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ABSTRACT

We developed a deep convolutional neural network (CNN), used as a classifier, to estimate photometric redshifts and associated
probability distribution functions (PDF) for galaxies in the Main Galaxy Sample of the Sloan Digital Sky Survey at z < 0.4. Our
method exploits all the information present in the images without any feature extraction. The input data consist of 64× 64 pixel ugriz
images centered on the spectroscopic targets, plus the galactic reddening value on the line-of-sight. For training sets of 100k objects
or more (≥20% of the database), we reach a dispersion σMAD < 0.01, significantly lower than the current best one obtained from
another machine learning technique on the same sample. The bias is lower than 10−4, independent of photometric redshift. The PDFs
are shown to have very good predictive power. We also find that the CNN redshifts are unbiased with respect to galaxy inclination,
and that σMAD decreases with the signal-to-noise ratio (S/N), achieving values below 0.007 for S/N > 100, as in the deep stacked
region of Stripe 82. We argue that for most galaxies the precision is limited by the S/N of SDSS images rather than by the method.
The success of this experiment at low redshift opens promising perspectives for upcoming surveys.
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1. Introduction

Panoramic imaging surveys for cosmology are underway or in
preparation phase (HSC, LSST, Euclid, WFIRST). They will
deliver multiband photometry for billions of galaxies for which
reliable redshifts are necessary to study the large scale structure
of the universe and to constrain the dark energy equation-of-state
using weak gravitational lensing. However, spectroscopic red-
shifts are extremely time-intensive and it has become necessary
to use photometric redshifts. The projections for cosmic shear
measurements estimate that the true mean redshift of objects in
each photometric redshift bin must be known to be better than
∼0.002(1 + z) (Knox et al. 2006) with stringent requirements on
the fraction of unconstrained catastrophic outliers (Hearin et al.
2010). Another challenge is the derivation of robust redshift
probability distribution functions (PDFs, Mandelbaum et al.
2008) for a complete understanding of the uncertainties attached
to any measurements in cosmology (e.g., galaxy clustering, weak
lensing tomography, baryon acoustic oscillations) or galaxy
evolution (e.g., luminosity and stellar mass functions, galaxy
density field reconstruction, cluster finders).

Two main techniques are traditionally used to perform this
task: template fitting and machine learning algorithms. The
template fitting codes (e.g., Arnouts et al. 1999; Benítez 2000;
Brammer et al. 2008) match the broadband photometry of a
galaxy to the synthetic magnitudes of a suite of templates across
a large redshift interval1. This technique does not require a large
spectroscopic sample for training: when a representative set of
1 Baum (1962) first developed this method by observing the spectral
energy distribution of six elliptic galaxies in the Virgo cluster in nine
bands from 3730 Å to 9875 Å.

galaxy template has been found it can be applied to different sur-
veys and redshift range. However, they are often computation-
ally intensive due to the brute-force approach to explore the pre-
generated grid of model photometry. Moreover poorly known
parameters such as dust attenuation, can lead to degeneracies in
color − redshift space. On the other hand, the machine learn-
ing methods, such as artificial neural network (Collister & Lahav
2004), k-nearest neighbors (KNN; Csabai et al. 2007) or random
forest techniques (Carliles et al. 2010) were shown to have sim-
ilar or better performances when a large spectroscopic training
set is available. However, they are only reliable within the limits
of the training set and the current lack of spectroscopic cover-
age in some color space regions and at high redshift remains a
major issue for this approach. For these reasons, template-fitting
methods are still considered and new approaches have emerged
which combine several techniques to maximize the photometric
redshift PDF estimations (e.g., Carrasco Kind & Brunner 2014;
Cavuoti et al. 2017).

One limiting factor for all the above methods is the input
information. The accuracy of the output photometric red-
shifts is limited by that of the photometric measurements
(Hildebrandt et al. 2012). Magnitudes or colors are affected
by the choice of aperture size, point spread function (PSF)
variations, overlapping sources, and even modeled magnitudes
(accounting for PSF and galaxy luminosity profiles) capture only
a fraction of the information present in the images.

Over the past few years, deep learning techniques have
revolutionized the field of image recognition. By bypass-
ing the condensed information of manual feature extraction
required by previous methods they can offer unprecedented
image classification performance in a number of astronom-
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ical problems, including galaxy morphological classification
(e.g., Dieleman et al. 2015; Huertas-Company et al. 2015),
lensed images (Lanusse et al. 2018), classification of light
curves (Charnock & Moss 2017; Pasquet-Itam & Pasquet 2018).
Thanks to the speed boost from graphic processing units (GPU)
technology and large galaxy spectroscopic sample such as the
SDSS survey, Hoyle (2016); D’Isanto & Polsterer (2018) show
that deep convolutional neural networks (CNNs) were able
to provide accurate photometric redshifts from multichannel
images, instead of extracted features, taking advantage of all
the information contained in the pixels, such as galaxy surface
brightness and size, disk inclination, or the presence of color
gradients and neighbors. To do so, Hoyle (2016) use a deep
CNN-inspired by the architecture of Krizhevsky et al. (2012a),
on 60× 60 RGBA images, encoding colors (i − z, r − i, g − r)
in RGB layers and r band magnitudes in the alpha layer. The
use of only four bands (griz) allowed them to mimic the DES
experiment. They divide the spectroscopic redshift distribution
into bins and extracted the redshift bin that the galaxy was most
likely to be in. To obtain a PDF, they then randomly extract
100 60× 60 stamps from an original 72× 72 image stamp, and
rerun the CNN algorithm. D’Isanto & Polsterer (2018) use a
deep CNN model, based on a LeNet-5 architecture (LeCun et al.
1998), using 28× 28 pixel images in the five SDSS bands (ugriz)
as well as all the color combinations as input. They modify
the fully connected part of the CNN to include a mixture den-
sity network (with one hidden layer) to describe the output
PDF as a Gaussian mixture model. These two first-of-their-
kind analyses based on existing architectures, achieved compet-
itive photometric redshift accuracies compared to other machine
learning techniques based on boosted decision tree or random
forest.

In this paper, we present a deep learning model for the
estimation of photometric redshifts and their associated PDF
using the TensorFlow framework (v1.4.1). In contrast to previ-
ous studies, our input consists of ugriz images only (no color
images are produced), from the flux-limited spectroscopic Main
Galaxy Sample (MGS) of the SDSS. The paper is organized
as follows. In Sect. 2, we describe the data used in this study.
In Sect. 3, we introduce the CNN concepts and the particular
CNN architecture we are proposing. In Sect. 4, we present our
results for the estimation of photometric redshifts and associ-
ated PDFs. In Sect. 5, we investigate the impact of reducing
the size of the training set. In Sect. 6, we analyze the behav-
ior of the CNN with respect to a number of galaxy proper-
ties and observing conditions. Our results are summarized in
Sect. 7.

2. Data

The SDSS is a multiband imaging and spectroscopic redshift sur-
vey using a dedicated 2.5-m telescope at Apache Point Observa-
tory in New Mexico. It provides deep photometry (r < 22.5)
in ugriz passbands. Our input data are selected from the data
release 12 (DR12; Alam et al. 2015) by using the SDSS CasJob
website (the MySQL query is given in Appendix A). From
the SDSS database, we retrieved 516 525 sources classified as
galaxy, with dereddened petrosian magnitudes r ≤ 17.8 and
spectroscopic redshifts z ≤ 0.4. For all we queried the equatorial
coordinates (RA, Dec), dereddened Petrosian magnitudes, ellip-
ticities (b/a), galactic extinction (Schlegel et al. 1998), PSF full-
widths-at-half-maximum (FWHMs) and sky background val-
ues in all bands. The spatial distribution of the final sample
and its redshift distribution are shown in Fig. 1. The color
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Fig. 1. Spatial distribution of the final sample of SDSS galaxies, with
its spectroscopic redshift distribution (top-right inset). The color code
indicates the average galactic extinction per pixel. The gray line shows
the galactic plane.

code indicates the mean galactic reddening excess in each
cell, which increases sharply in the vicinity of the galactic
plane.

We also retrieved the photometric redshifts of Beck et al.
(2016, hereafter B16) , which are the only such redshifts avail-
able for comparison in DR12. They were computed with a k-NN
method (Csabai et al. 2007, local linear regression) that included
five dimensions (r magnitude and u − g, g − r, r − i, i − z colors)
and trained with deep and high redshift spectroscopic surveys in
addition to the SDSS. These photometric redshifts have similar
or better accuracies than those inferred from random forests or
prediction trees on the MGS sample (Carrasco Kind & Brunner
2013; Carliles et al. 2010), and may thus serve as reference for
machine learning photometric redshifts based on photometric
measurements.

We downloaded all the “corrected frames” image data of the
SDSS data release 8 from the SDSS Science Archive Server,
including the 118 runs on Stripe 82 that are part of the release
(Aihara et al. 2011a). The image headers include the astro-
metric fix applied to the SDSS data release 9 (Aihara et al.
2011b). The frames come background-subtracted and photo-
metrically calibrated with an identical magnitude zero-point
(Padmanabhan et al. 2008; Blanton et al. 2011). All 4 689 180
frames and their celestial coordinates are indexed in a table for
query with a homemade query tool2 (v0.4). The purpose of this
tool is to provide the list of all images likely to overlap a given
sky area.

For every entry in the galaxy sample we queried the list
of overlapping frames for each of the 5 SDSS filters and ran
the SWarp tool3 (v1.38, Bertin et al. 2002) to resample to a
common pixel grid and stack all the available image data.
We relied on the WCS parameters in the input image headers
(Calabretta & Greisen 2002) for the astrometry. Because of lim-
itations with WCS parametrization, positions are good to about
1 pixel. Differences in position between channels are expected
to be less, because the different channels follow roughly the
same path along the scanning direction. However systematic
or random misalignments across or between channels should
not impact measurably the classifier’s performance as long as
they remain statistically identical for both the training and test
datasets.
The result is a 64× 64× 5 pixel datacube in a gnomonic pro-

jection centered on the galaxy coordinates, and aligned with
the local celestial coordinate system. The output pixel scale is

2 http://github.com/ebertin/selfserver
3 http://astromatic.net/software/swarp
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z=0.258 z=0.039 z=0.094 z=0.163 z=0.078

Fig. 2. Random examples from the image dataset. Images in the 5 SDSS
channels were linearly remapped to red, green, blue, with saturation
α = 2.0 and display γ = 2.2 applied following the prescriptions from
Bertin (2012).

identical to that of the input images (0.396 arcsec). We chose a
Lánczos-3 resampling kernel (Duchon 1979) as a compromise
between preserving image quality and minimizing the spread of
possible image artifacts. Other SWarp settings are also set to
default, except for background subtraction, which is turned off.

The number of overlapping frames contributing to a given
output pixel in a given filter ranges from one or two for “reg-
ular” SDSS images, to 64 for some of the galaxies in Stripe
82. No attempt is made to remove singular images, to mask out
neighbors or to subtract light contamination from close bright
sources, hence all galaxy images are included in the final dataset
unmodified.

Machine learning algorithms dealing with pixel data are gen-
erally trained with gamma-compressed images (e.g., in JPEG or
PNG format). Yet our tests did not show any improvement of
the classifier performance after applying dynamic range com-
pression. We therefore decided to leave the dynamic range of
the images intact. Figure 2 shows five image cutouts from the
dataset.

3. The convolutional neural network

3.1. Neural networks

Artificial neural networks (NNs) are made of interconnected,
elementary computing units called neurons. As in biology where
a natural neuron is an electrically excitable cell that processes
and transmits information via synapses connected to other cells,
an artificial neuron receives a vector of inputs, each with a dif-
ferent weight, and computes a scalar value sent to other neurons.
Once the type of neuron and the network topology have been
defined, the network behavior relies solely on the strength of the
connections (synaptic weights) between neurons. The purpose of
learning (or training) is to iteratively adjust the synaptic weights
until the system behaves as intended.

Multilayered neural network models are currently the basis
of the most powerful machine learning algorithms. In this type
of NN, neurons are organized in layers. Neurons from a layer are
connected to all or some of the neurons from the previous layer.

Convolutional neural networks (CNNs) are a special type of
multilayered NNs. CNN classifiers are typically composed of a
number of convolutional and pooling layers followed by fully
connected layers.

3.2. Convolutional layers

A convolutional layer operates on a data cube, and computes
one or several feature maps, also stored as a datacube. The fea-
ture maps inside a convolutional layer are generally computed
independently of one another. The purpose of a feature map is to
emphasize regions of the input datacube that correlate with a spe-
cific pattern, represented by a set of adjustable kernels (one per
input data plane in our case). In practice, the correlation process

is achieved by convolving the outputs from the previous layer
with the kernels. During training, the kernels, which had been
initially populated with random values, are updated to become
progressively relevant to the classification (or regression; see
Fig. 3). The convolved arrays plus an adjustable offset are then
summed and an activation function applied element-wise to form
the feature map.

For the first convolution layer the input datacube is typi-
cally a multispectral image (64× 64× 5 pixels in the case of our
images taken through the ugriz SDSS filters). Subsequent layers
operate on feature maps from the previous layers.

Non-linear activation functions introduce non-linearity into
the network. The most commonly used activation function is the
ReLU (Rectified Linear Unit, Nair & Hinton 2010) defined by
f (x) = max(x, 0). More recently, He et al. (2015) introduced a
Parametric ReLU (PReLU) with parameter α adjusted through
basic gradient descent:

f (x) =

{
x if x ≥ 0
αx if x ≤ 0.

(1)

3.3. Pooling layers

Pooling layers reduce the size of input feature maps through
down-sampling along the spatial dimensions (2 × 2 elements
in our case). The down-sampling operation typically consists in
taking the mean or the max of the elements. Pooling allows fea-
ture maps to be computed on multiple scales at a reduced com-
putational cost while providing some degree of shift invariance.
Invariance toward transformations of the input image can fur-
ther be reinforced by data augmentation (Goodfellow et al. 2009;
Zhu et al. 2015).

3.4. Fully connected layers

Contrary to their convolution layer equivalents, the neurons of
a fully connected layer are connected to every neuron of the
previous layer, and do not share synaptic weights. In conven-
tional CNNs, the fully connected layers are in charge of fur-
ther processing the features extracted by the convolutional layers
upstream, for classification or regression.

3.5. Output layer

We chose to handle the estimation of photometric redshifts
as a classification problem, as opposed to using (non-linear)
regression. Previous studies (e.g., Pasquet-Itam & Pasquet 2018)
demonstrate the benefits of this approach. Each class corre-
sponds to a narrow redshift bin δz. The galaxy at the center of
the input multispectral image belongs to a single class (i.e., is at
a single redshift).

The classes being mutually exclusive, we imposed that the
sum of the outputs be 1 by applying the softmax activation
function (Bridle 1990) to the output layer. The network was
trained with the cross-entropy loss function (Baum & Wilczek
1987; Solla et al. 1988). The output of this type of classifier
was shown, both theoretically and experimentally, to provide
good estimates of the posterior probability of classes in the input
space (Richard & Lippmann 1991; Rojas 1996). This of course
requires the neural network to be properly trained and to have
enough complexity.
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Fig. 3. Representation of the first convolution layer with two kernels of convolution to simplify the schema. The multispectral image of a galaxy in
the five SDSS filters is fed to the network. Each kernel is convolved with the multichannel images. The convolved images are summed, an additive
bias is added and a non-linear function is applied, to produce one feature map.

3.6. Our CNN architecture

The overall architecture4 is represented in Fig. 4. The network
takes as input a batch of images of size 64 × 64, centered on the
galaxy coordinates, in five channels corresponding to the five
bands (u, g, r, i, z). The first layer performs a convolution with a
large kernel of size 5× 5. The pooling layer that follows reduces
the size of the image by a factor of two. All the poolings in the
network are computed by selecting the mean value in the sliding
window. Although many studies use max pooling for classifica-
tion problems, our experience with SDSS images is that aver-
age pooling performs better. The fact that most image pixels are
dominated by background noise may explain why max pooling
is not so reliable.

We also found the PReLU activation function to perform bet-
ter than the traditional ReLU in convolutional layers. One possi-
ble explanation may be that the negative part of the PReLU does
not saturate, allowing faint signals below the threshold (e.g.,
those dominated by background noise) to propagate throughout
the layer.

The remaining convolution part of the network is organized in
multiscale blocks called inception modules (Szegedy et al. 2015).
Each inception module is organized in two stages. In the first
stage, the feature maps are convolved by three “1 × 1” convo-
lution layers. These layers are used to combine input feature
maps and reduce their number before the more computationally
expensive convolutions of the second stage. In this second stage,
feature maps are processed in parallel in a pooling layer and a
pair of larger convolution layers with size 3 × 3 and 5 × 5 helps
identify larger patterns. Then, resulting feature maps are con-
catenated along the depth dimension before going to the next
4 The neural network model and examples are available at: https:
//github.com/jpasquet/photoz

layer. We note that the final inception module does not include
the 5 × 5 convolution layer as the last feature maps (8 × 8) have
become too small to generate a useful output.

All the feature maps coming out from the last multiscale
block are concatenated and sent to a fully connected layer of
1096 neurons. One extra input containing the Galactic redden-
ing value for the current galaxy is also added at this stage
(Sect. 6.1).

After a second fully connected layer of 1096 neurons comes
the output softmax layer. We set the number of classes to Nc =
180 redshift bins over the range 0–0.4, with constant width
δz = 2.2 × 10−3. We believe that this sampling offers a rea-
sonable compromise between the number of galaxies in each
bin and redshift quantization noise. Such a large number of
classes is not uncommon in modern classification challenges
(e.g., Russakovsky et al. 2015). As we shall see, the resulting
distribution (a vector of 180 posterior probabilities) provides a
reliable estimate of the photometric redshift PDF.

The number and sizes of the feature maps are provided in
Table A.1. In Appendix B we also describe the computational
time needed for the various training steps.

In total the number of adjustable parameters is 27 391 464
(see Eq. (B.1)). A common concern with large neural networks
is overfitting, which happens whenever a model with too many
free parameters learns irrelevant and noisy details of the training
data to the extent that it negatively impacts its performance. To
make sure that our classifier was not overfitting, we monitored
the loss on both the training and validation sets during the train-
ing stage. The PIT distribution (Sect. 4.3) also proved a valu-
able monitoring tool. Other methods we tested for addressing
overfitting are batch normalization (Ioffe & Szegedy 2015) and
dropouts (Srivastava et al. 2014). However they did not improve
the performance of our classifier.
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Fig. 4. Classifier architecture (see Sect. 3.6 for a detailed description).
The neural network is composed of a first convolution layer, a pooling
layer and five inception blocks followed by two fully connected lay-
ers and a softmax layer. The size and the number of feature maps are
indicated for each layer. Further details can be found in Table A.1.

3.7. Photometric redshift estimation

Although photometric redshift PDFs may be directly incorpo-
rated into larger Bayesian schemes for inferring model parame-
ters (e.g., cosmological parameters), they may also be used to
compute point estimates of the individual redshifts. We esti-
mate the photometric redshift of a given galaxy by computing
its expected value from its PDF P(zk):

zphot =

Nc∑
k=1

zk P(zk) , (2)

where zk is the midpoint value of the kth redshift bin. Assuming
that P(zk) is reliable over the whole redshift range (see Sect. 4.3),
Eq. (2) provides a minimum mean square error estimation of the
photometric redshift given the data.

Alternatively, we tested non-linear regression models with
a multilayered neural network to estimate photometric red-
shifts directly from the softmax layer PDF output, using both a
quadratic and median absolute deviation (MAD) cost functions
(see Sect. 4.1). After training with the spectroscopic redshifts,
both models performed almost identically and did not provide
any significant improvement in accuracy over Eq. (2).

3.8. Experimental protocol

We divided the database into a training sample containing 80%
of the images and a testing sample composed of the remain-
ing 20%. To ensure that the CNN is not affected by galaxy ori-
entation, we augmented the training set with randomly flipped
and rotated (with 90 deg steps) images. We also selected 20 000
images in the training database to create a validation sample that
allows us to control the performance of the model.

To increase the performance, we trained an ensemble of clas-
sifiers as it was shown to be more accurate than individual classi-
fiers (e.g., Krizhevsky et al. 2012b). Moreover the generalization
ability of an ensemble is usually stronger than that of base learn-
ers. This step involves training N times one model with the same
training database but a different initialization of the weights. As a
compromise between computation time and accuracy, we chose
N = 6. The individual decisions were then averaged out to obtain
the final values of the photometric redshifts. We also averaged
the PDFs, although we are aware that the result is a pessimistic
estimate of the true PDF. Other combination methods will be
investigated in a future analysis. In the following sections, the
terms photometric redshift and PDF refer to averages over the
six trainings. We also processed five cross-validations of the
database to evaluate the stability of the network. This involves
performing five learning phases, each with its own training sam-
ple (80% of the initial database) and testing sample (the remain-
ing 20%), so as to test each galaxy once.

Table 1 shows the performance of each cross-validation,
using the metrics (bias, σMAD and η) defined in Sect. 4.1. The
bias varies slightly but the standard deviation and the fraction
of outliers do not change significantly. Therefore we find the
network to be statistically robust. In the following, the quoted
values for the bias, standard deviation and fraction of outliers
are the average values over 5 cross-validations, unless otherwise
stated. Figure 5 summarises the protocol of the training process.

4. Results

In this section, we present the overall performance of our method
for the estimation of photometric redshifts, and describe our tests
of the statistical reliability of the PDFs.
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Table 1. Stability of the CNN over five cross-validations.

Cross validation Bias σMAD η

1 0.00008 0.00914 0.31
2 0.00009 0.00908 0.31
3 0.00018 0.00913 0.32
4 0.00011 0.00912 0.31
5 0.00002 0.00910 0.29

Mean 0.00010 0.00912 0.31
Standard deviation 5 × 10−5 2 × 10−5 9 × 10−3

Notes. The metrics (bias, σMAD and η) are defined in Sect. 4.1. The
performance shows very low dispersion.

4.1. Metrics

To assess the quality of the photometric redshifts, we adopted
the following commonly used statistics:

– the residuals, ∆z = (zphot − zspec)/(1 + zspec), following the
definition of Cohen et al. (2000);

– the prediction bias, < ∆z >, defined as the mean of the resid-
uals;

– the MAD deviation σMAD = 1.4826 × MAD, where
MAD (Median Absolute Deviation) is the median of
|∆z −Median(∆z)|5;

– the fraction η of outliers with |∆z| > 0.05, chosen to be ∼5
times the σMAD achieved by the CNN.

The statistics for the network described in the previous section
are reported in Table 1, as well as in the first row of Table 2
(mean values over the five cross-validations). The normalized
distribution of ∆z is shown in Fig. 6. The green line shows
a Gaussian distribution with the inferred sigma and bias. The
hatched zones define the catastrophic outliers.

4.2. Photometric redshifts

The distribution of the photometric vs. spectroscopic redshifts
obtained from the CNN (Fig. 7, left panel) shows a striking
decrease of the dispersion around the truth value compared to
B16 (right panel), the latest and only comparable study. This is
reflected in the scores for the three statistics: a factor of 1.5, 6 and
4 improvement for the σMAD, bias and outlier rate respectively
(the B16 values are listed in parenthesis in Table 2). However
we observe a plateau near z ∼ 0.3 for the CNN, where high red-
shift objects are significantly under-represented (galaxies with
z ∼ 0.3 represent 0.1% of the training database)6. This trend is
not observed in B16 as they use a larger training set that extend
to much higher redshift.

Figure 8 shows the bias as a function of both spectroscopic
redshift and photometric redshift, with the corresponding red-
shift distributions and the B16 results for comparison. The pho-
tometric redshifts predicted by the CNN tend to be slightly
over(under)-estimated below(above) the median redshift of the
training sample, meaning they are biased toward the most highly

5 Our definition of σMAD differs from the modified version adopted by
Ilbert et al. (2006), in which the median residual is not subtracted.
6 A preliminary test showed that the size of the training batches of
images, progressively fed to the CNN, may be at least partly responsible
for this plateau: doubling the size improved the prediction at the highest
redshifts and moved the plateau upward. Better balancing the redshifts
inside each batch may be necessary. This point will be addressed in a
future analysis.

populated redshift bins. However the bias remains small and
never exceeds 1σ. It is also significantly smaller than the bias
induced by the B16 method. Most importantly, none is found as a
function of photometric redshifts. This is particularly noteworthy
for future large missions. The photometric redshift requirement
for Euclid is ∆z ≤ 0.002 in photometric redfshift bins (yellow
shaded zone), well achieved by the present method.

To understand the origin of the spectroscopic redshift depen-
dent bias, one must realize that neural networks are naturally
sensitive to priors in the training sample. Indeed, if the input red-
shift distribution was flat, the model would have the same num-
ber of examples at each redshift value and so redshift predictions
would be equiprobable. However for real galaxy samples the dis-
tribution of redshifts is not flat, it peaks at a particular redshift.
So the model will be more constrained by galaxies around this
peak value than by galaxies in the wings of the distribution. This
prior distribution causes a bias in predictions as all the predic-
tions are not equiprobable and so the model tends to predict the
most probable value. This behavior is expected from all machine
learning methods. In the case of our classifier, the PDF should be
a good estimation of the redshift posterior probability density,
given an input datacube.

4.3. Probability distribution functions

The PDFs of a subset of randomly selected galaxies from the test
set are shown in Fig. 9, together with the galaxy RGB images.
As proposed by Polsterer et al. (2016), we use two statistics to
assess the overall prediction quality of our PDFs: the probability
integral transform (PIT) and the continuous ranked probability
score (CRPS).

The PIT statistic (Dawid 1984) is based on the histogram
of the cumulative probabilities (CDF) at the true value, in other
words, the spectroscopic redshift. For galaxy i at spectroscopic
redshift zi, with redshift probability distribution function PDFi,
the PIT value is

CDFi(zi) =

∫ zi

0
PDFi(z) dz. (3)

A flat PIT distribution indicates that the PDFs are not biased with
respect to the spectroscopic redshifts and are neither too nar-
row nor too wide, whereas convex or concave distributions point
to under or over-dispersed PDFs, respectively (Polsterer et al.
2016). Excessively narrow PDFs will often miss the target, over-
producing PIT values close to zero or one, whereas PDFs that are
too wide will encompass the true redshifts more often than not
and therefore favor intermediate PIT values. The PIT distribution
for each of the six models in our ensemble of classifiers, and for
the final PDFs (see Sect. 3.8) are shown in Fig. 10. Each indi-
vidual model exhibits a nearly flat PIT distribution, indicating
well behaved PDFs. The PIT distribution of the final (averaged)
PDFs is slightly over dispersed, as expected from our pessimistic
choice of combination.

The CRPS is a performance score (well known in meteo-
rological predictions, Hersbach 2000) that quantifies how well
the predicted PDF represents the true spectroscopic redshift. For
galaxy i, it is defined as:

CRPSi =

∫ zi

−∞

CDFi(z)2 dz +

∫ +∞

zi

(CDFi(z) − 1)2 dz. (4)

The mean CRPS (∼0.007) is reported in the last column of
Table 2. This value is significantly lower than the CRPS quoted
by D’Isanto & Polsterer (2018) or Tanaka et al. (2018, ∼0.1 and
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Table 2. Statistics for various CNN trials, with the B16 results in parenthesis where the comparison is relevant.

Trial Training sample size Size of 1 test sample Bias σMAD η 〈CRPS〉

Training with 80% of the dataset 393 219
Full test sample 103 306 0.00010 0.00912 0.31 0.00674

(B16) (103 306) (0.00062) (0.01350) (1.34)
Suspect zone (SZ) removed 101 499 0.00004 0.00908 0.31 0.00672

Widest 10% of PDFs removed 91 543 0.00006 0.00848 0.09 0.00606
Widest 20% of PDFs removed 79 897 0.00005 0.00789 0.06 0.00556

Stripe 82 only 3943 −0.00009 0.00727 0.34 0.00574
Stripe 82 with widest 20% of PDFs removed 3131 0.00004 0.00635 0.09 0.00467

Training with 50% of the dataset? 250 000 252 500 0.00007 0.00910 0.29 0.00672
Training with 20% of the dataset 99 001 385 970 −0.00001 0.00914 0.30 0.00677
Training with 2% of the dataset 10 100 434 228 −0.00017 0.01433 1.26 0.01009

Training on Stripe 82 15 771
Stripe 82 removed? 478 274 0.00194 0.01341 1.15 0.00988

Stripe 82 only 3942 −0.00002 0.00795 0.38 0.00622
Training w/o Stripe 82 486 560

Stripe 82 removed? 97 607 0.00000 0.00914 0.33 0.00680
Stripe 82 only? 19 714 −0.00077 0.00760 0.41 0.00606

Notes. The bias, σMAD and fraction of outliers η are defined in Sect. 4.1. The values are averaged over five test samples, except in the cases marked
with a ? where there is only one. The CRPS and PDF width are defined in Sect. 4.3. The SZ was identified as a small region of the SDSS with
above average bias (see Sect. 6.4). It has been removed by default in all other cases below the “SZ removed” line.
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Fig. 5. Schema of the experimental protocol. For each training and test-
ing datasets, six models are trained and averaged to get the final photo-
metric redshift values. Moreover five cross-validations are performed.
Their respective performances are averaged to provide the final scores
(bias, σMAD and η).

0.02 respectively), although a fair comparison is difficult as these
studies encompass larger redshift domains. However, the small
mean CRPS and the nearly flat PIT distribution reflect the high
reliability of our PDFs.

To further assess the quality of the PDFs, we measured their
“widths”, defined as the redshift interval resulting from chop-
ping off their left and right wings in equal measure, so as to
keep 68% of the probability distribution7. Removing the widest
10% (20%) of the PDFs (width > 0.0383 (0.0335)) significantly
improve σMAD and η, as reported in Table 2. These improve-

7 Similar results are found when defining the PDF width as containing
90% of the probability distribution instead of 68%.
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Fig. 6. Normalized ∆z distribution. The green line is a Gaussian dis-
tribution with the sigma and bias defined in Sect. 4.1 and reported in
Table 2. The hatched parts define the catastrophic outliers.

ments reinforce our confidence that our PDFs properly reflect
the photometric redshift uncertainties.

5. Size of the training database

As acquiring large spectroscopic samples for training is very
observing time intensive, it is crucially important to assess the
performance of our CNN as a function of training size. Our
baseline network made use of 400 000 galaxies (80% of the
database). We trained the same model on 250 000 and 100 000
galaxies (50% and 20% of the database respectively), and also
adapted the network by reducing its depth and width for a 10 000
galaxy training sample (2% of the database).

The statistics of these three trials are reported in Table 2.
We find practically no fall in performance between the training
on 400 000 objects and that on 100 000, which is a particularly
encouraging result. Although the global statistics deteriorate
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Fig. 7. Comparison between the photometric redshifts predicted by the CNN (left panel) and by B16 (right panel) against the spectroscopic
redshifts. The galaxy density and the statistics are averaged over the five cross-validation samples.
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Fig. 8. Mean residuals as a function of spectroscopic redshifts (gray)
and CNN redshifts (red). The dashed lines show the corresponding
results for B16. The histograms are the respective redshift distribu-
tions. The CNN redshifts tend to be slightly over(under)-estimated
below(above) the most populated redshift bins of the training sample,
that is, they are biased toward the region of highest training. The effect
is larger for B16, however no bias is found as a function of photometric
redshift in either case.

significantly with 10 000 training sources, they remain compa-
rable to the results of B16, which is also remarkable. Moreover,
for all three trials including the 10 000 sources training sample,
all the trends, or lack thereof, plotted in the next section remain
nearly indistinguishable from our baseline 400 000 sources train-
ing case.

6. Further behavioral analysis of the CNN

In this section, we describe our study of how the performance
of the CNN varies with a number of characteristics of the input
images relating to galaxy properties or observing conditions.

6.1. Galactic reddening

As illustrated in Fig. 1, the SDSS spans a large range in Galac-
tic extinction. The effect of E(B − V) on the observed colors
of a galaxy can mimic that of a redshift increase. The impact
of including the reddening information into the training, or not,
is illustrated on Fig. 11 (left panel). Without this information
provided to the classifier, a strong reddening-dependent bias is
observed (orange line). A weaker trend is observed for B16,
who use SDSS de-reddened magnitudes. The small size of the
sample at high galactic extinction most likely prevents the CNN
from properly accounting for this degeneracy, hence our choice
to include the reddening information into our model, which suc-
cessfully removes the trend (red line).

6.2. Galaxy inclination

As Galactic reddening, the inclination of a galaxy reddens its
color but also affects the shape of the attenuation curve in a com-
plex way (Chevallard et al. 2013). It has been a major issue for
the estimation of photometric redshifts, especially with SED fit-
ting codes (Arnouts et al. 2013). Figure 11 (right panel) shows
that the CNN is very robust to galaxy inclination, unlike the B16
method, which is strongly biased, especially at high inclination.
The network is able to account for this effect thanks to the large
training sample, helped by the data augmentation process that
further expanded it by rotating and flipping the images. While
B16 only uses the photometric information, Yip et al. (2011)
show that machine learning methods can better handle this bias
if the inclination information is included into their training.

6.3. Neighboring galaxies

We investigated the impact of neighboring sources on the
performance of the CNN using the SDSS DR12 neighbors
table, which contains all photometric pairs within 0.5 arcmin.
We selected the spectroscopic galaxies with at least one
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Fig. 10. Distribution of the Probability Integral Transforms (PIT) for
each of the six models, and for the final PDFs. Each model exhibits a
nearly flat PIT distribution, which assesses the very good quality of the
PDFs. The PIT distribution of the final (averaged) PDFs (see Sect. 3.8)
is slightly over dispersed, as expected from our pessimistic choice of
combination. The dashed green and red lines result from expanding and
shrinking, respectively, the ∆z of a flat model by 20%.

photometric neighbor with r ≤ 21 within a distance of 2–
17 arcsec (therefore within the image cut-outs used by the CNN).
With this definition, 48% of our spectroscopic targets have
neighbors.
Only 5% of the galaxies in the dataset have a neighbor brighter
than themselves (a few examples can be seen in Fig. 9), which
appears to have no impact on the accuracy of their CNN redshift
estimation compared to lone galaxies with matching r-band mag-
nitude distributions (not matching these distributions induces
different σMAD simply because that of galaxies with neighbors
brighter than themselves has a significantly steeper slope, that
is, a higher fraction of faint galaxies, than those without). How-
ever the MAD deviation is significantly improved for galax-
ies with fainter neighbors (43%) compared to those without:
σMAD = 0.00887 and 0.00937 respectively. In this case, the r-
band magnitude and signal-to-noise distributions of the two sam-
ples are similar, thus matching is not necessary. The σMAD dis-
crepancy is not due to differences in these qualities of the central
targets. On the other hand, the redshift distributions are differ-
ent and the MAD deviation of galaxies with neighbors becomes
noticeably smaller than that of galaxies without neighbors only
past the mean redshift of the overall sample, as shown in Fig. 12.
Not only has the CNN “seen” more examples with neighbors
than without at higher redshift, it can also be argued that it
has actually learned how to use neighboring sources to improve
the accuracy of the redshift estimation. This can occur, first, by
using the redshift correlation of real close pairs, especially when
they share very similar colors and surface brightnesses (e.g.,
early types in cluster cores), and second, by obtaining further
information on image quality from any type of sources in the
vicinity.

6.4. Variations throughout the surveyed area

Figure 13 shows the spatial variations of the bias and of the PDF
widths on the celestial sphere (the color code refers to the mean
quantities per cell). Overall, both quantities, which we find to be
uncorrelated, show little variation throughout the surveyed area.
However we identify a small region of the SDSS (∼2.4%) where
both are puzzlingly below average in quality (red patch toward
the pole).

This SZ appears to coincide with Stripe 38 and 39, but with
no evidence of sky background, PSF or photometric calibration
issues. Although it is in a region of high Galactic extinction,
excess reddening doesn’t seem to cause the problem as it is not
detected in the other regions of equally high galactic extinction
(Fig. 1). Inadequate reddening does not explain it either as the
region also stands out when E(B − V) is not included into the
training.

The bias on this patch alone is ∼30 times larger than on the
full test sample (+0.0033 vs. +0.0001), and also ∼10 times larger
for B16. Removing the region from the test sample reduces the
bias by a factor of 2.5, while σMAD is unaffected (see Table 2).

We also note the Stripe 82 region, which exhibits narrower
than average PDFs (dark blue stripe in the right panel of Fig. 13).
This point is addressed in the next section. Figure 14 shows the
mean PDF in these two atypical regions compared to that of the
full sample.

6.5. Effect of noise

The Stripe 82 region, which combines repeated observations of
the same part of the sky, gives us the opportunity to look into the
impact of signal-to-noise ratio (S/N) on our photometric redshift
estimations. The statistics for this region alone are reported in
Table 2. The resulting σMAD outperforms that of the other tests
(and can be further reduced by removing the widest PDFs). Thus
increasing the S/N improves the performance of the classifier,
even though the training was predominantly done using images
with lower S/Ns.

We further tested the impact of S/N by training the same
model (Fig. 4) on two different datasets: one with Stripe 82
images only, one without Stripe 82. The statistics are reported
in Table 2. Removing Stripe 82 from the training set has no
impact on the performance of the network outside of Stripe 82,
unsurprisingly given the small perturbation it induces, and only
slightly degrades σMAD on Stripe 82. This confirms that a CNN
network mostly trained on low S/N images performs better on
higher S/N images.

Evaluating whether training on high S/N images improves
the performance on low and/or high S/N images is more difficult.
Training the network on Stripe 82 images reduces the training
set to only ∼16 000 galaxies, a very small sample for deep learn-
ing. The testing on Stripe 82 shows that σMAD is slightly higher
and the bias lower, compared to training with the full dataset: a
better match between the training and test sets may be compen-
sating for the reduced training size. The performance outside of
Stripe 82 is degraded; this may be due to mismatched datasets
(Stripe 82 images are too deep for the CNN to be able to clas-
sify shallow images well enough) and/or to the small size of the
training sample. We can only conclude that small training sets
with higher S/N images do not help the performance on low S/N
images.

A more detailed analysis of this effect is presented in
Fig. C.1, which shows the behavior of the redshift bias and
σMAD as a function of S/N in all five bands. The S/Ns were
derived simply from the Petrosian magnitude errors quoted in
the SDSS catalog. Stripe 82 galaxies were removed from this
analysis, as the SDSS DR12 catalog does not provide photomet-
ric errors for the stacked images used in this work (see Sect. 2).
As may be expected from the results on Stripe 82, σMAD grad-
ually improves toward the highest S/N in all bands, with values
lower than ∼0.006 for S/N ≥ 200 (∼17 000 sources).

σMAD seems to plateau at the low-end of S/Ns, an effect
that is not seen with B16. This is perhaps surprising but good
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Fig. 11. Left panel: bias as a function of Galactic extinction for the classifier with and without integrating E(B−V) into the training (red and orange
lines respectively) and for B16 (green). The CNN tends to overestimate redshifts in obscured regions (confusing galactic dust attenuation with
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
ZSPEC

0.000

0.003

0.006

0.009

0.012

0.015

M
AD

W/O NEIGHBORS
WITH NEIGHBORS
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The respective redshift distributions are shown at the bottom.

news for the faintest sources, although it must be taken with a
grain of salt as our S/N derived from Petrosian magnitude errors
may be unreliable for faint objects. The redshift bias shows no
clear trend within the uncertainties at low S/N but increases at
high S/N. As high S/N objects are preferentially at low red-
shift (z ≤ 0.1), it probably simply reflects the bias discussed
in Sect. 4.2, where galaxies with spectroscopic redshifts below
the peak of the training set distribution have their photometric
redshifts slightly overestimated.

6.6. Influence of the PSF

As Fig. C.1 shows, σMAD appears to be relatively immune to
PSF variations, with only a slight increase for the worst observ-
ing conditions in individual bands (middle panel) or in case of
large PSF variations between two bands (right panel). On the
other hand, the redshift bias shows a small trend with seeing
(middle and right panels), similar to that seen in B16, but with
opposite signs. Larger PSFs generate an apparent decrease of the
apparent surface brightness of galaxies that are not well resolved.
We note that SDSS observations are carried out through the

different filters within a few minutes of interval, and there-
fore under very similar atmospheric conditions. This situation
is likely to be worse for imaging surveys where the different
channels are acquired during separate nights or even runs. Such
datasets may require PSF information to be explicitly provided
as input to the classifier in addition to the pixel and extinction
data.

7. Summary and discussion

In this paper we have presented a deep CNN used as a classi-
fier, that we trained and tested on the Main Galaxy Sample of
the SDSS at z ≤ 0.4, to estimate photometric redshifts and their
associated PDFs. Our challenge was to exploit all the informa-
tion present in the images without relying on pre-extracted image
or spectral features. The input data consisted of 64× 64 pixel
ugriz images centered on the spectroscopic target coordinates,
and the value of galactic reddening on the line-of-sight. We
tested 4 sizes of training set: 400k, 250k, 100k, and 10k galaxies
(80%, 50%, 20% and 2% of the full database, respectively).

In all but the final case we obtain a MAD dispersion σMAD =
0.0091. This value is significantly lower than the best one pub-
lished so far, obtained from another machine learning technique
(KNN) applied to photometric measurements by Beck et al.
(2016) for the same galaxies (σMAD = 0.0135). Restricting the
training set to only 10 000 sources (although the CNN was not
optimized for such a small number) increases dispersion by 60%,
but is still competitive with the current methods.

The bias shows a quasi-monotonic trend with spectroscopic
redshift, largely due to the prior imposed by the training set
redshift distribution, as expected from PDFs behaving as pos-
terior probabilities. However, the bias is independent of photo-
metric redshift and lower than 10−4 at z ≤ 0.25, far below the
0.002 value required for the scientific goals of the future Euclid
mission.

We also find that: firstly, our photometric redshifts are essen-
tially unbiased with respect to galactic extinction and galaxy
inclination; secondly, the PDFs have very good predictive power,
with a nearly flat distribution of the PIT. Removing the widest
PDFs improves the already small σMAD and fraction of outliers;
thirdly σMAD decreases with the S/N, achieving values below
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Fig. 13. Spatial distribution of the mean bias (left panel) and of the mean PDF width (right panel). The locations of the SZ and of the Stripe 82
region (see Sect. 6.4) are indicated.
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Fig. 14. Mean PDF in the SDSS patch showing defective photometric
redshift and PDF quality (SZ) and in the Stripe 82 region, compared to
the mean PDF of the full sample. The PDFs have been translated so that
0 corresponds to the spectroscopic redshifts.

0.007 for S/N > 100, as in the deep stacked region of Stripe 82;
finally, variations of the PSF FWHM induce a small but mea-
surable amount of systematics on the estimated redshifts, which
prompts for the inclusion of PSF information into future versions
of the classifier.

We conclude that, with a moderate training sample size
(≤100 000), the CNN method is able to extract the relevant infor-
mation present in the images to derive photometric redshifts and
associated redshift PDFs whose accuracy surpasses the current
methods. The dependency of σMAD with S/N suggests that we
have reached a point where the precision of individual photomet-
ric redshifts in the SDSS is essentially limited by image depth,
not by the method.

This work opens very promising perspectives for the
exploitation of large and deep photometric surveys, which
encompass a larger redshift range and where spectroscopic
follow-up is necessarily limited. New issues will arise regarding
the representativity of the galaxy population in the spectroscopic
samples across the whole redshift range, that will require dedi-
cated investigations (e.g., Beck et al. 2017) in anticipation of the
LSST and Euclid surveys.
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Appendix A: SQL query

Table A.1. Characteristics of each layer of the CNN architecture.

Layer Inputs Kernel size h × w #feature maps

C1 Input image 5 × 5 64 × 64 64
P1 C1 2 × 2 (stride 2 pix) 32 × 32 64

C2, C3, C4 P1 1 × 1, 1 × 1, 1 × 1 32 × 32, 32 × 32, 32 × 32 48, 48, 48
C5 P1 1 × 1 32 × 32 64
C6 C2 3 × 3 32 × 32 64
C7 C3 5 × 5 32 × 32 64
P2 C4 2 × 2 (stride 1 pix) 32 × 32 48

Co1 – – 32 × 32 240
C8, C9, C10 Co1 1 × 1, 1 × 1, 1 × 1 32 × 32, 32 × 32, 32 × 32 64, 64, 64

C11 Co1 1 × 1 32 × 32 92
C12 C8 3 × 3 32 × 32 92
C13 C9 5 × 5 32 × 32 92
P3 C10 2 × 2 (stride 1 pix) 32 × 32 64

Co2 – – 32 × 32 340
P4 Co2 2 × 2 (stride 2 pix) 16 × 16 340

C14, C15, C16 P4 1 × 1, 1 × 1, 1 × 1 16 × 16, 16 × 16, 16 × 16 92, 92, 92
C17 P4 1 × 1 16 × 16 128
C18 C14 3 × 3 16 × 16 128
C19 C15 5 × 5 16 × 16 128
P5 C16 2 × 2 (stride 1 pix) 16 × 16 92

Co3 – – 16 × 16 476
C20, C21, C22 Co3 1 × 1, 1 × 1, 1 × 1 16 × 16, 16 × 16, 16 × 16 92, 92, 92

C23 Co3 1 × 1 16 × 16 128
C24 C20 3 × 3 16 × 16 128
C25 C21 5 × 5 16 × 16 128
P6 C22 2 × 2 (stride 1 pix) 16 × 16 92

Co4 – – 16 × 16 476
P7 Co4 2 × 2 (stride 2 pix) 8 × 8 476

C26, C27 P7 1 × 1, 1 × 1 8 × 8, 8 × 8 92, 92
C28 P7 1 × 1 8 × 8 128
C29 C26 3 × 3 8 × 8 128
P8 C27 2 × 2 (stride 1 pix) 8 × 8 92

Co5 – – 8 × 8 348
FC1, FC2 Co5, FC1 – – 1024, 1024

Notes. Columns are: name of the layer, input layer, size of the convolution kernel (in pixels), size (height×width in pixels) and number of the
resulting feature maps.

We selected galaxies with spectroscopic redshifts from the Main
Galaxy Sample of the DR12 by running the following SQL
query on the CasJob website:

SELECT
za.specObjID,za.bestObjID,za.class,za.subClass,za.z,za.zErr,
po.objID,po.type,po.flags, po.ra,po.dec,
. . .

(po.petroMag_r - po.extinction_r) as dered_petro_r,

. . .
zp.z as zphot, zp.zErr as dzphot,
zi.e_bv_sfd,zi.primtarget,zi.sectarget,zi.targettype,
zi.spectrotype, zi.subclass,

. . .

INTO mydb.SDSS_DR12
FROM SpecObjAll za
JOIN PhotoObjAll po ON (po.objID = za.bestObjID)
JOIN Photoz zp ON (zp.objID = za.bestObjID)
JOIN galSpecInfo zi ON (zi.SpecObjID = za.specObjID)
WHERE
za.z> 0 and za.zWarning = 0
and za.targetType = “SCIENCE” and za.survey = “sdss”
and za.class = “GALAXY” and zi.primtarget≥ 64
and po.clean = 1 and po.insideMask = 0
and dered_petro_r≤ 17.8

This results in a final sample of 516 546 galaxies.
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Fig. C.1. σMAD and bias as a function of signal-to-noise ratio (S/N = 1.086/petroMagErr) and PSF FWHM in the five bands, and of PSF FWHM
offset between two bands (recentered at the mean value). The CNN results are shown in red, the B16 results in green.

Appendix B: Detailed CNN architecture

In this section we provide more detail on our architecture. The
total number of parameters can be computed from Table A.1
with the formulae below.

N(c) =

{
k(c)n(c−1)n(c) if c is a convolution layer
n(c−1)n(c) if c is a fully connected layer

(B.1)

blue
Nparameters =

∑
c∈Layers

N(c) (B.2)

with c a specific layer and c − 1 the previous layer, k(c) the spa-
tial size of kernels on the convolution layer c, n(c) the number of
neurons on the layer c.

We explain the computational time needed for the training
steps, with one GTX Titan X card. The time needed to pass for-
ward and backward a batch composed of 128 galaxies through
the network takes 0.21 s. So an epoch, which is the time needed
to pass the entire dataset, takes about 14 min. We let the net-
work converge in 120 000 iterations at most, which corresponds
to 30 epochs. Therefore the training phase takes approximatively
seven hours.

Appendix C: Impact of image quality on the CNN
performance
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