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ABSTRACT

Improving distance measurements in large imaging surveys is a major challenge to better reveal the distribution of galaxies on a large
scale and to link galaxy properties with their environments. As recently shown, photometric redshifts can be efficiently combined
with the cosmic web extracted from overlapping spectroscopic surveys to improve their accuracy. In this paper we apply a similar
method using a new generation of photometric redshifts based on a convolution neural network (CNN). The CNN is trained on
the SDSS images with the main galaxy sample (SDSS-MGS, r ≤ 17.8) and the GAMA spectroscopic redshifts up to r ∼ 19.8.
The mapping of the cosmic web is obtained with 680 000 spectroscopic redshifts from the MGS and BOSS surveys. The redshift
probability distribution functions (PDF), which are well calibrated (unbiased and narrow, ≤120 Mpc), intercept a few cosmic web
structures along the line of sight. Combining these PDFs with the density field distribution provides new photometric redshifts, zweb,
whose accuracy is improved by a factor of two (i.e., σ ∼ 0.004(1 + z)) for galaxies with r ≤ 17.8. For half of them, the distance
accuracy is better than 10 cMpc. The narrower the original PDF, the larger the boost in accuracy. No gain is observed for original
PDFs wider than 0.03. The final zweb PDFs also appear well calibrated. The method performs slightly better for passive galaxies
than star-forming ones, and for galaxies in massive groups since these populations better trace the underlying large-scale structure.
Reducing the spectroscopic sampling by a factor of 8 still improves the photometric redshift accuracy by 25%. Finally, extending the
method to galaxies fainter than the MGS limit still improves the redshift estimates for 70% of the galaxies, with a gain in accuracy
of 20% at low z where the resolution of the cosmic web is the highest. As two competing factors contribute to the performance of
the method, the photometric redshift accuracy and the resolution of the cosmic web, the benefit of combining cosmological imaging
surveys with spectroscopic surveys at higher redshift remains to be evaluated.
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1. Introduction

Photometric redshifts are a key component for the exploitation
of large imaging surveys (see, e.g., Salvato et al. 2019, for a
review). They are a cheap alternative to spectroscopic surveys for
the measurement of distances of millions of galaxies. They have
been widely used to study the evolution of galaxy properties over
cosmic time (e.g., Ilbert et al. 2013; Madau & Dickinson 2014;
Davidzon et al. 2017) or to link galaxies with their dark matter
halos (e.g., Coupon et al. 2015), and are essential to study the
nature of dark energy. Weak lensing cosmological probes also
need an accurate estimate of the mean redshift of the selected
galaxy populations (Knox et al. 2006), while the figure of merit
of the baryon acoustic oscillation probe can to some extent be
improved by combining dense photometric samples with sparse
spectroscopic surveys (Patej & Eisenstein 2018). The derivation
of robust redshift probability distribution functions (PDFs) is
also necessary to understand the uncertainties attached to any
of the above measurements (Mandelbaum et al. 2008).

The highly nonlinear mapping between the photometric space
and the redshift space has been performed essentially via two
broad techniques. The first, template fitting (e.g., Arnouts et al.

1999; Benítez 2000; Brammer et al. 2008), matches the broad-
band photometry of each galaxy to the synthetic magnitudes of
a suite of templates across a large redshift interval. This tech-
nique does not require a large spectroscopic sample for train-
ing, but it is often computationally intensive and involves poorly
known parameters, such as dust attenuation, which can lead
to degeneracies in color–redshift space. The second group of
techniques includes machine learning methods, such as artifi-
cial neural networks (Collister & Lahav 2004), k-nearest neigh-
bors (kNN, Csabai et al. 2007), self-organizing maps (SOM,
Masters et al. 2015; Davidzon et al. 2019), or random forest tech-
niques (Carliles et al. 2010), which perform better within the
limits of the training set (Sánchez et al. 2014), but the lack of
spectroscopic coverage in some color–space regions, and at high
redshift remain a major issue (Masters et al. 2019). For these rea-
sons, hybrid approaches have emerged to optimize the photomet-
ric redshift PDF estimates (e.g., Carrasco Kind & Brunner 2014;
Cavuoti et al. 2017; Hemmati et al. 2019).

One limiting factor of these techniques is the information used
as input. Magnitudes or colors are affected by choices of aperture
size, PSF variations, and overlapping sources (Hildebrandt et al.
2012). In recent years the deep learning techniques, such as
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Convolutional Neural Networks (CNN), have bypassed this lim-
itation by dealing directly with multiband galaxy images at the
pixel level, without relying on photometric feature extractions
(Hoyle 2016; D’Isanto & Polsterer 2018; Pasquet et al. 2019). As
shown by Pasquet et al. (2019), who trained a CNN on images
from the SDSS spectroscopic sample, this method surpasses cur-
rent machine learning photometric redshift estimates in the SDSS
survey (based on kNN, Beck et al. 2017). CNN photometric red-
shifts are almost free of bias with respect to disk inclination and
galactic reddening EB−V , for example, while color-based photo-
metric redshifts are not. The associated PDFs are also well cali-
brated and provide a reliable indicator of the redshift uncertainty.
However, despite constant improvements in photometric redshift
techniques, even the best SED fitting (such as in the COSMOS
field imaged in a large number of filters, Laigle et al. 2016) or
deep learning methods (Pasquet et al. 2019) hardly reach a red-
shift uncertainty σz below ∼0.01, which corresponds to a dis-
tance uncertainty of ∼40 cMpc (at z ∼ 1).

Redshifts can also be predicted from the spatial distribu-
tion of galaxies on a large scale. The spatial cross-correlation
between a photometrically selected sample and a reference
sample with known spectroscopic redshifts offers an efficient
way to infer the redshift distribution N(z) of the photomet-
ric sample (known as the clustering redshift technique; e.g.,
Matthews & Newman 2010; Ménard et al. 2013). This method
was extended with a hierarchical Bayesian model to simulta-
neously constrain N(z) and the redshift of individual galaxies
(Leistedt et al. 2016; Sánchez & Bernstein 2019).

With a similar methodology it is possible to improve the indi-
vidual photo-z estimates by using the known galaxy density field,
reconstructed from spectroscopic surveys (Kovač et al. 2010;
Aragon-Calvo et al. 2015) or the 3D tomography of the inter-
galactic medium with neutral hydrogen absorption lines (at high
redshift, Schmittfull & White 2016; Lee & White 2016). The
large-scale structure formation results from the anisotropic grav-
itational collapse of the primordial dark matter density fluctua-
tions (Zel’dovich 1970), giving rise to large underdense regions
bordered by sheet-like walls, which are framed by filaments
connecting density peaks (nodes). These features form the so-
called cosmic web (CW; Bond et al. 1996), identified in local
galaxy surveys (York et al. 2000; Colless et al. 2003). Galaxies
are preferentially found in overdense regions of the underly-
ing density field as a consequence of the biased formation of
their dark matter halos (Mo & White 1996). The underdense
regions appear almost empty of galaxies (voids account for
less than 5% of luminous galaxies; Aragon-Calvo et al. 2015),
while they occupy almost 90% of the volume of the universe
(Aragón-Calvo et al. 2010; Cautun et al. 2014). The vast major-
ity of galaxies thus lie within the remaining 10% composed of
the dense regions distributed in a geometric pattern of walls,
filaments, and nodes. The most massive galaxies live preferen-
tially in the nodes (highest density regions), but segregation also
occurs in filamentary regions where more massive or passive
galaxies are closer to the center of the filaments (Malavasi et al.
2017; Kraljic et al. 2018).

The galaxy density field can therefore provide strong priors
on the location of a galaxy and help to narrow its original pho-
tometric redshift PDF to a few more probable redshifts corre-
sponding to the spikes of the intercepted density field along the
line of sight, as proposed by Kovač et al. (2010). When anchored
to the right density peak, the photometric redshift accuracy is
increased up to the resolution of the reconstructed density field,
usually a few cMpc, i.e., about 10 times better than current indi-
vidual photometric redshift estimates. This method has been fur-

ther improved by Aragon-Calvo et al. (2015, named the Pho-
toWeb redshift method). In addition to the density field, they
introduced an extra term to mitigate the influence of the nodes
(highest density peaks) in the resulting redshift PDF. For any
point along the line of sight, this term scales inversely to the clos-
est distance of any structure, allowing for a better contribution of
less dense structures such as filaments and walls. They applied
the PhotoWeb redshift to the SDSS sample. They reconstructed
the cosmic web with the spectroscopic galaxies up to z ∼ 0.12
and used the SDSS photometric redshifts of Csabai et al. (2007),
based on a k-NN method. Restricting the sample to galaxies with
good photometric redshift accuracy (∆z ≤ 0.015), they showed
that using the prior knowledge of the cosmic web yields photo-
metric redshifts with Megaparsec accuracy.

In the present paper, we adopt the same strategy as
Aragon-Calvo et al. (2015), but we push the analysis further
in redshift and magnitude. Our method, the Photo Webredshift
technique (hereafter PW-z), relies on the cosmic web extractor
DisPerSE (Sousbie 2011), and is applied to the CNN photomet-
ric redshifts from Pasquet et al. (2019). We explore the perfor-
mance of the resulting photometric redshifts zweb as a function
of CNN PDF width, while making no pre-selection regarding
their uncertainties, and we test the reliability of the final PW-z
PDF. Furthermore, we analyze the performance of the method
with respect to galaxy properties (galaxy types, group member-
ships) and how the resolution of the CW reconstruction impacts
the zweb accuracy. Our analysis also extends to galaxies two mag-
nitudes fainter than SDSS using the GAMA survey.

The outline of the paper is as follows. In Sect. 2 we describe
the photometric and spectroscopic dataset and show the zCNN
measurements. In Sect. 3 we describe the PW-z method. The
main results are presented in Sect. 4, followed by the conclu-
sion in Sect. 2. Throughout this paper we adopt a flat cosmol-
ogy with Ωm = 0.307115 and the Hubble constant H0 =
67.77 km s−1 Mpc−1.

2. Spectroscopic and photometric redshift dataset

2.1. Spectroscopic redshift dataset

To perform this analysis, we use the SDSS and BOSS spectro-
scopic samples from the data release 12 (DR12, Alam et al. 2015)
and the GAMA spectroscopic samples from the data release 3
(Baldry et al. 2018). The characteristics of each sample are as
follows:

– We use the main galaxy sample of the SDSS (hereafter
MGS) to train and validate our photometric redshift estimates.
It is limited to galaxies with dereddened Petrosian magnitudes
r ≤ 17.8. We only use the large contiguous region shown in Fig. 1
(left panel), covering∼7400 deg2 and containing∼480 000 galax-
ies. The redshift distribution is shown in Fig. 1 (right panel).

– The spectroscopic sample used to reconstruct the CW con-
sists of the MGS sample completed by the luminous red galaxy
sample (LRG) and by the BOSS sample for a total of ∼686 000
galaxies up to z = 0.4. This redshift limit encompasses all the
MGS galaxies. The redshift distribution is shown in Fig. 1 (right
panel). In the bottom panel, we show the evolution of the spatial
density as a function of redshift, characterized by the mean inter-
galactic comoving distance1. Between z ∼ 0.15 and z ∼ 0.25, the

1 〈dinter〉 = 1/ 3
√
ϕ(z), where ϕ(z) is the selection function taking into

account the density variation with the radial distance induced by the
flux limits and color selections of the different samples.
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Fig. 1. Left: footprints of the SDSS + BOSS sample, color-coded with the galactic reddening excess (E(B − V)), and the three equatorial GAMA
fields (large red rectangles). Right top panel: redshift distributions of the SDSS MGS sample (r ≤ 17.8, filled light blue histogram), the GAMA
sample (r ≤ 19.0−19.8, filled light red histogram), and the whole spectroscopic sample (MGS + LRGs + BOSS samples; solid black line) used to
reconstruct the cosmic web. Right bottom panel: mean intergalactic comoving distance of the whole spectroscopic sample (see text).

target density becomes sparse, providing a coarse representation
of the CW above z ∼ 0.2.

– We also derived a second set of photometric redshifts trained
with the GAMA spectroscopic survey which is two magnitudes
deeper than the MGS sample. It consists of two fields with spectro-
scopic redshifts down to r = 19.0 (namely G09 and G12) and one
field down to r = 19.8 (G15). These three fields cover 180 deg2

and overlap the SDSS-BOSS footprint, as shown in Fig. 1 (left
panel). As suggested by the GAMA team, we restrict the sample
to the most secure redshifts (nQ≥ 3), namely ∼99 500 galaxies.
The total redshift distribution is shown in Fig. 1 (right panel). In
the deepest field (G15), 4% of the galaxies are located at z > 0.4
and will be ignored in the rest of the paper.

2.2. Photometric redshifts with SDSS-MGS

Our first set of photometric redshifts is trained and validated with
the SDSS-MGS sample (Pasquet et al. 2019). They are estimated
with a convolutional neural network (CNN), which is a special
type of multilayered neural network. The input data are 64× 64
pixel images centered on the galaxy coordinates in the five bands
of the SDSS imaging survey (ugriz). The architecture of the
CNN is detailed in Pasquet et al. (2019). In brief, it is composed
of several convolution and pooling layers followed by fully con-
nected layers. The convolution part of the network is organized
in multi-scale blocks called inception modules to treat the signal
at different resolution scales (Szegedy et al. 2015). The redshift
values are estimated as a classification problem, where each class
corresponds to a narrow redshift bin δz (here 180 redshift bins
between 0 ≤ z ≤ 0.4). The network assigns a probability to each
redshift bin, which is used as a probability distribution function
(PDF). We define the redshift value as the weighted mean of the
PDF (zCNN =

∑
k zkPDFk). The power of this technique relies in

the exploitation of all the information available in the images at
the pixel level, without any prior feature extraction.

To assess the performance of the method, we adopt the same
statistics used by Pasquet et al. (2019):

– the residuals, ∆z = (zCNN − zspec)/(1 + zspec);
– the bias, 〈∆z〉, defined as the mean of the residuals;
– the MAD deviation (Median Absolute Deviation)2, defined

as σMAD = 1.4826 ×median(|∆z −median(∆z)|).
– the fraction of outliers, η, defined as the fraction of galaxies

with |∆z| > 0.05;
The CNN photometric redshifts are highly accurate at the depth
of the SDSS-MGS sample (r ≤ 17.8), with σMAD lower than
0.01. In Fig. 2 we show the evolution of σMAD as a function
of redshift. The behavior of the photometric redshift accuracy is
relatively independent of redshift up to z ∼ 0.3 for the MGS,
with less than 2% of the MGS being above this redshift.

Of particular interest is the reliability of the redshift PDF
derived by the CNN. To evaluate the predictive power of the
PDFs we use the probability integral transform statistic (PIT;
Polsterer et al. 2016; Pasquet et al. 2019). For each galaxy the
PIT is measured as the cumulative PDF (CDF) up to the spectro-
scopic redshift, zs

(
CDF(zs) =

∫ zs

0 PDF(z) dz
)
. A flat distribution

of the PIT values in a given sample indicates that the PDFs are
not biased with respect to the spectroscopic redshifts. They are
neither too narrow nor too wide, whereas convex or concave dis-
tributions point to under- or overdispersed PDFs, respectively
(Polsterer et al. 2016). A negative or positive slope in the PIT
distribution indicates a systematic bias (over- or underpredicted
redshifts, respectively). We find a nearly flat PIT distribution
except at the extreme values that are slightly underpopulated,
which suggests that the PDFs are marginally too broad (see
Fig. 10 in Pasquet et al. 2019).

2.3. Photometric redshifts with GAMA

We also created a second set of photometric redshifts using
GAMA as the training sample, which is two magnitudes deeper
than the MGS. The characteristics of the input images remain

2 Strictly speaking, this is the standard deviation σ estimated from the
MAD deviation for normally distributed data: σ ≈ 1.4826 ×MAD.
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Fig. 2. Accuracy of the photometric redshift point estimates (σMAD)
for the SDSS-MGS and GAMA surveys as a function of spectroscopic
redshift (solid lines) and the complete subsamples (dotted lines).

the same as described in Sect. 2.2 (64× 64 pixel images from the
SDSS imaging survey in five bands ugriz).

As the size of this training database is smaller than the
MGS sample and extends to higher redshift, we had to adapt
the architecture. The new architecture is shallower and alter-
nates five convolution layers and three pooling layers, followed
by two fully connected layers. The classifier consists of 300 bins
between 0 ≤ z ≤ 0.6. The total number of parameters (9 433 196)
is reduced compared to the CNN trained on the MGS sample, in
order to avoid overfitting. A clear difficulty is the low signal-to-
noise ratio of the SDSS images for the GAMA sources fainter
than the MGS (up to 2 magnitudes) that degrades the perfor-
mance. To tackle this problem, we optimized the choice of the
activation functions and the pooling operations. We used the
hyperbolic tangent as an activation function of the first layer,
which saturates the signal at high values, thus narrowing its
range in order to facilitate the learning stage. Then we used max
pooling instead of average pooling operations in order to give
more weight to the flux of the galaxy than to the noise.

Figure 2 shows the CNN redshift precision as a function of
spectroscopic redshift for the GAMA training. The lower accu-
racy obtained for the GAMA sources at bright magnitude (r <
17.8) compared to the SDSS-MGS training is due to the smaller
size of the training set and the simpler CNN architecture, but it
is comparable. At fainter magnitudes, σMAD gradually increases
as a result of the decreasing S/N in the five photometric bands,
in particular in the u and z bands where the majority of galax-
ies with r ≥ 19.5 have a S/N lower than 10. As in Pasquet et al.
(2019), we compare our results with the photometric redshifts of
Beck et al. (2017) available in SDSS DR12 and estimated with
a k-NN method (local linear regression, Csabai et al. 2007). As
for the SDSS-MGS, the CNN redshifts performs better, with a
MAD deviation σMAD = 0.017 and 0.026 in the two faint mag-
nitude bins compared to σMAD = 0.022 and 0.034 for the k-NN
method.

In Fig. 3, we show the mean PDFs recentered at the spec-
troscopic values for the same samples. That of the SDSS-MGS
sample is significantly narrower than the mean PDF of the
GAMA sample, especially at faint magnitude. This broadening
of the PDFs with magnitude, in line with the increase in σMAD at
lower S/N, reflects the increasing uncertainty on the photometric
redshifts in a reliable way since we also find the PIT distribution
to be equally flat at all magnitudes.

Fig. 3. Mean PDFs, recentered on the individual spectroscopic redshifts,
for the SDSS and GAMA surveys. We define three subsamples accord-
ing to their magnitude range: r < 17.8 (orange line), 17.8 < r < 18.8
(green line), and 18.8 < r < 19.8 (blue line).

Finally, we note that the behavior of the photometric redshift
accuracy is relatively independent of redshift (Fig. 2) up to z ∼
0.4 for GAMA in both magnitude intervals. In the following we
restrict our analysis to z < 0.4.

In conclusion, the CNN method provides photometric red-
shifts that are accurate for both the MGS and the GAMA sam-
ples and unbiased up to z ∼ 0.3 and z ∼ 0.4, respectively. The
distance accuracy3 is 40−112 Mpc at 〈z〉 = 0.10 for σ = 0.009
(SDSS) and 0.025 (GAMA), respectively, which correspond to
the typical size of the largest void. In the following section we
investigate whether the combination of the PDFs from the differ-
ent samples and the knowledge of the cosmic web environment
reconstructed with the spectroscopic surveys can further improve
the photometric redshift estimates.

3. The PW-z method

3.1. Method

As described in Aragon-Calvo et al. (2015), the main idea of the
PW-z technique is to exploit the galaxy distribution of a spec-
troscopic survey in order to improve the photometric redshift of
other galaxies that are expected to be embedded in this distribu-
tion. The broad PDFs derived from a given photometric redshift
technique (here the CNN-based PDFCNN(z)) are combined with
the probability distribution function of the density field (Pden(z),
reconstructed from the spectroscopic survey) along the line of
sight (LoS) as follows:

PDFPW-z(z) = PDFCNN(z) . Pdens(z) . PCW(z). (1)

Figure 4 illustrates the method. The original PDF of the galaxy
derived from the CNN is shown in the top panel with its mean
redshift estimate and uncertainties (68% confidence interval),
as well as the spectroscopic redshift. The reconstructed density
field, illustrated in the second panel, shows the crossing of sev-
eral structures along the LoS (alternate low- and high-density
regions, spanning a wide dynamical range). To prevent the final

3 The distance uncertainty can be expressed as δD = [c(1 +
z)/H(z)].[δz/(1 + z)] (Schmittfull & White 2016), where H(z) =

H0.
√(

1 +
ΩM
ΩΛ

(1 + z)3
) /(

1 +
ΩM
ΩΛ

)
. This leads to δD(Mpc) = 4500 σMAD

at z ∼ 0.1.
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Fig. 4. Illustration of the PW-z technique. From top to bottom: (i) initial
CNN photometric redshift PDF, (ii) CW density field, (iii) probability
taking into account the closest distance of any geometric structure of
the CW (Eq. (2)), (iv) final PW-z PDF. The red line indicates the zspec,
the magenta line the zCNN (top panel) and the median of the PW-z PDF
(bottom panel), the green line indicates the mode of the PW-z PDF, and
the dashed lines the 68% confidence interval.

PDF to be anchored on the densest group or cluster regard-
less of the vicinity of less dense structures (filaments or walls),
Aragon-Calvo et al. (2015) introduced an additional term taking
into account the geometry of the CW, beyond the density. At
each redshift along the LoS, the shortest distance to any of the
CW features (walls, filaments, nodes) is estimated and converted
into a probability PCW(z)4 as follows:

PCW(z) =


1 if dns ≤ 10
(10 − dns)

20
+ 1 if 10 < dns < 30

0 if dns ≥ 30

, (2)

where dns is the 3D Euclidean distance to the nearest CW struc-
ture in cMpc. This is illustrated in the third panel. This term alle-
viates the dominating influence of neighboring nodes on which
filaments connect. The density field and CNN PDFs are resam-
pled with δz = 10−3 in 0 < z < 0.4 with a linear interpo-
lation, and the PCW(z) is also computed at these points. This
results in final PDFPW-z with the same sampling. The result-
ing PDF (PDFPW-z(z)) is shown in the bottom panel with its
median, mode, and 68% confidence interval. In that specific
case, the original PDF is shrunk around the highest density
peak, which happens to correspond to the spectroscopic redshift
of this galaxy. Other illustrations of PW-z PDFs are shown in
Appendix A.

3.2. Density field and CW reconstruction

To extract the density field from the spectroscopic redshift sur-
vey and reconstruct the CW with the complex connectivity
of its different components (nodes, filaments, and walls), we
use the Discrete Persistent Structure Extractor code (DisPerSE;
Sousbie 2011), a geometric 3D robust ridge extractor working
directly with the discrete 3D data points. As demonstrated in

4 This is our own parameterization since it is not explicitly described in
Aragon-Calvo et al. (2015). We choose this function empirically, having
in mind the geometry of the reconstructed CW; we tested several ver-
sions of this function and found that the exact values do not significantly
impact the results.

Sousbie et al. (2011), DisPerSE can identify fairly poorly sam-
pled structures, which will prove critical in what follows.

The underlying density field is computed from the discrete
distribution of galaxies using the Delaunay Tessellation Field
Estimator (DTFE) technique (Schaap & van de Weygaert 2000).
The DTFE is used to generate a simplicial complex, i.e., a
geometric complex of cells, faces, edges, and vertices map-
ping the whole volume. The value of the density field, f , is
estimated at each vertex of this complex and scales with the
inverse of the volume of each tetrahedron. It naturally maps the
anisotropic distribution of galaxies and can be linearly interpo-
lated at any position of the volume, and within holes (unobserved
or masked regions) in the spectroscopic survey (see the example
in Aragon-Calvo et al. 2015; Malavasi et al. 2017). In Eq. (1) we
use the density contrast, defined as 1 + δ = f /ϕ(z), where the
local density, f , is normalized by the mean density, ϕ(z), which
decreases with radial distance. Along each LoS, Pdens(z) is nor-
malized to unity.

To identify the topological structures of the CW (nodes, fil-
aments, and walls), DisPerSE relies on discrete Morse and per-
sistence theories. Morse theory provides a framework in which
to extract from f the critical points where the discrete gradi-
ent, ∇ f , vanishes (e.g., maxima, minima, and saddle points). It
then connects critical points via the field lines tangent to ∇ f
in every point, while relying on a geometrical segmentation of
space, known as the discrete Morse complex, within which all
the field lines have the same origin and destination. This segmen-
tation defines distinct regions called ascending and descending
manifolds. The morphological components of the CW are then
identified from these manifolds5. The finite sampling of the den-
sity field introduces noise to the detection of structural features.
DisPerSE makes use of persistent homology to pair the critical
points according to the birth and death of the relevant feature.
The “persistence” of a feature is assessed by the relative density
contrast of the density of the critical pair chosen to pass a certain
signal-to-noise threshold. The noise level is defined relative to
the variance of persistence values obtained from random sets of
points and estimated for each type of critical pair. This thresh-
olding eliminates critical pairs and simplifies the correspond-
ing discrete Morse complex, retaining only its most significant
features.

By construction this method is scale invariant and builds
a network which adapts naturally to the uneven sampling of
observed catalogues. To prevent the spurious detection near the
edges of the survey, DisPerSE encloses each field into a larger
volume. New particles are added by extrapolating the density
field measured at the boundary of the survey (see, e.g., Sousbie
2011; Kraljic et al. 2018, for illustrations). Once the different
manifolds are attached to specific topological features, we can
estimate the closest structure (node, filament, or wall) from any
point along a specific line of sight to derive the associated prob-
ability (PCW(z)). As in Aragon-Calvo et al. (2015), we find that
this additional term is a second-order correction and only affects
the results described below at a subpercent level. Finally, we
do not correct for the Finger-of-God effect, in contrast to what
is done in Aragon-Calvo et al. (2015). The large redshift range
considered in this work (0 < z < 0.4) introduces a variable
sampling of the density field, preventing us from performing an
efficient group reconstruction at all z. The “isotropizing” of the
groups also introduces an uncertainty in the redshift assignment.

5 Ascending 3-manifolds trace the voids, ascending 2-manifolds trace
the walls, ascending 1-manifolds trace the filaments, with their end
points connected onto the maxima (the peaks of the density field).
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Fig. 5. Comparison between the photometric and spectroscopic redshifts. Left: zweb defined as the median of the PW-z PDF. Right: original zCNN.

This may prevent us from getting highly accurate redshift at sub-
Mpc scales for some galaxies, but as discussed later it still pro-
vides a significant improvement with respect to the original pho-
tometric redshifts.

3.3. Adopted strategy

The density field is estimated from the combined SDSS (MGS
and LRG) and BOSS samples up to z ∼ 0.4 and the CW features
are reconstructed with a 3σ persistence threshold.

To test the performance of the PW-z method, we select a sam-
ple of galaxies that were neither used in the CNN training nor
used in the CW reconstruction. In practice, we randomly select
∼17 000 galaxies from each test sample of the cross-validations
created by Pasquet et al. (2019), and reconstruct the CW with
all the remaining galaxies. In this way the small fraction (∼2%)
of galaxies removed has no impact on the CW reconstruction,
thus on the results of the PW-z method. We repeat this opera-
tion five times for each of the five cross-validations. We find that
the results are consistent throughout the five subsamples. In the
next sections, the 85 000 test galaxies are used to measure the
performances of the PW-z method.

4. Results

The zweb redshifts are obtained from the final PW-z PDF derived
with Eq. (1). While in Pasquet et al. (2019) we adopted the mean
value of the PDF as point estimate, zCNN, in the following we
consider different definitions for the PW-z redshift, zweb, with
the mode, the mean, and the median of the PW-z PDF, and
we explore their relative performance. The mode anchors the
zweb to the strongest density peak and as such best illustrates
the method. The mean and median rely on the full PW-z PDF
while still benefiting from the narrowing of the original CNN
PDF.

4.1. Global performance of the PW-z method

Figure 5 compares the zweb and zCNN redshifts with the spectro-
scopic redshifts for the full sample. The zweb redshifts are signif-
icantly improved compared to the zCNN, with an increased frac-
tion of sources along the identity line while a modest increase in
catastrophic failures is observed. This is quantified in Table 1,
and is illustrated in Fig. 6 for the three definitions of zweb.
Figure 6 (top panel) shows the boost of highly accurate zweb red-
shifts from a factor of 2 (for zweb mean) to a factor of 6 (for
zweb mode) when considering the full test sample. The σMAD is
reduced by a factor of ∼2.5, 2.0, and 1.4 for zweb based on the
mode, median, and mean, respectively (Table 1). This translates
into a gain in distance uncertainty from ∼40 cMpc (for zCNN)
down to ∼17 cMpc (for zweb mode). About half of the sample
(45%) has a redshift accuracy better than 10 cMpc (for zweb mode
and median), more than twice the fraction for zCNN (20%; see
Fig. 6, bottom panel).

As a drawback of the PW-z method, about 25% of zweb based
on the mode have worse estimates than zCNN (Table 1 and Fig. 6,
bottom panel). This happens when the galaxy is associated with
the wrong structure of the density field and mainly impacts the
zweb based on the mode of the PDF where the fraction of less
accurate redshifts than zCNN becomes significant. By adopting
the zweb based on the median instead of the mode, we can mit-
igate this bias and reduce the number of galaxies with worse
redshifts than zCNN to ∼10%, while keeping a high fraction of
galaxies with significantly improved redshifts.

The distribution of the zweb uncertainties are clearly non-
Gaussian, with a high compact core and a lower and broader
component, as shown in Fig. 7. Aragon-Calvo et al. (2015) pro-
posed modeling the zweb errors with a double-Gaussian function
that reflects the small-scale and large-scale errors,

f (∆z) = CS exp
− (∆z)2

2σ2
S

 + CL exp
− (∆z)2

2σ2
L

 , (3)
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Table 1. Performance of the different zweb and zCNN redshift estimates.

Selection σMAD η ∆zweb<
(σS) 10 cMpc ∆zCNN
×10−3 (%) (%) (%)

zweb (mode)
Full sample 3.8 (0.6) 0.83 48 77
Width< 0.03 2.9 (0.7) 0.13 52 79
Width< 0.02 2.1 (0.6) 0.02 58 83

zweb (median)
Full sample 4.5 (1.2) 0.44 44 88
Width< 0.03 3.5 (1.2) 0.07 49 89
Width< 0.02 2.6 (1.1) 0.02 55 92

zweb (mean)
Full sample 6.6 (2.2) 0.31 31 97
Width< 0.03 5.4 (1.9) 0.04 36 97
Width< 0.02 4.0 (1.5) 0.02 45 98

zCNN

Full sample 9.2 (5.9) 0.28 21 −

Width< 0.03 7.9 (5.3) 0.04 24 −

Width< 0.02 6.3 (4.8) 0.02 29 −

Notes. Performance of the different zweb (top three blocks) and zCNN
(bottom block) redshift estimates (σMAD, η) for the whole sample
(85 000 galaxies) and two subsets with CNN PDFs widths ≤0.03 and
0.02 (corresponding to 75% and 40% of the whole sample, respec-
tively). In the second column the σS value from the double-Gaussian
modeled residual function is also reported (see text). The last two
columns show the fraction of galaxies with residuals ∆z ≤ 10 cMpc
and with zweb accuracy better than the zCNN.

where CS, CL, σS, and σL are the normalization coefficients and
standard deviations for the small-scale and large-scale compo-
nent, respectively. The result of the fit of Eq. (3) to the uncer-
tainties distribution of zweb based on the median is presented
in Fig. 7 for the full galaxy sample and for galaxies with CNN
PDF width <0.03 and 0.02. The fitted values for the full sample
are CS = 1.0, σS = 0.00122, CL = 0.1, and σL = 0.01038.
The small-scale redshift error dispersion σS corresponds to a
distance uncertainty of ∼5 Mpc, of the order of the CW recon-
struction uncertainties and non-linear processes (e.g., peculiar
velocities), while the large-scale error dispersionσL corresponds
to ∼46 Mpc, similar to the zCNN uncertainty. Selecting galax-
ies with smaller CNN PDF widths leads to an improvement of
the large-scale zweb errors, while the small-scale component is
almost unchanged. The values of σS are reported in Table 1.

Finally, the galaxy distribution obtained with the zweb
(median) and the zCNN redshifts are compared in Fig. 8. The
PW-z method performs as expected: the prior information of the
spectroscopic CW density field places more galaxies inside the
structures, significantly enhancing the CW features, which are
barely seen with the CNN redshifts. This clearly illustrates the
benefit of adding spatial information from spectroscopic surveys.

4.2. Statistical behavior of the PW-z PDFs and redshift point
estimates

The final PDF is significantly modified with respect to the origi-
nal CNN PDF. We assess the predictive performance of the PW-z
PDFs using the PIT test (see Sect. 2.2). The PIT distributions are
presented in Fig. 9 in the redshift interval 0 < z < 0.3, where the
majority of our galaxies reside. The PIT distribution is shown for

Fig. 6. Differential (top) and cumulative (bottom) histograms of the
residuals for the zweb (mode: red, median: blue, mean: orange) and zCNN
(green). The dashed and dotted vertical lines indicate the respective
σMAD. The distance uncertainties in comoving Mpc are shown on the
top axis (assuming 〈z〉 ∼ 0.1).

Fig. 7. zweb uncertainties (thin lines) modeled with a double-Gaussian
fit (thick lines) for the full sample (green) and for galaxies with CNN
PDF width <0.03 and 0.02 (blue and red, respectively). The dotted lines
represent the σS of the small-scale component fit.

the CNN PDFs (green) and the PW-z PDFs (red). As do the CNN
PDFs, the PW-z PDFs exhibit a nearly flat distribution indicating
that they are also well-calibrated probability distributions, pro-
viding a reliable estimate of the redshift uncertainty. However,
they are not exempt from a small bias since a slope is observed,
which indicates a slight underestimation of the PW-z redshifts.
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Fig. 8. Galaxy distribution based on zCNN (left panel), zweb (median, central panel), and spectroscopic redshifts (right panel) with z ≤ 0.2. The 2D
projections include galaxies with 0◦ < δ < 45◦ and 109◦ < α < 264◦.

Fig. 9. Probability integral transform distribution of the CNN PDFs
(green histogram) and PW-z PDFs (red histogram) in 0 < z < 0.3.

Future cosmological missions request strong constraints on
the maximum redshift bias (defined as the mean residual; see
Sect. 2.2) in photometric redshift bins used for the tomographic
analyses. In particular, the bias requirement for the Euclid mis-
sion is 〈∆z〉 < 0.002 (Knox et al. 2006). Figure 10 shows the
bias, 〈∆z〉, as a function of zweb defined as the mode, median,
and mean of the PDF and zCNN, while the gray-shaded region
shows the maximum bias requirement. The mean redshift esti-
mates based on the CNN and PW-z PDFs show a very small
bias at all redshifts, fully within the expected cosmological con-
straint. The zweb median redshift shows a small bias still within
the constraint, but it appears marginally consistent at low z. How-
ever, when using the mode the bias exceeds the tolerance region
below z = 0.10 and above z = 0.25. The anchor onto the main
peak of the density field makes this zweb estimate less robust for
cosmological use.

4.3. Impact of the initial CNN PDF width

The performance of the PW-z method depends on the quality of
the initial CNN PDF. If the PDF is narrow enough so it encom-
passes only a few CW structures, then it increases the proba-
bility of finding the structure the galaxy belongs to. In Fig. 11
we show the zweb residual (mode) as a function of the CNN
PDF width. First, the global trend is that the accuracy of zweb
improves when the PDF width gets narrower, which is also the
case of the zCNN (Table 1). This reflects the reliability and unbi-
ased behavior of the CNN PDF. Then, when the CNN PDF width
is narrower than a characteristic scale, or ∼80 cMpc, the fraction
of greatly improved zweb (∆z ≤ 0.002) increases and becomes the

Fig. 10. Mean of the residuals (or bias, 〈∆z〉) as a function of photo-
metric redshift for the zweb (mode: red, median: blue, mean: yellow) and
zCNN (green). The gray-shaded region (〈∆z〉 < 0.002) is the maximum
bias requirement for the Euclid mission in all the photometric redshift
bins.

Fig. 11. Two-dimensional distributions of the zweb residuals (mode) as a
function of CNN PDF width. The histograms are normalized by the area
separately for each bin of PDF width. The narrower CNN PDFs prop-
erly enclose the true redshift, allowing the boost in redshift accuracy for
most sources when combined with the CW information.

majority for galaxies with a width ≤0.01, at which point no fur-
ther mismatches between structures are possible. The improve-
ment induced by the PW-z method when restricting the sample to
CNN PDF widths lower than σCNN = 0.03 and 0.02 are reported
in Table 1. All the statistical numbers improve, in particular the
σMAD decreases by almost a factor of 2 and the fraction of galax-
ies with residuals lower than 10 cMpc is higher than 55%.
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Fig. 12. Cumulative distribution of the residuals for quiescent galaxies
(red), star-forming galaxies (blue), and the whole population (black)
with zCNN (dashed lines) and zweb (median, solid line).

Fig. 13. Cumulative distribution of the residuals zweb (colored lines) and
zCNN (green lines) for galaxies belonging to different group sizes: one or
two members (orange), three to five members (blue), and higher (red).

4.4. PW-z performance with respect to galaxy properties

In this section we examine the performance of the zweb for dif-
ferent categories of objects, such as star-forming versus passive
galaxies, or as a function of group membership since the prior
knowledge from the spectroscopic density field may impact dif-
ferent populations differently.

4.4.1. Galaxy type

We split the active and passive MGS galaxies accord-
ing to the specific star formation rate values measured by
Brinchmann et al. (2004). We consider active galaxies as those
with log(sSFR) ≥ −11 and passive otherwise. Figure 12 shows
the cumulative distributions of the zweb and zCNN residuals for
the two subsamples. Passive galaxies show a better redshift accu-
racy than active ones with the CNN method. This could be due
to the brighter magnitude distribution of passive galaxies, but
also to the greater diversity of star-forming galaxies (e.g., due
to clumpiness, dust lanes, inclination), making the deep learn-
ing technique slightly less efficient. After applying the PW-z
method, passive galaxies have a greater boost in accuracy than
active galaxies. This is a natural consequence of the biased dis-
tribution: passive galaxies are preferentially in the high-density
regions of the CW compared to star-forming galaxies. This

Fig. 14. Mean absolute deviation, σMAD, of the zweb (based on the
median) as a function of the mean intergalactic separation of several
sparse spectroscopic samples. The black horizontal line shows theσMAD
of the original zCNN.

segregation effect was recently quantified with respect to fila-
ments in spectroscopic (Malavasi et al. 2017; Kraljic et al. 2018)
and photometric (Laigle et al. 2018) surveys. At least at low red-
shifts, passive galaxies are statistically closer to filaments than
active ones at similar stellar mass. The PW-z method is therefore
expected to be more effective for the former population.

4.4.2. Group membership

Almost half of the galaxies in the local universe are part of grav-
itationally bound systems. These groups are distributed along
or at the intersection of the filaments of the CW, and represent
the peaks of the galaxy density field. These peaks, however, are
slightly diluted along the line of sight due to the peculiar veloci-
ties of the galaxies that introduce redshift-space distortions (Fin-
gers of God), which are not corrected for before reconstructing
the local density field in the present work. Since most of the
groups have a velocity dispersion lower then σv = 600 km s−1

(Tempel et al. 2014), it will impact the radial distance by less
than 10 cMpc, i.e., 4 times lower than the current accuracy
achieved by the zCNN redshifts. We match our sample of MGS
galaxies with the group catalog of Yang et al. (2007), based on a
friends-of-friends algorithm performed up to z = 0.2. The MGS
galaxy sample is then split according to group size and the red-
shift residuals for the different subsamples are shown in Fig. 13.
As expected, the performance of the PW-z method is highly
dependent on the number of group members: the boost in accu-
racy is most prominent for galaxies belonging to large groups.
For the largest group sample (N > 5), ∼98% have improved zweb
compared to zCNN, and 80% have an error smaller than 10 Mpc.
The improvement remains significant for galaxies in groups of
intermediate size (3 < N ≤ 5), with ∼90% having better zweb
than zCNN, compared to ∼60% for isolated or in paired galaxies.
On the contrary, the zCNN residuals are identical for all the sub-
samples since no prior knowledge about group membership is
specified.

4.5. Impact of the spectroscopic CW reconstruction

The spectroscopic sampling of the galaxy density field is the
second most important ingredient of the PW-z method after the
quality of the original PDF. We evaluate its impact by randomly
reducing the number of galaxies in the spectroscopic survey by
several factors (25, 12.5, 3.7, 1.6%). We restrict this analysis to
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Fig. 15. Redshift residuals of the zCNN and zweb for the GAMA survey. Top: differential histograms with the full sample for the zCNN (green) and
the zweb (with the mode, median, and mean of the PDF) at 17.8 ≤ r ≤ 18.8 (left), and 18.8 ≤ r ≤ 19.8 (right). Bottom left: cumulative histograms
for the zCNN (dashed line) and zweb (median only, solid line) at low redshift (z ≤ 0.17) and split into two magnitude bins (red: 17.8 ≤ r ≤ 18.8;
blue: 18.8 ≤ r ≤ 19.8). Bottom right: same as left, but at high redshift (0.17 ≤ z ≤ 0.4).

z ≤ 0.15, where the mean intergalactic separation varies slowly
with z-(Fig. 1). The PW-z method is reapplied using the density
fields and CW features computed for each of the sparse spectro-
scopic samples. In Fig. 14, the rms of the median zweb residuals,
σMAD, are shown for the different subsamples, corresponding to
different mean intergalactic distances. Decreasing the sampling
decreases the performance of the method, but it takes a very
sparse sampling to reach the rms value of the original zCNN. It can
also get worse when the poor reconstruction of the galaxy den-
sity field systematically misidentifies the structures that galaxies
belong to.

4.6. PW-z performance for the GAMA survey

In this section we push the PW-z method to the fainter galaxy
population of the GAMA survey. The CW from the SDSS-BOSS
spectroscopic survey is combined with the zCNN photometric red-
shifts of GAMA. As mentioned in Sect. 2, the low S/N of the
SDSS images for GAMA sources (17.8 ≤ r ≤ 19.8) leads
to wider zCNN PDFs than for the MGS sample. The impact on
the performance are summarized in Fig. 15 and Table 2. For
the whole sample, the zweb residuals still show a high frac-
tion (∼70%) of improved photometric redshifts well centered at
∆z = 0, while the zCNN residual appears slightly biased (〈∆z〉 ∼
0.005; Fig. 15, left panel). In Fig. 15, bottom left and right, we
distinguish between low and high redshifts to partly disentangle
the impact of the CW reconstruction from the zCNN PDF widths.
At low z (bottom left panel), where the CW is better recon-
structed, the zweb are better than the zCNN in both the bright and
faint magnitude bins. It more than doubles the number of galax-
ies with distance uncertainties better than 10 cMpc (see Table 2).

At higher redshift (bottom right panel), about half of the galax-
ies have improved photometric redshifts in both magnitude bins
with a modest gain of highly accurate redshifts ≤10 Mpc). The
degradation for the second half of zweb with respect to zCNN
can be attributed to the sparse CW reconstruction, which intro-
duces associations with the wrong density peaks (as mentioned
in Sect. 4.5).

As shown in Table 2, when restricting the sample to the nar-
rowest zCNN PDF widths, the σMAD for zweb still improves the
accuracy but only for a small fraction of the objects. More prac-
tically, we can select a population with a desired redshift accu-
racy based on their final PW-z PDFs, despite their more complex
shapes. In Fig 16, we show the evolution of the zweb accuracy
as a function of the PW-z PDF width and the relative fraction
of galaxies considered. The accuracy deteriorates progressively
toward higher PDF widths. With a cut at PDF width ≤0.04 for the
low-z sample (z ≤ 0.17), we can select 70% (50%) of galaxies
brighter than 18.8 (19.8), with an accuracy better than σ = 0.007
(0.008). For the whole GAMA sample, you can select a popula-
tion with σ = 0.01 by applying a PDF width cut of 0.038, which
will enclose 40% of the population. In conclusion, the method
still benefits the photometric redshifts of galaxies two magni-
tudes fainter than the spectroscopic sample used to reconstruct
the density field.

5. Conclusion

In this work, we revisited and extended the study of
Aragon-Calvo et al. (2015), who illustrated the benefit of com-
bining photometric redshift PDFs with the knowledge of the CW
to boost their accuracy.
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Table 2. Performance of PW-z (median) in GAMA survey for 17.8 <
r < 18.8 (top) and 18.8 < r < 19.8 (bottom), low-redshift samples and
different CNN PDF width selections.

GAMA σMAD η ∆zweb<

number of (σS) 10 cMpc ∆zCNN
galaxies ×10−3 % % %

17.8 < r < 18.8
Full sample 14.4/17.1 4.0/2.8 27/15 69
23 987 (1.5)
z < 0.17 13.4/16.8 3.2/3.1 25/10 80
11 457 (1.5)
Width< 0.03 6.5/9.5 0.5/0.1 35/19 81
3513 (1.6)
Width< 0.02 4.7/6.5 0/0 41/26 92
275 (1.1)

18.8 < r < 19.8
Full sample 22.6/24.4 9.8/8.2 18/9 72
65 277 (1.9)
z < 0.17 21.1/25.4 9.9/12.0 18/7 97
16 872 (1.6)
Width< 0.03 7.62/10.7 1.6/1.6 28/18 69
242 (1.6)

Notes. Values are reported for zweb/zCNN.

Here we make use of the robustness of the cosmic web extrac-
tor DisPerSE, and the more accurate and better calibrated pho-
tometric redshifts PDFs based on a CNN. The density field and
the main components of the cosmic web (nodes, filaments, and
walls) are reconstructed with DisPerSE, up to z∼ 0.4 using the
combined SDSS-MGS and BOSS surveys. The final PDF of each
galaxy is obtained by combining their original CNN PDF with
the density field and the distance to any CW structures along
their line of sight, providing a new estimate of the photometric
redshift, zweb. We first apply this technique to galaxies from the
MGS sample (r≤ 17.8). Our main conclusions are as follows:

– For the whole population, the method improves the precision
of σMAD by a factor of up to 2.5. By using the mode of the
final PDF as the new photometric redshift value, the initial
distance uncertainty of ∼40 cMpc shrinks to ∼17 cMpc.

– The zweb accuracy is degraded for 10% of the sources that
are associated with the wrong structure. This effect can be
mitigated by using the mean of the zweb PDF rather than the
mode, at the price of a lower zweb precision.

– The nearly flat PIT distribution shows that the final zweb
PDFs are also well calibrated and reliable. Although a small
bias is observed, it can be kept within the requirements of
cosmological missions by choosing the mean or median as
redshift point estimates. This allows us to select populations
according to their zweb uncertainties.

– As expected, the final zweb precision depends on the origi-
nal zCNN PDFs: the narrower the CNN PDF, the lower the
number of intercepted structures, the higher the boost in zweb
accuracy. By selecting a zCNN PDF width narrower than 0.02
(i.e., ∼90 cMpc), σMAD is reduced by a factor of ∼2 and
the fraction of galaxies with residuals lower than 10 cMpc
exceeds ∼50%.

– The PW-z method performs better for passive galaxies, due
to their higher luminosities (S/N) and stronger correlation
with the densest regions of the density field compared to star-
forming galaxies.
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Fig. 16. WEBz performance for GAMA galaxies selected according to
their PW-z PDF width. Top panel: σMAD for the whole population (0 <
z < 0.4 and r < 19.8; black), the low-z bright (z < 0.17 and r < 18.8;
blue), and the low-z faint (z < 0.17 and r < 19.8; red) subsamples.
Bottom panel: cumulative fraction of galaxies for each sample.

– Using an independent SDSS group catalog, we find that the
distance error for 80% of the galaxies in large groups (N > 5)
is smaller than 10 Mpc.

– Up to a mean intergalactic distance of 20 cMpc, achieved by
reducing the sampling for the CW reconstruction, the PW-z
method still improves the photometric redshifts.

We then extended the method to galaxies that are two magni-
tudes fainter than MGS (r ≤ 19.8) using the GAMA spectro-
scopic survey. Despite the reduced size of the training sample
and the lower S/N of the images, we were able to obtain a CNN
photometric redshift precision of σMAD < 0.026. We apply the
PW-z method in this faint regime while keeping the same CW
information as above. We found the following:

– Although the CNN PDFs are significantly wider, 65% of
the PW-z redshifts are better than zCNN and twice as many
objects (i.e., ∼20%) have distance uncertainties lower than
10 cMpc. However, the gain in σMAD is only ∼10%. Interest-
ingly, the PW-z method allows us to get rid of a small bias
observed for the zCNN in the faintest magnitude bins.

– While the zCNN accuracy depends mainly on the S/N of the
images rather than on redshift, a larger fraction of galaxies
has improved zweb at low redshift (z ≤ 0.17) than at high
redshift (0.17 < z < 0.4). This reflects the importance of the
resolution of the CW reconstruction.

– The PW-z PDFs can be used to select galaxies with a desired
redshift accuracy (e.g., galaxies with PW-z PDF width lower
than 0.038 (40%) have an accuracy of σ ∼ 0.01). This will
be of interest when the zCNN and zweb are extended to r ≤
19.8 for the entire SDSS, but with the drawback of a poorly
controlled selection function.
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Combining the cosmic web with photometric redshift PDFs so
as to anchor galaxies to the structures they are most likely to
inhabit is a powerful method for improving the original pho-
tometric redshifts. The SDSS survey is particularly well suited
for such an analysis as it combines highly accurate photomet-
ric redshifts (σ ∼ 0.01) and good mapping of the cosmic web
(with a resolution better that 〈dinter〉 ≤ 10 cMpc). Attaching pho-
tometric galaxies to the spectroscopically derived CW improves
their photometric redshifts, even for galaxies one or two mag-
nitudes fainter than the spectrocopic limit, as in the case of the
GAMA survey. With this technique, constraining the environ-
ment of even faint galaxies is now within reach. This will enable
extending galactic conformity inside groups (Treyer et al. 2018),
for example, or spin alignment (Tempel et al. 2013) studies to
the low-mass galaxies.

The applications to future surveys are more tentative as
the efficiency of the method depends first on the accuracy of
the photometric redshifts and their associated PDF widths, and
second on the resolution of the CW based on spectroscopic
surveys on the same field. Multiband surveys like PAU (with
30 narrowbands, Eriksen et al. 2019), J-PAS (with 50 narrow-
bands, Benitez et al. 2014), or low-resolution spectroscopy mis-
sions like SPHEREX (Doré et al. 2018) will deliver redshifts
with uncertainties below σz ≤ 0.01, but cosmological spec-
troscopic surveys like BOSS (Dawson et al. 2016) and DESI
(DESI Collaboration 2016) have, or will have, a moderate res-
olution (with 〈dinter〉 > 15−20 cMpc), which will hamper the use
of the PW-z method.

On the other hand, CW mapping at high redshift with spatial
resolution less than 〈dinter〉 ∼ 10 cMpc is now within reach with
VIPERS (z ∼ 0.8, Guzzo et al. 2014; Malavasi et al. 2017) or in
the near future with PFS (CW traced by the galaxies or by the gas
with the tomography technique, Tamura et al. 2018), as well as
the spectroscopic survey modes of Euclid-Deep (Laureijs et al.
2011) and WFIRST (Spergel et al. 2015) up to z ∼ 2.5. However,
at such a high redshift the current limitation is the accuracy of the
photometric redshifts. Current techniques barely reach σ ∼ 0.03
(Moutard et al. 2016), which again will restrict the use of the
PW-z method. Extending the CNN method (Pasquet et al. 2019)
at higher redshift should allow us to pass this threshold. Prelim-
inary CNN training on ugriz CFHTLS images yields an accu-
racy below σ ≤ 0.02 at iAB ≤ 22.5 (Treyer et al., in prep.) and
σ ≤ 0.015 at iAB ≤ 23 on deep HSC images combined with
CLAUDS (mimicking the LSST wavelength coverage and depth
with ugrizY passbands; Sawicki et al. 2019). While very promis-
ing at intermediate redshifts (z ≤ 1.5), it is not yet optimal at
higher redshift due to the poor spectroscopic training set and fur-
ther improvements are needed to fully exploit the combination of
the LSST survey with the Euclid and WFIRST missions.
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Appendix A: Additional figure

Additional illustrations of the PW-z method for randomly
selected galaxies are presented in Fig. A.1.
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Fig. A.1. Random examples of PDFs obtained with the PhotoWeb method for four sources. The symbols are the same as Fig. 4.
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