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Abstract

We present MOILab, a prototype Prolog theorem prover implementing a labelled sequent
calculus for IK, the basic system in the intuitionistic modal logics family. MOILab builds
upon MOIN, a theorem prover implementing nested sequent calculi (both single-conclusion
and multi-conclusion) for all the logics in the modal intuitionistic cube. With respect to
the nested implementations, MOILab offers a straightforward countermodel construction
in case of proof search failure.

1 Introduction

We tackle the problem of defining automated theorem provers for intuitionistic modal logics.
As the name says, intuitionistic modal logics are an intuitionistic version of (classical, normal)
modal systems. We here consider the intuitionistic modal systems introduced in [3, 11] and
studied in Simpson’s Ph.D. thesis [12]. In analogy to what happens with modal logics, the basic
system of intuitionistic modal logics (IK) can be extended with a set of axioms, generating 15
logics organised into the intuitionistic modal logic “cube” [13]. In this paper, however, we are
concerned only with IK. Several proof systems for intuitionistic modal logics have been defined,
among which, single-conclusion (or Gentzen-style) nested sequents, [13, 9, 2], multi-conclusion
(or Maehara-style) nested sequents [5] and labelled calculi [8].

In [4] is presented a SWI Prolog theorem prover for classical and intuitionistic modal log-
ics, called MOIN1. The prover implements nested proof systems: nested sequents from [1]
for classical modal logics and, for the logics in the intuitionistic modal cube, it implements
both single-conclusion nested sequents from [13] and multi-conclusion nested sequents from [5].
There are several other Prolog prover implementing nested sequents: refer to [7, 6] for a Prolog
implementation of nested sequents for non-normal modal logics, and to [10] for normal condi-
tional logics. MOIN implementation is slightly different, in that the data structure chosen to
represent nested sequents is a list instead of a tree of lists. For the systems whose decidability
is known, MOIN terminates2.

We here present a prototype Prolog prover extending MOIN and implementing a labelled
sequent calculus for IK, the basic system of intuitionistic modal logics. The prover is called
MOILab, for MOdal and Intuitionistic Labelled sequents3. The labelled proof system, introduced
in [8], internalises the semantic information from bi-relational models for intuitionistic modal
logics into the sequent calculus syntax. As a result, the calculus is equipped with two relation

1 MOIN stands for MOdal and Intuitionistic Nested sequents. The prover is available here: http://www.

lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinProver.html
2For the record, all systems of intuitionistic modal logics are decidable, except for IK4, ID4 and IS4.
3MOILab is available here: http://mariannagirlando.com/MOILab.html

http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinProver.html
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/Software/Moin/MoinProver.html
http://mariannagirlando.com/MOILab.html
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symbols, one for the accessibility relation from Kripke semantics for modal logics and one for
the preorder relation from Kripke semantics for intuitionistic propositional logic.

With respect to the nested systems for intuitionistic modal logics, the labelled calculus
offers two main advantages: since all its rules are invertible, no backtrack points need to be
introduced in proof search, and a countermodel can be easily extracted from the upper sequent
of a failed branch. This motivates the introduction of MOILab. As for now, the theorem prover
is a prototype: only the basic logic IK is implemented, and the implemented proof search might
not terminate on some sequents.

The paper is organised as follows: Section 2 introduces the syntax and semantics of intu-
itionistic modal logic IK, and Section 3 presents the main features of MOILab. For a presentation
of the labelled sequent calculus, the reader is referred to [8].

2 Intuitionistic modal logic IK

The language of intuitionistic modal logics extends the language of intuitionistic propositional
logic with the modal operators 2 and 3. Lacking the De Morgan duality, there are several
variants of the distributivity axiom that are classically but not intuitionistically equivalent. An
intuitionistic variant of modal logic K, called IK, is obtained by adding to an axiomatization of
intuitionistic propositional logic the necessitation rule of K and the following axioms4:

k1 : 2(A⊃B)⊃ (2A⊃2B) k3 : 3(A ∨B)⊃ (3A ∨3B) k5 : 3⊥⊃⊥
k2 : 2(A⊃B)⊃ (3A⊃3B) k4 : (3A⊃2B)⊃2(A⊃B)

Bi-relational models for IK [3, 11, 12] are defined by adding a valuation for atomic formulas
to a bi-relational frame (refer to [8] for details):

Definition 2.1. A bi-relational frame F is a triple 〈W,R,≤〉 of a set of worlds W equipped with
an accessibility relation R and a preorder ≤ (i.e. a reflexive and transitive relation) satisfying:

(F1) For all u, v, v′ ∈W , if uRv and v ≤ v′, there exists u′ s.t. u ≤ u′ and u′Rv′.

u′
R // v′

u

≤

OO

R // v

≤

OO

(F2) For all u, u′, v ∈W , if uRv and u ≤ u′, there exists v′ s.t. u′Rv′ and v ≤ v′.

u′
R // v′

u

≤

OO

R // v

≤

OO

The accessibility relation R comes from Kripke frames for modal logics, and xRy is usually
interpreted as “world y is accessible from world x”. The preorder relation ≤ comes from Kripke
frames for intuitionistic propositional logic, and can be interpreted as expressing a time relation
between worlds: x ≤ y means “world y is a future of world x”.

Reflecting the definition of bi-relational models, the sequents of the labelled calculus labIK≤
defined in [8] are equipped with two relation symbols, one for R and one for ≤.

4We employ the coloured syntax from [8]: variables for labels are blue and formulas are green. The aim is
to improve readability.
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Definition 2.2. A two-sided intuitionistic labelled sequent is of the form R,Γ =⇒ ∆ where R
denotes a set of relational atoms xRy and preorder atoms x ≤ y, and Γ and ∆ are multi-sets
of labelled formulas x:A (for x and y variables for labels and A intuitionistic modal formula).

The rules of the labelled calculus for IK, called labIK≤, can be found in [8]. Moreover, in [8]
it is proved that all labIK≤ rules are invertible (Lemma 6.4), and that the cut rule is admissible
(Theorem 6.1). The rules needed to extend labIK≤ to logics whose axiomatization extends IK
by one-sided intuitionistic Scott-Lemmon axioms, i.e., axioms of the form 2k3lA ⊃ 2m3nA,
for k, l,m, n natural numbers, are also defined.

Termination of proof search with labIK≤ is not proved in [8]. As it is often the case with
labelled proof systems, proving termination presents some difficulties: since all the rules are
invertible, the sequent grows when going from the conclusion to the premiss(es) of each rule,
and one cannot check for repetition of whole sequents in a proof search branch. Moreover, while
the unlabelled formulas5 occurring in proof search are finitely many, and all are subformulas
of the (unlabelled) formula at the root, these formulas could be labelled with infinite ever-
changing labels, thus giving rise to infinite branches. As a consequence, completeness of the
calculus is established in [8] by means of cut-admissibility, and not by means of a countermodel
construction from failed proof search.

3 Towards a labelled theorem prover

MOILab implements the labelled sequent calculus labIK≤ from [8]. The prover is composed of a
set of clauses, each implementing a rule of the labelled sequent calculus. The only exception is
the rule of reflexivity, which does not have a dedicated clause and is instead applied together
with the rules introducing (backwards) a new label.

Overall, MOILab builds upon the structure of MOIN: labelled sequents are represented by
means of Prolog lists, in which each element is a pair comprising a label (an integer) and a
formula. Separate lists store the accessibility relations and the preorder relations among labels.

Propositional variables are represented in MOILab syntax as Prolog atoms a,b,. . . ; ⊥ and
> are Prolog false and true, and the connectives ¬, ∧, ∨, ⊃, 2 and 3 are respectively
represented by ~, v, ^, ->, ! and ?. Labelled sequents are represented by means of two Prolog
lists Fut,Rel,Gamma,Delta. Gamma and Delta are lists of triples (X,F,Sign), where F is a
formula in MOILab syntax, X is the label of F, i.e., an integer, and Sign is either + or -. Rules
can only be applied to formulas with a positive sign, while formulas with a negative sign are used
for book-keeping. Fut and Rel are lists of pairs (X,Y), respectively representing the preorder
relation and the accessibility relation between labels.

Proof search is invoked by the predicate derive(F), where F is the formula to be checked.
For instance, derive(((?a)-> (!b)) -> (!(a->b))) triggers the derivation of axiom k4 in
labIK≤. The predicate derive queries the predicate prove_lab\4, responsible of the actual
proof search. The predicate is recursively invoked and generates the proof-search tree for the
formula. The application of prove to a branch stops when an axiom clause is reached (success),
or when no clause succeeds, producing a failed branch. However, since a full termination
strategy is missing, it might happen that proof search never stops. If proof search stops and
produces a success, MOILab gives in output a LATEX file containing the derivation. If proof
search stops producing a failure, MOILab prints out a countermodel in a LATEX file.

5For unlabelled formula we mean a labelled formula in which we ignore the label: thus, the unlabelled
formula corresponding to x:A is A.
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Termination is still an issue: as for now, MOILab implements the naive strategy of not
applying a rule to a labelled formula if the labelled formula to be introduced already occurs in
the sequent. This is not enough to ensure termination of proof search, and it might be case
that, on some formulas, proof search goes on forever.

Strategies ensuring termination of proof search do exists for nested calculi (both single- and
multi-conclusion) for IK: in fact, proof search in MOIN, the prover implementing these nested
proof systems, terminates for IK. The termination strategy for nested sequents basically checks
for repetition of sequents in a derivation branch (refer to [4] for details on the termination
strategy implemented in MOIN). However, this strategy cannot be directly applied to the
labelled calculus, where each formula has a label: it might happen that the same formula
is labelled by infinite different labels. Moreover, since all rules of the labelled calculus are
invertible, the sequent always grows when applying bottom-up rules of the calculus. Thus, the
check for repetition needs to be performed within the same sequent, and taking the labels of
formulas into account. A more refined termination strategy is currently under study.

Thanks to invertibility of the labIK≤ rules, backtrack points do not need to be introduced
in proof search. The countermodel extraction is straightforward, since no information is lost in
going from the conclusion to the premiss(es) of the rules, and only the upper sequent of a failed
derivation branch needs to be considered. With nested calculi, not all the rules are invertible,
and the process of countermodel construction from failed proof search requires some more work:
other than the upper sequent of a failed branch, one needs to take into account all the sequents
in the branch occurring as conclusion of non-invertible rules.

4 Conclusions

The most important missing feature of MOILab is a termination of proof search, which is object
of current study. Our immediate goal is to define and implement a termination strategy for
labIK≤ which is general enough to be applied, modulo some modification, to labelled calculi for
extensions of IK.

Our long term goal is to define a theorem prover modularly implementing labelled calculi for
logics extending IK. These systems comprise both the extensions of IK by means of one-sided
intuitionistic Scott-Lemmon axioms, whose labelled rules are defined in [8], and extensions of
IK with intuitionistic variants of modal axioms d, t, b, 4 and 5 [13], which correspond to the
logics in the intuitionistic modal cube.
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