δ‖

p

Lp (Ω)
+ ‖ζ ‖

p

Lp (∂Mh )
+ ‖vh ‖

p
1,p,h+ ‖wh ‖

p
1,p,h

) 2−p
p (

ah(vh, eh) − ah(wh, eh)
)
. (30)

Proof. Let T ∈ Th. Using the strong monotonicity (2d2d) of σ and the
(

2
2−p ,

2
p

)
-Hölder inequality, we get

σ
p
2

sm‖Gk
T eT ‖

p

Lp (T )d

≤

∫
T

(
δp + |Gk

T vT |
p + |Gk

TwT |
p
) 2−p

2
[(
σ(·,Gk

T vT ) − σ(·,G
k
TwT )

)
·Gk

T eT
] p

2

≤

(
‖δ‖

p

Lp (T )
+ ‖Gk

T vT ‖
p

Lp (T )d
+ ‖Gk

TwT ‖
p

Lp (T )d

) 2−p
2

[∫
T

(
σ(·,Gk

T vT ) − σ(·,G
k
TwT )

)
·Gk

T eT

] p
2

.
(
‖δ‖

p

Lp (T )
+ ‖vT ‖

p
1,p,T + ‖wT ‖

p
1,p,T

) 2−p
2

[∫
T

(
σ(·,Gk

T vT ) − σ(·,G
k
TwT )

)
·Gk

T eT

] p
2

,

(31)

where the conclusion follows from the seminorm equivalence (2626). Similarly, the strong monotonicity
(23b23b) of ST followed by the same reasoning as above yields,

σ
p
2

smhT ‖∆k
∂T eT ‖

p

Lp (FT )
.

(
hT ‖ζ ‖

p

Lp (∂T )
+ ‖vT ‖

p
1,p,T + ‖wT ‖

p
1,p,T

) 2−p
2

(
sT (vT , eT ) − sT (wT , eT )

) p
2
. (32)

Combining the norm equivalence (2626) with (3131) and (3232) and using (2929) yields

σ
p
2

sm‖eT ‖
p
1,p,T .

(
‖δ‖

p

Lp (T )
+ hT ‖ζ ‖

p

Lp (∂T )
+ ‖vT ‖

p
1,p,T + ‖wT ‖

p
1,p,T

) 2−p
2

(
aT (vT , eT ) − aT (wT , eT )

) p
2
.

Summing over T ∈ Th, applying the discrete
(

2
2−p ,

2
p

)
-Hölder inequality, and raising to the power 2

p

yields (3030). �

Remark 9 (Well-posedness and a priori estimate). Using standard techniques, it can be proved that there
exists a unique solution uh ∈ Uk

h,0 to the discrete problem (2828). Additionally, it can be shown in a similar
way as for the continuous case (cf. Proposition 66) that the following a priori bound holds:

‖uh ‖1,p,h .
(
σ−1

sm ‖ f ‖Lp′ (Ω)

) 1
p−1

+min

((
‖δ‖

p

Lp (Th )
+ ‖ζ ‖

p

Lp (∂Mh )

) 1
p ;σ−1

sm

(
‖δ‖

p

Lp (Th )
+ ‖ζ ‖

p

Lp (∂Mh )

) 2−p
p
‖ f ‖Lp′ (Ω)

)
.

(33)
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5.2 Error estimate

Theorem 10 (Error estimate). Let u ∈ U and uh ∈ Uk
h,0 solve (66) and (2828), respectively. Assume

u ∈ Wk+2,p(Th) and σ(·,∇u) ∈ W1,p′(Ω)d ∩Wk+1,p′(Th)
d. Then, under Assumptions 11 and 22,

‖uh − Ikhu‖1,p,h . Nf hk+1 |σ(·,∇u)|W k+1,p′ (Th )d

+Nfσhc

[ ∑
T ∈Th

(
min (ηT ; 1)2−p h(k+1)(p−1)

T |u|p−1
W k+2,p (T )

)p′] 1
p′

,
(34)

where, for all T ∈ Th, defining DT B min
(
ess infx∈T (δ(x) + |∇u(x)|) ; ess infx∈∂T ζ(x)

)
, we have set

ηT B
hk+1
T |u|W k+2,p (T )

|T |
1
pDT

(35)

with the convention that ηT = +∞ if DT = 0 < |u|W k+2,p (Th )
, and ηT = 0 if DT = |u|W k+2,p (Th )

= 0, and
where

Nf B σ−1
sm

[
‖δ‖Lp (Ω) + ‖ζ ‖Lp (∂Mh ) +

(
σ−1

sm ‖ f ‖Lp′ (Ω)

) 1
p−1

]2−p
.

Remark 11 (Convergence rates). For any T ∈ Th, the local flux degeneracy parameter DT which appears
in (3535) is a measure of the local degeneracy of the flux and the stabilization function: the closer it is
to zero, the more degenerate the model is. The dimensionless number ηT defined in (3535) determines
the convergence rate of the contribution to the approximation error stemming from T . If ηT ≥ 1
(locally degenerate case), then the element T contributes to the error with a term in h(k+1)(p−1)

T . If
ηT ≤ hk+1

T |u|W k+2,p (T ) |T |
− 1

p , i.e. DT ≥ 1 (locally non-degenerate case), the contribution to the error is in
hk+1
T . The case ηT ∈ (hk+1

T |u|W k+2,p (T ) |T |
− 1

p , 1) corresponds to intermediate rates of convergence.
At the global level, defining the number ηh B maxT ∈Th ηT , the bound hT ≤ h together with the error

estimate (3434) yields

‖uh − Ikhu‖1,p,h . Nf

(
hk+1 |σ(·,∇u)|W k+1,p′ (Th )d

+ σhc min (ηh; 1)2−p h(k+1)(p−1) |u|p−1
W k+2,p (Th )

)
. (36)

As a consequence, if ηh ≥ 1 (globally degenerate case), then the convergence rate is (k + 1)(p − 1). If
ηh ≤ hk+1 |u|W k+2,p (Th )

(globally non-degenerate case), the convergence rate is k + 1. Finally, the case
ηh ∈ (hk+1 |u|W k+2,p (Th )

, 1) corresponds to intermediate rates of convergence. This is the finest global
estimate that can be obtained from the local one. However, for practical purposes, if u ∈ Wk+2,∞(Th) then
we can replace ηh in (3636) by the larger number

η̃h B
|u|W k+2,∞(Th )

hk+1

minT ∈Th DT
=

|u|W k+2,∞(Th )
hk+1

min
(
ess infΩ (δ + |∇u|) ; ess inf∂Mh

ζ
) , (37)

with the same convention as above regarding fractionsC/0 and 0/0. The convergence rate will result from
the position of η̃h with respect to hk+1 |u|W k+2,∞(Th )

and 1, and η̃h ≤ hk+1 |u|W k+2,∞(Th )
(non-degenerate

case) is equivalent to min
(
ess infΩ (δ + |∇u|) ; ess inf∂Mh

ζ
)
≥ 1, which is consistent with the local

requirement stated above.

Proof of Theorem 1010. Define the consistency error as the linear form Eh : Uk
h
→ R such that, for all

vh ∈ Uk
h
,

Eh(vh) B

∫
Ω

∇·σ(·,∇u) vh + ah(Ikhu, vh). (38)

Let, for the sake of brevity, ûh B Ik
h
u and eh B uh − ûh ∈ Uk

h,0.
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(i) Estimate of the consistency error. Expanding ah according to its definition (2020) in the expression (3838)
of Eh, inserting

∑
T ∈Th

(∫
T
πk
Tσ(·,∇u) ·Gk

T eT −
∫
T
σ(·,∇u) ·Gk

T eT
)
= 0 (the equality is a consequence

of the definition of πk
T ), and rearranging, we obtain

Eh(eh) =
∫
Ω

∇·σ(·,∇u) eh +
∑
T ∈Th

∫
T

πk
Tσ(·,∇u) ·Gk

T eT︸                                                         ︷︷                                                         ︸
T1

+
∑
T ∈Th

∫
T

[
σ(·,Gk

T ûT ) − σ(·,∇u)
]
·Gk

T eT︸                                               ︷︷                                               ︸
T2

+
∑
T ∈Th

sT (ûT , eT )︸             ︷︷             ︸
T3

. (39)

We proceed to estimate the terms in the right-hand side.
For the first term, we start by noticing that∑

T ∈Th

∑
F ∈FT

∫
F

eF (σ(·,∇u) · nTF ) = 0 (40)

as a consequence of the continuity of the normal trace of σ(·,∇u) together with the single-valuedness
of eF across each interface F ∈ F i

h
and the fact that eF = 0 for every boundary face F ∈ F b

h
(see [88,

Corollary 1.19]). Using an element by element integration by parts on the first term of T1 along with the
definition (1717) of Gk

T , we can write

T1 =

((((((((((((((((((∑
T ∈Th

∫
T

[
πk
Tσ(·,∇u) − σ(·,∇u)

]
· ∇eT

+
∑
T ∈Th

∑
F ∈FT

[∫
F

(eF − eT )
(
πk
Tσ(·,∇u) · nTF

)
+

∫
F

eT (σ(·,∇u) · nTF )

]
=

∑
T ∈Th

∑
F ∈FT

∫
F

(eF − eT )
[
πk
Tσ(·,∇u) − σ(·,∇u)

]
· nTF,

where we have used the definition of πk
T together with the fact that ∇eT ∈ Pk−1(T)d ⊂ Pk(T)d to cancel

the term in the first line, and we have inserted (4040) and rearranged to conclude. Hölder inequalities give

|T1 | .

( ∑
T ∈Th

hT ‖σ(·,∇u) − πk
Tσ(·,∇u)‖p

′

Lp′ (∂T )d

) 1
p′

( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖eF − eT ‖

p

Lp (F)

) 1
p

. hk+1 |σ(·,∇u)|W k+1,p′ (Th )d
‖eh ‖1,p,h,

(41)

where we have used the (k + 1, p′)-trace approximation properties (13b13b) of πk
T along with hT ≤ h for the

first factor, and the definition (1414) of ‖·‖1,p,h for the second.
We move on to the next term T2. Let an element T ∈ Th be fixed. If ηT ≥ 1, using the (p′, p)-Hölder

inequality together with the equivalence (2626), we obtain����∫
T

[
σ(·,Gk

T ûT ) − σ(·,∇u)
]
·Gk

T eT

���� ≤ ‖σ(·,Gk
T ûT ) − σ(·,∇u)‖Lp′ (T )d ‖eT ‖1,p,T

≤ σhc

(δ + |πk
T (∇u)| + |∇u|

)p−2
|πk

T (∇u) − ∇u|

Lp′ (T )

‖eT ‖1,p,T

≤ σhc‖π
k
T (∇u) − ∇u‖p−1

Lp (T )d
‖eT ‖1,p,T

. σhch(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T

= σhc min (ηT ; 1)2−p h(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T ,

(42)
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where we have used the continuity (2c2c) of σ together with the commutation property (1818) of the discrete
gradient and (2929) in the second line, inequality (44) with x = πk

T (∇u), y = ∇u, and α = δ in the third line,
and the (k + 1, p, 0)-approximation properties of πkT to conclude.

On the other hand, if ηT < 1 then, using the (p, p′)-Hölder inequality together with the boundedness
(2626), we infer����∫

T

[
σ(·,Gk

T ûT ) − σ(·,∇u)
]
·Gk

T eT

���� ≤ ‖σ(·,Gk
T ûT ) − σ(·,∇u)‖Lp (T )d ‖eT ‖1,p′,T

. σhc

(δ + |πk
T (∇u)| + |∇u|

)p−2
|πk

T (∇u) − ∇u|

Lp (T )

|T |
p−2
p ‖eT ‖1,p,T

≤ σhcD
p−2
T |T |

p−2
p ‖πk

T (∇u) − ∇u‖Lp (T )d ‖eT ‖1,p,T

. σhcD
p−2
T |T |

p−2
p hk+1

T |u|W k+2,p (T )‖eT ‖1,p,T

= σhc min (ηT ; 1)2−p h(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T ,

(43)

where we passed to the second line as in (4242) additionally using the bound ‖eT ‖1,p′,T . |T |
p−2
p ‖eT ‖1,p,T

(see [77, Lemmas 5.1 and 5.2]), used in the third line the fact that R 3 x 7→ xp−2 ∈ R is non-increasing to
infer that

(
δ + |πk

T (∇u)| + |∇u|
)p−2

≤ (δ + |∇u|)p−2 ≤ D
p−2
T almost everywhere in T , and concluded as

above.
Gathering the estimates (4242) and (4343) and using a discrete Hölder inequality yields

|T2 | . σhc

[ ∑
T ∈Th

(
min (ηT ; 1)2−p h(k+1)(p−1)

T |u|p−1
W k+2,p (T )

)p′] 1
p′

‖eh ‖1,p,h . (44)

Let us finally consider T3. Let T ∈ Th, set ǔT B IkT (π
k+1
T u) for the sake of brevity, and observe that

ST

(
·,∆k

∂T
ǔT

)
= 0 thanks to the polynomial consistency (2727) of ∆k

∂T
and the property (23c23c) of ST .

If ηT ≥ 1, using the (p′, p)-Hölder inequality together with the boundedness property (2626) (with
q = p), we infer

|sT (ûT , eT )| . h
1
p′

T

ST

(
·,∆k

∂T ûT
)
− ST

(
·,∆k

∂T ǔT
)

Lp′ (∂T )
‖eT ‖1,p,T

. σhch
1
p′

T

(ζ + |∆k
∂T ûT | + |∆

k
∂T ǔT |

)p−2
∆
k
∂T (ûT − ǔT )


Lp′ (∂T )

‖eT ‖1,p,T

≤ σhch
1
p′

T ‖∆
k
∂T (ûT − ǔT )‖

p−1
Lp (∂T )

‖eT ‖1,p,T

. σhch(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T

= σhc min (ηT ; 1)2−p h(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T ,

(45)

where we have used the continuity (23a23a) of ST together with (2929) to pass to the second line, inequality
(44) with x = ∆k

∂T
ûT , y = ∆k

∂T
ǔT and α = ζ in the third line, and the boundedness (2626) of ∆k

∂T

and (1515) of IkT together with the (k + 1, p, 1)-approximation properties of πk+1
T to conclude by writing

h
1
p

T ‖∆
k
∂T
(ûT − ǔT )‖Lp (∂T ) . ‖IkT (u − π

k+1
T u)‖1,p,T . |u − πk+1

T u|W 1,p (T ) . hk+1
T |u|W k+2,p (T ).

Otherwise, ηT < 1 and using the (p, p′)-Hölder inequality together with boundedness property (2626)

11



(with q = p′), we infer as above that

|sT (ûT , eT )| . h
1
p

T

ST

(
·,∆k

∂T ûT
)
− ST

(
·,∆k

∂T ǔT
)

Lp (∂T )
‖eT ‖1,p′,T

. σhch
1
p

T

(ζ + |∆k
∂T ûT | + |∆

k
∂T ǔT |

)p−2
∆
k
∂T (ûT − ǔT )


Lp (∂T )

|T |
p−2
p ‖eT ‖1,p,T

≤ σhcD
p−2
T |T |

p−2
p h

1
p

T ‖∆
k
∂T (ûT − ǔT )‖Lp (∂T )‖eT ‖1,p,T

. σhcD
p−2
T |T |

p−2
p hk+1

T |u|W k+2,p (T )‖eT ‖1,p,T

= σhc min (ηT ; 1)2−p h(k+1)(p−1)
T |u|p−1

W k+2,p (T )
‖eT ‖1,p,T ,

(46)

where the second line follows as before from the bound ‖eT ‖1,p′,T . |T |
p−2
p ‖eT ‖1,p,T (see [77, Lemmas

5.1 and 5.2]), the third line is a consequence of the monotonicity of R 3 x 7→ xp−2 ∈ R that yields(
ζ + |∆k

∂T
ûT | + |∆

k
∂T

ǔT |
)p−2
≤ ζ p−2 ≤ D

p−2
T almost everywhere in ∂T , and the conclusion is obtained as

in (4545).
Following then the same reasoning that lead to (4444), we obtain for the third term

|T3 | . σhc

[ ∑
T ∈Th

(
min (ηT ; 1)2−p h(k+1)(p−1)

T |u|p−1
W k+2,p (T )

)p′] 1
p′

‖eh ‖1,p,h . (47)

Plugging the bounds (4141), (4444), and (4747) into (3939) yields

|Eh(eh)| . hk+1 |σ(·,∇u)|W k+1,p′ (Th )d
‖eh ‖1,p,h

+ σhc

[ ∑
T ∈Th

(
min (ηT ; 1)2−p h(k+1)(p−1)

T |u|p−1
W k+2,p (T )

)p′] 1
p′

‖eh ‖1,p,h .
(48)

(ii) Error estimate. Using the strong monotonicity (3030) of ah, we get

‖eh ‖
2
1,p,h . σ

−1
sm

(
‖δ‖

p

Lp (Ω)
+ ‖ζ ‖

p

Lp (∂Mh )
+ ‖uh ‖

p
1,p,h + ‖ûh ‖

p
1,p,h

) 2−p
p [

ah(uh, eh) − ah(ûh, eh)
]

. Nf

[
ah(uh, eh) − ah(ûh, eh)

]
, (49)

where we have used the a priori bound (3333) on the discrete solution along with the boundedness (1515) of the
global interpolator, the a priori bound (88) on the continuous solution, and (2929) to conclude. Furthermore,
using the equation (2828) (with vh = eh), and the fact that f = −∇·σ(·,∇u) almost everywhere in Ω, we
see that

ah(uh, eh) − ah(ûh, eh) =
∫
Ω

f eh − ah(ûh, eh) = −Eh(eh). (50)

Hence, plugging (5050) into (4949), recalling the bound (4848) on the consistency error, and simplifying, (3434)
follows. �
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6 Numerical examples
In this section, we give some numerical results to confirm Theorem 1010. We consider the domain
Ω = (0, 1)2 and define σ as the Carreau–Yasuda law of Example 55 with p ∈ {1.25, 1.5, 1.75} and
µ = a = 1. The degeneracy parameter δ and the exact solution u will depend on the considered case.
The stabilization functions are defined by (2525) with ζ such that the local flux degeneracy number DT

introduced in (3535) is equal to the first argument of its min for all T ∈ Th, so that ζ does not influence the
error estimates. The function f and the Dirichlet boundary condition are inferred from the exact solution.
In all cases, except for the non-homogeneous boundary condition, these solutions match the assumptions
required in Theorem 1010. We consider the HHO scheme for k ∈ {1, 2, 3} on a triangular mesh family.

6.1 Non-degenerate flux

We consider nonzero constant degeneracy parameters δ ∈ {1, 0.1, 10−2, 5 · 10−4}, and the potential u is
given by,

u(x, y) = sin (πx) sin (πy) ∀(x, y) ∈ Ω.
Thus, the dimensionless number η̃h defined in (3737) satisfies

η̃h = µh(δ) B
2 k−1

2 πkhk+1

δ
. (51)

Therefore, we should observe a (k + 1)(p − 1) pre-asymptotic order of convergence until the size of the
mesh is small enough compared to δ so that the convergence rate switches to k + 1 (see Remark 1111).

Indeed, in Figure 11, we can see in the first row of results (corresponding to the case δ = 1) a constant
convergence rate of k + 1, which is in agreement with Remark 1111 since η̃h ≤ hk+1 |u|W k+2,∞(Th )

⇔ δ ≥ 1.
From row to row, we can observe a pre-asymptotic convergence rate of (k+1)(p−1) evenmore pronounced
as δ decreases since η̃h is proportional to 1/δ. We can also observe the same phenomenon from column
to column which results from the dependency of η̃h on k.

6.2 Non-degenerate potential

We consider δ = 0 (the p-Laplacian case), and the potential u is given by,

u(x, y) = sin (πx) sin (πy) + (π + 1)(x + y) ∀(x, y) ∈ Ω.
Since |∇u| ≥ 1 on Ω, η̃h = µh(1) and we should observe a constant convergence rate of k + 1, which is
indeed the case (see Figure 22).

6.3 Non-degenerate flux-potential couple

The exact solution u is given by,

u(x, y) = sin (πx) sin (πy) ∀(x, y) ∈ Ω.
Since∇u vanishes at points (xi, yi)1≤i≤5 B {(0, 0), (1, 0), (0, 1), (1, 1), (0.5, 0.5)}, we consider a degeneracy
parameter function δ as the sum of bump functions centered at these points with 0.2 radius. Specifically,

δ(x, y) =
5∑
i=1


exp

(
1 −

1
1 − 25((x − xi)2 + (y − yi)2)

)
if

√
(x − xi)2 + (y − yi)2 < 0.2,

0 otherwise.
(52)

As a consequence, δ vanishes on about three quarters of Ω, however, η̃h = µh(1) and we should observe
a constant convergence rate of k + 1. This is confirmed by the results presented in Figure 33.
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Figure 1: Numerical results for the test case of Subsection 6.16.1. The steeper slope (in black) indicates the
k + 1 convergence rate expected from Theorem 1010 when the number δ is large enough compared to the
mesh size. Otherwise the other slopes indicate the (k + 1)(p − 1) convergence rate according to p.
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Figure 2: Numerical results for the test case of Subsection 6.26.2. The steeper slope (in black) indicates the
k + 1 convergence rate. The other slopes indicate the (k + 1)(p − 1) convergence rate according to p.
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Figure 3: Numerical results for the test case of Subsection 6.36.3. The steeper slope (in black) indicates the
k + 1 convergence rate. The other slopes indicate the (k + 1)(p − 1) convergence rate according to p.
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6.4 Degenerate problem

We consider δ = 0 (the p-Laplacian case), and the potential u is given such that for all (x, y) ∈ Ω,

u(x, y) =
1
10

exp
(
−10

(
|x − 0.5|p+

k+2
4 + |y − 0.5|p+

k+2
4

))
∀(x, y) ∈ Ω.

The particular choice of u, which changes with p and k, is driven by the need to ensure that the function
and its flux have the required regularity for the error estimate in Theorem 1010 to be valid, all the while
not being too smooth or with a simple structure, which might artificially generate a better convergence
of the scheme. Since ∇u vanishes on an entire region of the domain and δ = 0, we have, η̃h = +∞ and
we should observe (k + 1)(p − 1) convergence rates. The results for this test are presented in Figure 44.
Except for p = 1.25, they do confirm that the asymptotic rate of convergence is of order (k + 1)(p − 1),
with in some cases a pre-asymptotic rate closer to k + 1 – probably because, for larger meshes, the first
term in (3434) might be the dominant one due to a larger multiplicative constant. For p = 1.25, however,
the asymptotic rate appears to be faster than (k + 1)(p − 1); this could be due to the asymptotic regime
not being reached yet at the considered mesh sizes, or to the fact that the error estimate in Theorem 1010 is
actually not optimal for this specific test case.
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Figure 4: Numerical results for the test case of Subsection 6.46.4. The steeper slope (in black) indicates the
k + 1 convergence rate. The other slopes indicate the (k + 1)(p − 1) convergence rate according to p.

7 Conclusion
We have presented and analysed a Hybrid High-Order scheme of arbitrary order k, for a non-linear model
that generalises the p-Laplace equation (with p ∈ (1, 2]) through the addition of an offset in the flux, that
potentially remove its singularity at 0. Our error estimate highlights various convergence regimes for the
scheme, depending on its degeneracy or lack thereof (the latter occurring in presence of a non-zero offset,
or when the gradient of the continuous solution does not vanish); for a degenerate model we recover
the known rates of convergence in (k + 1)(p − 1), while an optimal rate of (k + 1), identical to the rate
for linear models, is obtained when the model is not degenerate. These regimes are locally driven by a
dimensionless number, and intermediate regimes are also identified.

Several numerical tests have been provided, and show a good agreement with the theoretical error
estimate, except in the case of a degenerate model with small p, where the convergence appears to be
faster than expected (which could be due to the asymptotic regime not yet being attained in that case, or
to the specifics of the particular degenerate test case considered here).
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