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SURFACE SHEAR WAVES IN A HALF-PLANE WITH
DEPTH-VARIANT STRUCTURE

ANDREY SARYCHEV, ALEXANDER SHUVALOV, AND MARCO SPADINI

Abstract. We consider the propagation of surface shear waves in a half-
plane, whose shear modulus and density depend continuously on the depth
coordinate. The problem amounts to studying the parametric Sturm-Liouville
equation on a half-line with frequency and wave number as the parameters.
The Neumann (traction-free) boundary condition and the requirement of decay
at infinity are imposed. The condition of solvability of the boundary value
problem determines the dispersion spectrum in the wave number/frequency
plane for the corresponding surface wave. We establish the criteria for non-
existence of surface waves and for the existence of a finite number of surface
wave solutions; the number grows and tends to infinity with the wave number.
The most intriguing result is a possibility of the existence of infinite number
of solutions for any given wave number. These three options are conditioned
by the asymptotic behaviour of the shear modulus and density close to infinite
depth.

1. Introduction

In the physical context, the present paper is concerned with the problem of
existence of surface shear waves in functionally graded semi-infinite media with a
traction-free boundary. Surface acoustic waves find numerous applications in var-
ious fields extending from geophysics to microelectronics. Their localization near
the surface (decay into the depth) makes them extremely advantageous in non-
destructive material testing for detection of surface and subsurface defects (surface
wave sensors). Small wavelength of surface waves enables their application in fil-
ters and transducers used in modern miniature devices [1]. Functionally graded
materials are the materials with coordinate-dependent properties. They may be of
natural origin (e.g. bones), they may occur due to material aging, or they may be
specially manufactured to realize desired physical behaviour [2, 3]. The model of a
functionally graded medium is widely used in seismology.

In the framework of our study, we consider shear acoustic waves in a functionally
graded isotropic half-space with the shear modulus µ(y) and density ρ(y) depend-
ing on the depth coordinate y. We assume both functions ρ(y) and µ(y) to be
continuous and positive; further assumptions are introduced in Sections 3,4.

It is known that, for generic couple (ω, k) of frequency and wave number, there
are no surface wave solutions which satisfy both boundary traction-free (Neumann)
condition and the decay condition at infinite depth. For many bi-parametric prob-
lems the set of admissible ω, k is known to be a union of a number of eigencurves
([4, Ch.6]) in ωk-plane, called in the physical context dispersion curves. Our goal is
to characterize the pairs (ω, k), for which the solutions of the described boundary
value problems exist.

The situation is elementary, when ρ(y), µ(y) are constants, and is relatively un-
complicated, when ρ(y), µ(y) become constants on an interval [ys,+∞[. In Section
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5 we briefly consider the latter homogeneous substrate case as a particular instance
of our general treatment. There has been a number of studies, which either treat
the problem asymptotically for large ω, k, or assume particular choice of functions
ρ(y), µ(y), or their periodicity [5, 6, 7, 8, 9]. We address the general case of un-
restricted ω, k and any continuous ρ(y), µ(y), for which explicit solution of wave
equation is unavailable.

The paper is organized as follows. Section 3 contains the auxiliary results. In
Section 4 we formulate the corresponding parametric Sturm-Liouville problem on
a half-line and introduce the assumptions for the material coefficients ρ(y), µ(y).
Section 5 contains the formulations of the main results, which are the criteria for
non-existence of surface waves (Theorem 5.1) and for the existence of N(k) surface
wave solutions, with N(k) → ∞ as k → ∞ (Theorem 5.2). The most intriguing
result is a possibility of the existence of infinite number of solutions, N(k) = ∞, for
any given k (Theorem 5.3). These three options are conditioned by the properties
of µ(y) and ρ(y). Section 6 contains the proofs of the above theorems.

2. Mathematical Setting of the Problem

We consider the 2D wave equation

(1) ρûtt −∇ (M∇û) = 0

in a half-plane {(x, y) : y > 0}. One imposes the Neumann boundary condition

(2) û′
y|y=0 = 0.

We seek the solutions, which decay at infinity:

(3) lim
y→+∞

û = 0.

We make an assumption of M,ρ depending only on y and of M being a scalar
matrix M = µ(y)Id.

Under the adopted assumptions equation (1) reads as

(4) ρ(y)ûtt = µ(y)ûxx + ∂y(µ(y)∂yû).

We will seek solutions of the form

û(x, y) = u(y)ei(kx−ωt).

Substituting û(x, y) into (4) and cancelling ei(kx−ωt), one gets for u(y) the equation

ρ(y)u(y)(−ω2) = µ(y)u(y)(−k2) + ∂y(µ(y)∂yu(y)).

We denote the (total) derivative ∂y by ′ arriving at the second-order linear differ-
ential equation

(5) (µ(y)u′(y))
′
+ (ω2ρ(y)− k2µ(y))u = 0.

The boundary conditions (2) and (3) formulated for u(y) become

u′(0) = 0,(6)
lim

y→+∞
u(y) = 0.(7)

We assume both functions ρ(y) and µ(y) to be continuous and positive on [0,+∞[;
further assumptions are introduced in Sections 3,4.

As it was already mentioned, for generic ω, k there are no solutions of (5), which
satisfy both boundary conditions (6) and (7). Our goal is to characterize the pairs
(ω, k), for which the solutions of the boundary value problems (5)-(6)-(7) exist.
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3. Second-order Linear Ordinary Differential Equation on a
Half-Line: Auxiliary Results

3.1. Second-Order Linear Equation. Equation (5) is a particular type of the
second-order linear differential equation
(8) (µ(y)u′(y))

′
+ γ(y)u = 0

defined on a half line [0,+∞[.

Assumption 3.1. We assume from now on that the function µ(s) ≥ µ > 0 on
[0,+∞[, is continuous on [0,+∞[ and admits a finite limit lim

s→∞
µ(s) = µ∞ > 0. □

The following substitution of the independent variable

(9) τ(y) =

∫ y

0

(µ(s))
−1

ds

is invertible (τ(y) is strictly growing) and satisfies the relation: d
dτ = µ d

dy .
By Assumption 3.1, the functions µ(s), (µ(s))

−1 are both bounded on [0,+∞[
and therefore the function τ(y) and its inverse y(τ) are Lipschitzian. Besides∫ +∞
0

(µ(s))
−1

ds = ∞, i.e. τ(y) is Lipschitzian homeomorphism of [0,+∞[ onto
[0,+∞[.

This substitution transforms (8) into the standard form

(10) d2ū

dτ2
+ γ̄(τ)ū(τ) = 0,

where ū(τ) = u(y(τ)) and γ̄(τ) = µ(y(τ))γ(y(τ)).
Another form of (8) is its representation as a system of first-order differential

equations for the variables u(y), w(y) = µ(y)u′(y):

u′(y) =
w(y)

µ(y)
, w′(y) = −γ(y)u(y),(11)

or in the matrix form for Z =

(
w
u

)
:

(12) Z ′(y) =
dZ

dy
= C(y)Z(y), C(y) =

(
0 −γ(y)

(µ(y))
−1

0

)
.

Performing substitution (9), we transform (12) into the system for the function
Z̄(τ) = Z(y(τ))

(13) dZ̄

dτ
= C̄(τ)Z̄(τ), C̄(τ) =

(
0 −γ̄(τ)
1 0

)
.

We concentrate for a moment on the asymptotic properties of the solutions of
(8), (10), (12), (13) at infinity.

3.2. Asymptotic Properties of Solutions for y → +∞. The matrix of the
coefficients C(y) of the system (12) for each y is traceless, hence, by the Liouville
formula, the Wronskian of a fundamental system of solutions is constant in y. This
precludes a possibility of having two independent solutions, which would both tend
to zero at infinity.

Important characteristics of the asymptotics of the system at infinity are deter-
mined by the limit of the coefficient matrix for y → +∞ (whenever it exists):

C∞ = lim
y→+∞

C(y) =

(
0 −γ∞

(µ∞)−1 0

)
,

where µ∞ = limy→+∞ µ(y), γ∞ = limy→+∞ γ(y).
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Whenever detC∞ = γ∞(µ∞)−1 > 0, or, equivalently, γ∞ > 0, the eigenvalues
of C∞ are purely imaginary and one can conclude (see Proposition 3.4 below) the
non-existence of a solution of system (12) with limy→+∞ u(y) = 0.

If on the contrary detC∞ < 0, then the eigenvalues of C∞ are real numbers
of opposite signs and the existence of a solution of (12) with limy→∞ u(y) = 0 is
guaranteed under some additional conditions on the functions µ(y), γ(y).

Note that det C̄∞ = µ2
∞ detC∞ and therefore a similar conclusion holds for the

solutions of system (13).
Later on we use a number of results which follow the quasi-classical or WKB-

approximation paradigm ([10, Ch.2]). We formulate the results for equations (8)
or (10).

Let us introduce linear space G of the coefficients γ(y) of equations (8) as a space
of functions γ(y) = γ∞ + β(y), with γ∞ being a constant and β(y) a continuous
function on [0,+∞[ such that:

lim
y→+∞

β(y) = 0,(14) ∫ +∞

0

|β(y)|dy < ∞.(15)

Evidently limy→∞ γ(y) = γ∞.
Introduce in G the norm

(16) ‖γ(·)‖01 = |γ∞|+ ‖β(·)‖C0 + ‖β(·)‖L1
.

For each y0 ∈ [0,+∞[ we introduce a subset G−(y0) ⊂ G, consisting of the functions
γ(y) = γ∞ + β(y), for which γ∞ < 0 and γ∞ + β(y) < 0 on [y0,+∞[. Similarly
we define G+(y0) ⊂ G, consisting of the functions γ(y) = γ∞ + β(y), for which
γ∞ > 0 and γ∞ + β(y) > 0 on [y0,+∞[. Both G−(y0) and G+(y0) are open subsets
of G in the above introduced norm. It is easy to verify that substitution (9) trans-
forms the space G into itself and the sets G−(y0),G+(y0) into G−(τ(y0)),G+(τ(y0)),
correspondingly.

The first classical result regards the so called non-elliptic case for equation (10),
where the coefficient γ̄(·) ∈ G−(τ0).

Proposition 3.1 (see [11, §6.12]). . Consider the equation
(17) u′′(τ) + γ̄(τ)u = u′′(τ) +

(
−λ2 + β(τ)

)
u = 0, λ > 0.

Assume β(τ) to be continuous and to satisfy (14). Then, for equation (17) there
exist τ0 ≥ 0, constants c1, c2, d1, c

′
1, c

′
2, d

′
1 and two solutions uλ(τ), u−λ(τ) such that

∀τ ≥ τ0:

c′2exp

[
λτ − d′1

∫ τ

τ0

|β(θ)| dθ
]
≤ uλ(τ) ≤ c′1exp

[
λτ + d′1

∫ τ

τ0

|β(θ)| dθ
]
,(18)

c2exp

[
−λτ − d1

∫ τ

τ0

|β(θ)| dθ
]
≤ u−λ(τ) ≤ c1exp

[
−λτ + d1

∫ τ

τ0

|β(θ)| dθ
]
.(19)

Corollary 3.2 (see [12, §XI.9]). . Assume the assumptions of Proposition 3.1 to
hold and β(·) to satisfy (15). Then the solutions uλ, u−λ satisfy

uλ ∼ u′
λ

λ
∼ eλτ , u−λ ∼ −

u′
−λ

λ
∼ e−λτ

as τ → +∞.

Corollary 3.3. For each γ̃(·) sufficiently close to γ̄(·) in the norm (16) the equation
u′′(τ) + γ̃(τ)u(τ) = 0

has a decaying solution.
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Next we pass on to the elliptic case (see [12, §XI.8]; Corollary 8.1), where the
coefficient γ̄(·) ∈ G+(y0).

Proposition 3.4. Consider the equation

(20) u′′(τ) + γ̄(τ)u = u′′(τ) +
(
λ2 + β(τ)

)
u = 0, λ > 0

with γ̄(·) ∈ G+(y0). Then, for any real a, b there is a unique solution of equation
(20) with the asymptotics

u(τ) = (a+ o(1)) cosλτ + (b+ o(1)) sinλτ,(21)
u′(τ) = (−λa+ o(1)) sinλτ + (λb+ o(1)) cosλτ,

as τ → +∞.

3.3. Prüfer’s Coordinates. We consider Prüfer’s coordinates (see [12, 4]):

(22) r = (u2 + µ2u′2)
1
2 = (u2 + w2)

1
2 , φ = Arctg u

w
,

where again w = µu′. For the vector function Z =

(
w
u

)
we denote φ by Arg Z

(the choice of a continuous branch is done in a standard way). In coordinates (22)
system (8) takes the form:

(23) r′ =
(
µ−1(y)− γ(y)

)
r sinφ cosφ, φ′ = γ(y) sin2 φ+ µ−1(y) cos2 φ;

note that the second equation is decoupled from the first one.
We list some facts concerning the evolution of Arg Z(y). Recall that µ(y) in

equation (8) meets Assumption 3.1.

Proposition 3.5. i) If γ(y) ≥ 0 (respectively, γ(y) > 0) on an interval,
then for a solution Z(y) of (11) Prüfer’s angle variable φ = Arg Z is
non-decreasing (increasing) on the interval.

ii) If γ(y) < 0 on an interval I, then the first and the third quadrants –
Arg Z ∈]0, π/2[ and Arg Z ∈]π, 3π/2[ – are invariant for system (11) on I.

iii) For any γ(y) there is a kind of weakened monotonicity for Arg Z: if
Arg Z(ỹ) > mπ, then Arg Z(y) > mπ for any y > ỹ.

Property i) follows from (23). So does property ii), since, according to (23),
φ′(πm) > 0 and φ′(π/2 + πm) < 0 for negative γ. Property iii) follows from the
fact that in (23) φ′(mπ) = µ−1(mπ) > 0.

3.4. Oscillatory Equations. Second-order linear differential equation is oscilla-
tory ([12, §XI.5 ]) on [0,+∞[ when its every solution has infinite number of zeros
on [0,+∞[, or equivalently the set of zeros of any solution has no upper limit,
or equivalently for every solution its Prufer’s coordinate Arg Z (see the previous
Subsection) satisfies

lim sup
y→+∞

Arg Z(y) = +∞.

An obvious example of oscillatory equation is (20), when the assumptions of Propo-
sition 3.4 are met.

We are interested in conditions, under which the same equation is oscillatory for
vanishing λ. We formulate the result (see [12, §XI.5], [10, Ch.2,§6]) for equation
(10).
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Proposition 3.6. Let γ̄(·) in (10) be continuous of bounded variation on every
interval [0, T ], γ̄(τ) > 0 on some interval [τ0,+∞[, and∫ +∞

τ0

(γ̄(τ))
1/2

dτ = +∞,(24) ∫ T

τ0

(γ̄(τ))
−1 |dγ(τ)| = o

(∫ T

τ0

(γ̄(τ))
1/2

dτ

)
, as T → +∞.(25)

Then, equation (10) is oscillatory.

3.5. Hamiltonian Form. One can rewrite the system (12) in the Hamiltonian
form

(26) u′ =
∂H

∂w
=

w

µ(y)
, w′ = −∂H

∂u
= −γ(y)u

with the Hamiltonian
H =

1

2

(
w2

µ(y)
+ γ(y)u2

)
.

We denote by −→
h the (Hamiltonian) vector field at the right-hand side of (26).

As it is well known, equation (8) follows from a variational principle, i.e. (8) is
the Euler-Lagrange equation, which represents necessary minimality condition for
a variational problem∫ +∞

0

µ(y) (u′(y))
2 − γ(y) (u(y))

2
dy → min

with appropriate boundary conditions. The Hamiltonian form of the minimality
condition for the same variational problem is precisely (26).

For Prüfer’s angle φ = Arctan
(
u
w

)
there holds

φ′ =
−w′u+ wu′

u2 + w2
=

γu2 + w2/µ

u2 + w2
=

2H

u2 + w2
.

The last equation is equivalent to the differential equations (23) for Prüfer’s coor-
dinate φ.

Remark 3.1. A simple but relevant (see [13]) computation is provided by derivation
of u(y)w(y) along the trajectories of Hamiltonian system (26):

(27) d

dy
(uw) = ∂−→

h
(uw) =

(
∂−→
h
u
)
w + u

(
∂−→
h
w
)
= −γu2 +

w2

µ
,

wherefrom it follows, among other things, that uw is nondecreasing (respectively
increasing) on the intervals where γ(y) ≤ 0 (respectively γ(y) < 0).

Proposition 3.5 and Remark 3.1 allow us to arrive at a conclusion on qualitative
behaviour of solutions on an interval, where γ(τ) < 0 in (17).

According to Proposition 3.1, there is a decaying solution, along which (according
to Remark 3.1) uw grows. Hence the solution approaches the origin either in the
second or in the fourth quadrant, where uw < 0.

Proposition 3.7. Let γ̄(τ) meet the assumptions of Proposition 3.1 with γ̄(τ) < 0
for τ ∈ [τ0,+∞[. Then, the decaying solutions ±u(τ) of (17) correspond to the
solutions ±Z(τ) of (11) with Arg Z(τ) ∈ [π/2, π] and Arg (−Z)(τ) ∈ [3π/2, 2π] for
τ ∈ [τ0,+∞[.

Other solutions, which start in the same quadrants, escape to either the first
or the third quadrant, which, according to Proposition 3.5, are invariant for (17)
whenever γ(τ) < 0. According to Remark 3.1, the product uw (positive in these
quadrants) grows along the respective trajectories, which tend to infinity.
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3.6. Sturmian Properties of Trajectories. We provide few results from the
Sturm theory. First result is classical ([10],[4], [12, Ch. X,XI]) and follows directly
from the second equation (23).

Proposition 3.8 (comparison result). Consider a pair of second-order equations

(28) (µ(y)u′(y))
′
+ γ(y)u = 0, (µ(y)u′(y))

′
+ γ̃(y)u(y) = 0,

where µ(y) meets Assumption 3.1 and
γ̃(y) ≥ γ(y), ∀y ∈ [y0,+∞[.

If for y1 ≥ y0 and a pair of vector solutions Z =

(
w
u

)
, Z̃ =

(
w̃
ũ

)
of the first

and the second equations (28)

Arg Z̃(y1) = Arg Z(y1),

then
∀y ≥ y1 : Arg Z̃(y) ≥ Arg Z(y)

and
(29) ∀y ∈ [y0, y1] : Arg Z̃(y) ≤ Arg Z(y).

We provide analogue of the comparison result (in particular, of relation (29)) for
the decaying solutions of (28), when y1 = +∞. We were not able to trace it in the
literature and provide a (short) proof.

Proposition 3.9 (comparison result for decaying solutions on a half-line). Con-
sider the pair of second-order equations (28) with the coefficient µ(y) meeting As-
sumption 3.1 and with γ(y), γ̃(y) belonging to G−(y0). Let
(30) 0 > γ̃(y) ≥ γ(y), ∀y ∈ [y0,+∞[.

If Z, Z̃ are the decaying solutions of equations (28), then

(31) Arg Z̃(y) ≤ Arg Z(y), ∀y ≥ y0.

Proof. Without loss of generality we may assume µ(y) ≡ 1; otherwise we perform
substitution (9) of the independent variable, which preserves relation (30) for the
coefficients.

By (30) and (27), the functions uw and ũw̃ are increasing on [y0,+∞[. As
long as the limits of these functions at +∞ are null, we conclude that (uw)(y) <
0, (ũw̃)(y) < 0 on [y0,+∞[ and then without loss of generality we may assume that
u(y), ũ(y) are positive, while w(y), w̃(y) are negative on [y0,+∞[.

Denote γ̃(y)− γ(y) by ∆γ(y) and represent the second one of equations (28) as
(32) ũ′′ + γ(y)ũ = −∆γ(y)ũ;

∆γ(y) > 0 by (30).
Applying the integral form of the Lagrange identity (or Green’s formula, see [12,

§XI.2]) to the respective vector solutions Z =

(
w
u

)
, Z̃ =

(
w̃
ũ

)
of equations

(28), of which the second one is written as (32), we conclude:

∀y ≥ y0 : (uw̃ − wũ)|+∞
y =

∫ +∞

y

−∆γ(s)ũ(s)u(s)ds < 0.

Given that (uw̃ − wũ) vanishes at +∞, we obtain:

(33) ∀y ≥ y0 : −u(y)w̃(y) + w(y)ũ(y) =

∫ +∞

y

−∆γ(s)ũ(s)u(s)ds < 0.
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Dividing the inequality in (33) by the positive value w(y)w̃(y), we get

∀y ≥ y0 :
ũ(y)

w̃(y)
≤ u(y)

w(y)
,

wherefrom (31) follows. □
We establish the continuous dependence of decaying solutions on the coefficient

γ(·) in ‖ · ‖01-norm.

Proposition 3.10 (continuous dependence of decaying solutions on the right-hand
side). Consider equations (28). Let γ(·) = −λ2+β(·) ∈ G−

y0
for some y0 ∈ [0,+∞[.

Then, for any γ̃(·) = −λ̃2 + β̃(·) sufficiently close to γ(·) in ‖ · ‖01-norm:
i) both equations (28) possess the decaying vector solutions Z(·), Z̃(·) with Arg Z,

Arg Z̃ ∈ [π/2, π];
ii) for each y ∈ [y0,+∞[∣∣∣Arg Z̃(y)− Arg Z(y)

∣∣∣→ 0, as ‖γ̃(·)− γ(·)‖01 → 0.

Proof. Again we may proceed assuming µ(y) ≡ 1.
i) Any γ̃(·) sufficiently close to γ(·) in ‖ · ‖01-norm belongs to G−

y0
, which is open

with respect to the norm. The existence of the decaying solutions Z(y), Z̃(y) follows
from Corollary 3.3. Since both γ and γ̃ are negative on [y0,+∞[, we conclude by
Proposition 3.7 that Arg Z(y) and Arg Z̃(y) lie in [π/2, π] for y ∈ [y0,+∞[.

This implies that for s ∈ [y0,+∞[, w(s), w̃(s) are negative, while u(s), ũ(τ) are
positive and by (11) decrease.

ii) Recall that ∆γ(·) = γ̃(·)− γ(·). Invoking the equality in (33) and dividing it
by −u(y)ũ(y), we get

(34) w̃(y)

ũ(y)
− w(y)

u(y)
=

∫ +∞

y

∆γ(s)
ũ(s)

ũ(y)

u(s)

u(y)
ds =

∫ +∞

y

∆γ(s)ν(s)ν̃(s)dτ,

where ν(s) = ũ(s)
ũ(y) , ν̃(s) = u(s)

u(y) are the solutions of the first and second equation
(28), which are normalized by the condition: ν(y) = ν̃(y) = 1.

By the aforesaid ν(s), ν̃(s) decrease; hence

(35) ν(s) ≤ 1, ν̃(s) ≤ 1, for s ≥ y.

According to Proposition 3.1, there exist c1, d1 > 0, s0 > y such that

(36) ν(s) ≤ c1exp

(
−λs+ d1

∫ s

s0

|β(σ)|dσ
)
, ∀s > s0.

From the proof of the Proposition (see [11, §6.12, §2.6]) it follows that one can
choose in (36) any c1 > 1, a sufficiently large d1 and then choose s0 such that
d1 sups≥s0 |β(s)| < λ. The same holds for the second one of equations (28).

For each γ̃ from a small neighborhood of γ in ‖ · ‖01-norm, λ̃ and λ as well as
supτ≥τ0 |β(τ)| and supτ≥τ0 |β̃(τ)| are close. Thus, one can choose common c1, d1, τ0
for all the equations with the coefficient γ̃ from the neighborhood. Besides there is a
common upper bound B for the corresponding norms ‖β̃(·)‖L1

. Then, by (34),(35)
and (36),∣∣∣∣∫ +∞

y

∆γ(s)ν(s)ν̃(s)ds

∣∣∣∣ ≤ ∫ s0

y

|∆γ(s)| ds+ c21e
2d1B

∫ ∞

s0

e−λs |∆γ(s)| ds

with the right-hand side tending to 0 as ‖∆γ(s)‖01 → 0.
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Note that Arg Z = Arccot w(y)
u(y) , Arg Z̃ = Arccot w̃(y)

ũ(y) and since the function
z 7→ Arccot z is Lipschitzian with constant 1:∣∣∣Arg Z(y)− Arg Z̃(y)

∣∣∣ = ∣∣∣∣Arccot w(y)

u(y)
− Arccot w̃(y)

ũ(y)

∣∣∣∣ ≤ ∣∣∣∣w(y)u(y)
− w̃(y)

ũ(y)

∣∣∣∣
and the left-hand side tends to 0 as ‖∆γ(τ)‖01 → 0. □

4. Existence of Surface Waves and Parametric Sturm-Liouville
Problem

We come back to equation (5) and simplify the notations putting Ω = ω2, K =
k2, A = (K,Ω),

(37) γA(y) = Ωρ(y)−Kµ(y),

thus arriving at the equation

(38) (µ(y)u′)′(y) + (Ωρ(y)−Kµ(y))︸ ︷︷ ︸
γA(y)

u(y) = 0

with the parameter A.
Performing the substitution of the independent variable the way it is done in

(9), we get the equation:

(39) d2ū

dτ2
+ µ̄(τ) (Ωρ̄(τ)−Kµ̄(τ))︸ ︷︷ ︸

γ̄A(τ)

ū(τ) = 0,

where

(40) ρ̄(τ) = ρ(y(τ)), µ̄(τ) = µ(y(τ)), ū(τ) = u(y(τ)).

In equations (38) and (39) the dependence of the coefficients on the parameters
Ω,K is linear; the functions ρ(y), µ(y), ρ̄(τ), µ̄(τ) are positive. Note that µ̄(0) =
µ(0), ρ̄(0) = ρ(0) and

µ̄(+∞) = µ(+∞), ρ̄(+∞) = ρ(+∞), γ̄A(+∞) = Ωµ∞ρ∞ −Kµ2
∞.

We know from the previous Section that if equation (39) meets the assumptions
of Proposition 3.1, then it has a solution, which satisfies the boundary condition at
infinity (7). We are interested, though, in the solutions, which satisfy at the same
time the boundary condition (6), and it is not possible for generic combinations of
ρ̄(y), µ̄(y),Ω,K, which enter (39) via the coefficient γ̄A(·). In other words we get
parametric Sturm-Liouville problem on a half-line for equation (39) (or (38)) with
the boundary conditions (6)-(7).

Let us introduce the vector-function a(y) = (ρ(y), µ(y)), which characterizes our
medium, and formulate the assumptions for the medium in terms of a(y).

Assumption 4.1 (Lipschitz continuity). The function a(y) = (ρ(y), µ(y)) is Lip-
schitz continuous on [0,+∞[. There exists a finite limit

lim
y→+∞

a(y) = a∞, a∞ = (ρ∞, µ∞) , ρ∞ > 0, µ∞ > 0.

.

Assumption 4.2 (integral boundedness). The function

â(y) = (ρ̂(y), µ̂(y)) = a(y)− a(+∞) = (ρ(y)− ρ∞, µ(y)− µ∞)

is integrable on [0,+∞[:
∫∞
0

|â(y)| dy < ∞.
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ρ

µ

b

b

(ρ∞, µ∞)

(ρ0, µ0)

(K,Ω)

b

b

(ρ∞, µ∞)

(ρ0, µ0)

b

b
(ρ∞, µ∞)

(ρ0, µ0)

(3)

(2)

(1)

Figure 1. Curves parameterized by y, which exhibit different
types of monotonicity at infinity

We now introduce monotonicity assumptions formulated in terms of polar coor-
dinates representation for a(y). Let

|a(y)| =
(
(ρ(y))2 + (µ(y))2

)1/2
, Arg a(y) = Arctan µ(y)

ρ(y)
,

a(y) = (ρ(y), µ(y)) = |a(y)| (cosArg a(y), sinArg a(y)) .

The values a(y) have both positive coordinates; hence the values of Arg a(y) lie in
[0, π/2]. As long as a∞ 6= 0, Arg a∞ is properly defined.

Assumption 4.3 (monotonicity at infinity). There exists an interval
Ī =]ȳ,+∞[ such that either: i) Arg a(y) < Arg a∞ on Ī - positive monotonic-
ity at infinity, or ii) Arg a(y) > Arg a∞ on Ī - negative monotonicity at infinity.

Examples of the curves a(y) = (ρ(y), µ(y)) are drawn in Figure 1 together with
the vector A = (K,Ω). The curves (1) and (2) are negatively monotonous at
infinity, while the curve (3) is positively monotonous at infinity.

Assume the vector of parameters A = (K,Ω) to belong to (the positive quadrant
of) the oriented plane, in which the curve y 7→ a(y), y ∈ [0,+∞[ is contained. We
define Arg A = Arctan Ω

K . The following remarks are important.

Remark 4.1. Fix an admissible A. If Arg a(y) < Arg A (respectively,
Arg a(y) > Arg A) for some y, then γA(y) defined by (37) is positive (respectively,
negative). □
Remark 4.2. Under Assumptions 4.1 and 4.2, for any admissible A and γA(·)
defined by (37) there holds:

(1) γA(y)− γA(+∞)
y→+∞−−−−−→ 0;

(2)
∫∞
0

|γA(y)− γA(+∞)|dy < ∞;
(3) if γA(y) admits positive values, then so does γA′(y) with any A′ such that

Arg A′ is sufficiently close to Arg A. □
We wish to check what occurs with Assumptions 4.1-4.2-4.3 after substitution

(9).

Proposition 4.1. Let Assumption 3.1 hold and let equation (38) meet Assumptions
4.1, 4.2, 4.3 for any admissible A. Then equation (39) meets the same Assumptions.
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Proof. By Assumption 3.1, τ(y) defined by (9) is Lipschitzian homeomorphism
of [0,+∞[ onto itself. Hence the functions µ̄, ρ̄ defined by (40) are bounded, Lips-
chitzian, with finite limits at infinity, i.e. Assumption 4.1 is valid for them.

Under substitution (9), the vector-function a(y) = (ρ(y), µ(y)) is transformed
into ā(τ) = µ̄(τ) (ρ̄(τ), µ̄(τ)). Hence Arg a(y) = Arg ā(τ(y)) and all the mono-
tonicity properties listed in Assumption 4.3 are maintained.

Regarding Assumption 4.2 we perform substitution (9) and obtain:∫ +∞

0

|γ̄A(τ)− γ̄A(+∞)| dτ =

∫ +∞

0

|µ(y)γA(y)− µ(+∞)γA(+∞)|
µ(y)

dy =

=

∫ +∞

0

∣∣(γA(y)− γA(+∞)) + γA(+∞) (µ(y)− µ(+∞)) (µ(y))−1
∣∣ dy < ∞,

since (µ(y))
−1 is bounded on [0,+∞[. □

For the limit case, in which A∞ = (K∞,Ω∞) = βa∞, β > 0, or in other words
Arg A∞ = Arg a∞, we get

γA∞(y) = Ω∞ρ(y)−K∞µ(y) = β(µ∞(ρ∞ + ρ̂(y))− ρ∞(µ∞ + µ̂(y)) = βγ̂∞(y),

where

(41) γ̂∞(y) = µ∞ρ̂(y)− ρ∞µ̂(y).

Remark 4.3. (1) Under Assumption 4.1, for each A = (K,Ω) with
Arg A < Arg a∞, there exists an interval, [y−,+∞[, on which γA(y) < 0.

(2) Under Assumption 4.3i) (respectively 4.3ii)), there is an interval [ȳ,+∞[,
on which γ∞(y) is positive (respectively negative).

5. Results

Key information for our treatment is provided by the limit-case equation, which
corresponds to the vectors of parameters A∞ = (K∞,Ω∞) = βa∞, β > 0. For
such choice of parameters equation (38) takes the form

(42) (µ(y)u′)′ + βγ̂∞(y)u = 0

with γ̂∞(y) as in (41).
We formulate here main results of the paper; the proofs are provided in the next

Section. Our first result establishes non-existence of solutions under a kind of global
negative monotonicity of a(y) at infinity.

Theorem 5.1. Let assumptions 4.1-4.2 hold and

(43) ∀y ∈ [0,+∞[: Arg a(y) ≥ Arg a∞.

Then, there are no admissible values of parameters K,Ω, for which solutions of
(38)-(6)-(7) exist.

The assumptions of the theorem are met by curve (1) in Fig. 1.
If (43) does not hold, then one can guarantee existence of solutions at least for

sufficiently large K,Ω.

Theorem 5.2. Let assumptions 4.1-4.2-4.3 hold and in addition Arg a(y) <
Arg a∞ for y ∈ I - a non-null sub-interval of [0,+∞[. Then for each N > 0 ∃KN

such that ∀K > KN there are at least N values Ωj ∈
]
µ̌
ρ̌K, µ∞

ρ∞
K
[
, j = 1, . . . , N ,

such that for each (K,Ωj) the solution of (38)-(6)-(7) exists.

Remark 5.1. The curves (2) and (3) in Fig. 1 meet assumptions of the Theorem.
□
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y

ρ

µ

b

(ρ∞, µ∞, ys)

b

b

(ρ∞, µ∞)
(ρ0, µ0)

Figure 2. The functions ρ(y) and µ(y) in the homogeneous sub-
strate example become constant when y ≥ ys, as illustrated by the
curve in black. Note that its projection (in gray) on the (ρ, µ)-plane
is a curve, which exhibits negative monotonicity at infinity.

Finally there is a case, in which for each K > 0 one finds a numerable set of
Ωj ∈

]
µ̌
ρ̌K, µ∞

ρ∞
K
[

such that the solution exists for (K,Ωj). It happens when the
limit-case equation (42) is oscillatory (see Subsection 3.4).

Theorem 5.3. Let assumptions 4.1-4.2-4.3i) hold and the limit-case equation (42)
be oscillatory1.

Then for each K̄ > 0 there exists a numerable set of Ωm ∈
]
µ̌
ρ̌ K̄, µ∞

ρ∞
K̄
[
, m =

1, . . . , such that:
i) for Am = (K̄,Ωm) the solution of (38)-(6)-(7) exists;
ii) Ωm increase with m and accumulate (only) to Ω̄ = µ∞

ρ∞
K̄;

iii) for the vector solutions Z(y;Am) there holds
Arg Z(y;Am) ∈ [(m− 1/2)π,mπ] for y sufficiently large.

Remark 5.2. Assumptions 4.1-4.2-4.3i) hold for curve (3) in Fig. 1, but the
oscillatory property for the limit-case equation can not be concluded from the curve
only, since it also depends on its parametrization. □
5.1. Homogeneous Substrate Example. This is a particular case, in which the
properties of the medium become depth-independent starting from some depth. For
the model under discussion this means existence of ys such that µ(y) and ρ(y) are
constant on the interval [ys,+∞[: µ(y) ≡ µs, ρ(y) ≡ ρs on [ys,+∞[ (see Fig. 2).

We denote as = (ρs, µs). Then, a∞ = limy→∞ a(y) = as and
â(y) = a(y)− a∞ vanishes on [ys,+∞[.

If ∀y ∈ [0,+∞[: Arg a(y) ≥ Arg as or, the same

∀y ∈ [0,+∞[:
µ(y)

ρ(y)
≥ µs

ρs
,

then we are under assumptions of Theorem 5.1 and solutions of (38)-(6)-(7) do not
exist.

If µ(y)
ρ(y) < µs

ρs
on some non-null subinterval of [0,+∞[, then we fall under assump-

tions of Theorem 5.2 and hence its claim holds.
1We assume (24) and (25) to hold
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6. Proofs

Since substitution (9) transforms parametric equation (38) into its standard form
(39) and Assumptions 4.1,4.2,4.3 are maintained under (9), we may take, without
loss of generality, µ(y) ≡ 1 in (38).

The proof of Theorem 5.1 is easy. Pick some A = (K,Ω). There are two
options: Arg a∞ ≤ Arg A or Arg a∞ > Arg A.

In the first case, by monotonicity and continuity assumptions, the coefficient
γA(y) in equation (38) is non-negative on some interval [y0,+∞[. Then, by Propo-
sition 3.4, there exists a fundamental system of solutions of the form (21) and none
of the solutions of (38) tend to the origin as y → +∞.

If otherwise Arg A < Arg a∞ ≤ Arg a(y) ∀y ∈ [0,+∞[, or the same,

Ω ≤ K min
y∈[0,+∞[

µ(y)

ρ(y)
=

µ(y̌)

ρ(y̌)
=

µ̌

ρ̌
,

then γA(y) < 0 on [0,+∞[. By (27), for a solution Z(y,A) =

(
w
u

)
there holds

d
dy (u(y)w(y)) > 0. This enters in contradiction with the boundary conditions (6)-
(7), according to which u(0)w(0) = 0 and limy→+∞ (u(y)w(y)) = 0.
Proof of Theorem 5.3. We start with a sketch of the proof.

Take a vector of parameters A∞ = (K̄, Ω̄) collinear to a∞ = (ρ∞, µ∞) and
consider its perturbation A∞,s = (K̄, Ω̄ − s). It is immediate to see that for each
s > 0 equation (38) with A = A∞,s and the coefficient
(44) γA∞,s

(y) = γA∞(y)− sρ(y) = −sρ∞ + (Ω̄− s)ρ̂(y)− K̄µ̂(y)

meets the assumptions of Proposition 3.1, and hence the equation
(45) u′′ + γA∞,s̄

(y)u = 0

possesses a decaying solution Z+(y,A∞,s).
Simultaneously, we consider the solutions Z0(y,A∞,s) of the same equation with

the boundary condition (6). The goal is to detect the values s > 0, for which
the solutions Z0(y,A∞,s) and Z+(y,A∞,s) meet at some intermediate point ȳ ∈
[0,+∞[, i.e admit at ȳ the same value (mod π). In such a case they (or their
opposites) can be concatenated into solutions of (38)-(6)-(7). The possibility of such
meeting follows from Propositions 3.8 and 3.9, according to which for a sufficiently
large intermediate point ȳ ∈ [0,+∞[ the vectors Z0(ȳ, A∞,s) and Z+(ȳ, A∞,s)
rotate in opposite directions as s grows from some s̄ > 0.

Increasing ȳ if necessary, one can assume that ∀s ≥ s̄ one has γA∞,s
(y) < 0

on (ȳ,+∞[ and Arg Z+(ȳ, A∞,s) ∈]π/2, π[. On the other hand, for small s >
0, Arg Z0(ȳ, A∞,s) is close to Arg Z0(ȳ, A∞), which, due to the oscillation prop-
erty of the limit-case equation, tends to +∞ as ȳ → +∞. Therefore for each
natural m one can find (again increasing ȳ when necessary) small s̄ > 0 such that
Arg Z0(ȳ, A∞,s̄) > πm. As s will grow from s̄ to Ω̄, Arg Z0(ȳ, A∞,s̄) will decrease
from the value greater than πm to the value less than π and during this evolution
it becomes equal (mod π) to Arg Z+(ȳ, A∞,s) for m distinct values of s.

Now we provide the detailed proofs of the statements i)-iii) of the Theorem.
i) Pick K̄ > 0 and take Ω̄ = µ∞

ρ∞
K̄, so that A∞ =

(
K̄, Ω̄

)
is collinear with

a∞. Consider the limit-case equation (42) with the parameter A∞ and choose the
solution Z0(·;A∞), which satisfies the boundary condition (6). As long as equation
(42) is oscillatory, Arg Z0(y;A∞) tends to infinity as y → +∞. Hence, for each
natural m ∃ym ∈ [0,+∞[ such that Arg Z0(ym;A∞) > πm.

By the continuity of the trajectories of (38) with respect to the parameter A,
one can find s̄ > 0 such that for any s ∈]0, s̄] and for A∞,s = (K̄, Ω̄− s) there holds
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Arg Z0(ym;A∞,s) > πm. For the function γA∞,s̄
(y) defined by (44) one can find

ȳ ≥ ym such that γA∞,s̄
(y) < 0 on [ȳ,+∞[. It follows from Remark 3.5iii) that

Arg Z0(ȳ;A∞,s̄) > πm.
The second-order equation (45) for s = s̄ meets the assumptions of Proposition

3.1 and hence has the decaying solution Z+(y;A∞,s̄). By Proposition 3.7, there
holds:

∀y ≥ ȳ : Arg Z+(y;A∞,s̄) ∈ ]π/2, π[ (mod π).

Letting s grow from s̄ towards Ω̄, we note that the values of
γA∞,s(y) = γA∞(y)− sρ(y) on [0,+∞[ diminish; in particular, γA∞,s(y) < 0 for
y ∈ [ȳ,+∞[ for all s ≥ s̄.

According to Proposition 3.8, the function s → Arg Z0(ȳ;A∞,s) decreases
monotonously from the value Arg Z0(ȳ;A∞,s̄) > πm to the value
Arg Z0(ȳ;A∞,Ω̄) ∈ ]0, π[.

Consider now the decaying solutions Z+(y;A∞,s). Proposition 3.9 implies that
for chosen ȳ Arg Z+(ȳ;A∞,s) grows with the growth of s, remaining (mod π)
in the interval ]π/2, π[. During the evolution there occur (at least) m values of
sj , j = 1, . . . ,m, for which

Arg Z+(ȳ;A∞,sj ) = Arg Z0(ȳ;A∞,sj )− πn (n - integer).

Then the concatenations

(46) Z(y;A∞,sj ) =

{
Z0(y;A∞,sj ), y ≤ ȳ,
(−1)nZ+(y;A∞,sj ), y ≥ ȳ,

are the decaying solutions of the corresponding equations

u′′ +
(
(Ω̄− sj)ρ(y)− K̄µ(y)

)
u = 0,

and (46) satisfies the boundary condition (6)-(7).
ii) Let Ω̃ ∈]0, Ω̄) be a limit point of Ωn = Ω̄−sn, n = 1, . . .. Then Ω̃ = Ω̄−s̃ < Ω̄.
Consider γA∞,s̃ . There exists ỹ, such that γA∞,s̃ < 0 on [ỹ,+∞[. Pick the decay-

ing solution Z+(y;A∞,s̃). According to the aforesaid ∀y ∈ [ỹ,+∞[ :
Arg Z+(y;A∞,s̃) ∈]π/2, π[ (mod π).

Consider the solution Z0(y;A∞,s̃), which meets the initial condition (6). If
Arg Z+(ỹ;A∞,s̃) 6= Arg Z0(ỹ;A∞,s̃) (mod π), then the inequality holds for values
of s close to s̃, and in particular for all sn, but finite number of them, and this
results in a contradiction.

Let Arg Z0(ỹ;A∞,s̃) − Arg Z+(ỹ;A∞,s̃) = πm. Since the function
Arg Z0(ỹ;A∞,s)− Arg Z+(ỹ;A∞,s) decreases with the growth of s, one concludes:

Arg Z+(ỹ;A∞,s) 6= Arg Z0(ỹ;A∞,s) (mod π)

for all s 6= s̃ from a sufficiently small neighborhood of s̃ and hence for all sn but a
finite number of them, which leads us to the same contradiction.

iii) By the construction provided in i), for each natural m, there exist Am =
(K̄,Ωm) and the decaying solution Z(y,Am) of (38)-(6)-(7), which converges to
the origin in such a way that Arg Z(y,Am) ∈ [π(m− 1/2), πm] for sufficiently large
y.

To prove its uniqueness, we assume on the contrary that there exists another
A′ = (K̄,Ω′) and a decaying solution of (38)-(6)-(7) such that for y ∈ [y0,+∞[
γAm(y) < 0, γA′(y) < 0 and both Arg Z(y,A′) and Arg Z(y,Am) belong to [π(m−
1/2), πm] for y ∈ [y0,+∞[.

Let for example Ω′ > Ωm. Then γAm
(y) < γA′(y) and hence

Arg Z(y0, Am) < Arg Z(y0, A
′). This enters in contradiction with the result of

Proposition 3.9. □
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Proof of Theorem 5.2. Let us pick K̄ > 0 and take Ω̄ = Ω̄ = µ∞
ρ∞

K̄, so that
A∞ =

(
K̄, Ω̄

)
is collinear with a∞. By assumptions of the Theorem, the function

γA∞(y) admits positive values on some non-null subinterval ]c, c[⊂ [0,+∞[. The
same holds true for γβA∞ with βA∞ = (βK̄, βΩ̄), β > 0.

Our proof can be accomplished along the lines of the proof of Theorem 5.3 if one
proves that for any N there exists βN > 0, for which the solution Z0(y, βNA∞)
with initial condition (6) satisfies Arg Z0(c, βNA∞) > πN .

Consider the equation
u′′(y) + γβA∞(y)u = u′′(y) + βγA∞(y)u = 0

on the interval [0, c]. It is known ([4, §A.3, §A.5]) that the number of zeros of the
solution u(y, γβA∞(·)), or, the same, the increment of Prüfer’s angle

Arg Z(y, γβA∞(·))− Arg Z(0, γβA∞(·))
grows as

(47) π−1β
1/2

∫ y

0

(max(γA∞(η), 0))
1/2

dη +O(β
1/3)

as β → +∞. Hence choosing sufficiently large β > 0, we can get a solution
Z0(y;βA∞) satisfying the boundary condition (6) with the property that

Arg Z0(c;βA∞) > Nπ.

Proposition 3.5 yields Z0(y;βA∞) > Nπ, ∀y > c.
The rest of the proof follows the proof of Theorem 5.3. One can also conclude

from (47) that N(k) ∼ k as k → ∞, where N(k) is the number of surface wave
solutions with a given wave number k = K1/2. □

7. Research Outlooks

Our study can be generalized in several directions. One possible direction is ap-
plying the same approach to more complex models of functionally graded materials,
such as the anysotropic elastic media, or media with piezoelectric and/or piezomag-
netic properties, where the wave propagation is described by a vector equation.

There is a considerable amount of research of surface waves in the above men-
tioned cases, see, e.g., [14, 15, 16, 17, 18, 19]. However the treatment of the problem
therein has been restricted either to the asymptotic for large k, ω in application to
a certain fundamental branch, or to the particular dependence of the material co-
efficients on the depth coordinate.

Another generalization is considering surface waves in a medium with material
coefficients depending on more than one spatial variable, which invokes partial
differential equations. This setting is also addressed in ample literature, see e.g.
[20, 21, 22], where it is tackled either in the framework of the high-frequency asymp-
totical ray method, or under the assumption of periodicity.

One more aspect worthy of further study concerns the case of semi-infinite mul-
tilayered aperiodic medium, whose material properties are piecewise continuous.
Note that the results on oscillation and asymptotics of second-order differential
equations, which we exploited in the present paper, required continuity of a(y). We
intend to address the case of the multilayered aperiodic medium elsewhere.

8. Conclusions

We provided criteria for non-existence/existence of surface waves in terms of the
vector function a(y) = (ρ(y), µ(y)), which characterizes the depth-dependence of
the material parameters of the medium. If for all y the vectors a(y) lie counter-
clockwise with respect to the vector a(+∞) = limy→+∞ a(y), then no surface waves
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exist in the half-space. If, otherwise, a(y) lie clockwise with respect to the vector
a(+∞) for y ∈]y0, y1[, then surface waves do exist for sufficiently large k and their
number N(k) grows with the growth of k.

An apparently more interesting result is a possibility of existence of an infinite
number of surface waves for any given k. For this to occur, the latter condition
for existence of surface waves must be supplemented by a certain monotonicity
property for the vector function a(y) along with the oscillation property for the
particular limit case second-order equation (see Section 3 and (42)).
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