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The paper is concerned with the interfacial acoustic waves localised at the internal boundary of two different perfectly bonded semi-infinite one-dimensional phononic crystals represented by periodically layered or functionally graded elastic structures. The unit cell is assumed symmetric relative to its midplane, whereas the constituent materials may be of arbitrary anisotropy. The issue of maximum possible number of interfacial waves per a full stop band of a phononic bicrystal is investigated. It is proved that, given a fixed tangential wave number, the lowest stop band admits at most one interfacial wave, while an upper stop band admits up to three interfacial waves. The results obtained for the case of generally anisotropic bicrystals are specialised for the case of a symmetric sagittal plane.

Introduction

The vast legacy of Professor Peter Chadwick involves many profound results in the linear and nonlinear, unconstrained and constrained elasticity and thermoelasticity. In particular, his name is inseparable from the theory of surface and interface acoustic waves in anisotropic media (crystals).

Inspired by the early work of Stroh [START_REF] Stroh | Steady state problems in anisotropic elasticity[END_REF], P. Chadwick has laid, along with J. Lothe and D. M. Barnett [START_REF] Lothe | On the existence of surface wave solutions for anisotropic half-spaces with free surface[END_REF], the foundation of what became known as the Stroh formalism of crystal acoustics in application to the theory of localised (Rayleigh and Stoneley) waves. A classical extensive article [START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF] by P. Chadwick and G. D. Smith largely established the rigorous basis of this formalism. The all-embracing reviews [START_REF] Chadwick | Surface waves in cubic elastic materials[END_REF][START_REF] Chadwick | Wave propagation in transversely isotropic media. I. Homogeneous plane waves; II. Surface waves; III. The special case a 5 = 0 and the inextensible limit[END_REF] provided comprehensive guides to bulk and surface waves in cubic and transversely isotropic media. Professor Chadwick's inherent approach to attack the problems at the deep and fundamental level has rendered his research papers greatly influential on the development of anisotropic linear elastodynamics (as well documented in [START_REF] Ting | Anisotropic Elasticity. Theory and Applications[END_REF]). Some of his ideas underlie the origin of the present paper, which we dedicate to the memory of Peter Chadwick.

In the recent decades, the center of interest of theoretical and applied acoustics has moved to waves in metamaterials and periodic structures named phononic crystals [START_REF] Deymier | Acoustic Metamaterials and Phononic Crystals[END_REF]- [START_REF]Phononic Crystals. Fundamentals and Applications[END_REF]. Much study has been made on the spectra of surface acoustic waves (SAWs) in semi-infinite phononic crystals, where they become dispersive contrary to the case of homogeneous media. The impetus has been given by the pioneering works of 1970s-80s on SAWs in superlattices, i.e. periodically layered elastic media, see [START_REF] Camley | Transverse elastic waves in periodically layered infinite and semiinfinite media[END_REF]- [START_REF] Djafari-Rouhani | Rayleigh waves on a superlattice stratified normal to the surface[END_REF] and the bibliography therein.

Having intensified later on, see e.g. [START_REF] Podlipenets | Numerical study of Rayleigh and Lamb waves in orthotropic periodic structures[END_REF]- [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF], this research trend, which is nowadays associated with one-dimensional (1D) elastic phononic crystals, keeps its pace side by side with piezoelectric and solid-fluid analogues and with two-and three-dimensional models. Combination of anisotropy and (periodic) spatial inhomogeneity essentially obstructs reaching explicit solutions of the boundary problem (enough complicated already in the case of homogeneous crystals), so the SAW properties used to be investigated mainly by numerical means. However, it appears that the analytical approach underlying the Lothe-Barnett-Chadwick theory of SAWs in crystals can be developed and applied to the problem of existence and number of SAWs in the spectra of 1D elastic as well as piezoelectric phononic crystals [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF]- [START_REF] Darinskii | Non-leaky surface acoustic waves in the passbands of one-dimensional phononic crystals[END_REF].

The present paper is concerned with the interfacial acoustic waves (IAWs) localised at the internal boundary of 1D phononic bicrystals which are formed of two perfectly bonded periodically layered or functionally graded semiinfinite elastic media of arbitrary anisotropy. Such waves have been considered in elastic as well as in piezoelectric structures [START_REF] El Boudouti | Surface and interface elastic waves in superlattices: transverse localized and resonant modes[END_REF]- [START_REF] Tanaka | Interface acoustic waves at the interface between two semi-infinite phononic crystals[END_REF]. The question which we would like to answer is: how many IAWs can exist in a stop band of the Floquet spectrum of a phononic bicrystal? The motivation for our study comes from the results [START_REF] Barnett | Considerations of the existence of surface (Rayleigh wave) solutions in anisotropic elastic crystals[END_REF]- [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF] on the existence of Stoneley waves at the interface between homogeneous anisotropic solids. The early papers [START_REF] Barnett | Considerations of the existence of surface (Rayleigh wave) solutions in anisotropic elastic crystals[END_REF][START_REF] Chadwick | Stoneley waves at an interface between elastic crystals[END_REF] established that the Stoneley waves in bicrystals can exist within sectors of propagation directions rather than along secluded directions only. The paper [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF] proved uniqueness of the subsonic Stoneley wave and provided the criterion for its existence. The approach of [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF] was based on the method of surface impedance matrix [START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF][START_REF] Barnett | Free surface (Rayleigh) waves in anisotropic media: the surface impedance method[END_REF] constructed from the eigenvectors of the Stroh matrix. Following [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF], we are going to proceed from this method gen-eralization which invokes the eigenvectors of the transfer matrix through a unit cell of the periodic structure. In the present study, we consider phononic bicrystals with arbitrarily anisotropic but symmetrically assembled unit cells.

The latter implies that the spatial variation of the material properties within the unit cell is symmetric relative to its midplane. According to [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF], such arrangement of unit cell leads to more stringent conditions on the admissible number of SAWs by comparison with the case of arbitrary (asymmetric) unit cell. Nevertheless, it will be shown that while the lowest stop band of the phononic-bicrystal spectrum admits only one IAW at fixed wave number, which is similar to the case of subsonic Stoneley wave in a homogeneous bicrystal [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF], any upper stop band allows existence of up to three IAWs. As we will see, this is because the surface impedance matrix in the upper stop bands may have pole(s) and is not constrained by the sign-definiteness of its static limit.

The paper is organised as follows. The properties of the transfer and surface-impedance matrices for a 1D periodic structure are described in §2.

The results on the existence of IAWs are presented in §3, where we consider the cases of general anisotropy ( §3b) and of the sagittal plane being the plane of crystallographic symmetry ( §3c). The summary is given in §4.

2 Transfer matrix and impedance for a phononic crystal with symmetric unit cell

Transfer matrix

Consider a 1D phononic crystal whose density ρ and stiffness tensor c ijkl (i, j, k, l = 1, 2, 3) are periodic piecewise continuous finite functions of one coordinate y = n • r along the direction of unit vector n. This may be functionally graded and/or multilayered elastic material with the perfectly bonded layer interfaces orthogonal to n. A harmonic wave field, which propagates with frequency ω and tangential wave number k along the direction of unit vector m orthogonal to n, can be sought in the form

  u(r, t) f (r, t)   =   a(y) -il(y)   e i(kx-ωt) , (1) 
where u is the displacement, f = σ σ σn is the normal traction, σ is the stress, and x = m • r. According to [START_REF] Stroh | Steady state problems in anisotropic elasticity[END_REF][START_REF] Lothe | On the existence of surface wave solutions for anisotropic half-spaces with free surface[END_REF][START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF][START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF], the equation of motion and the stress-strain law can be combined into the system of equations

dξ ξ ξ dy = i Nξ ξ ξ (2) 
with respect to the vector of amplitudes

ξ ξ ξ(y) = (a(y), l(y)) T , (3) 
where T means transposition. The 6×6 Stroh matrix of coefficients, presented here in the form of [START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF] (it allows for zero k which is handy in the case of dispersion), is

N = -   k(nn) -1 (nm) (nn) -1 k 2 (mn)(nn) -1 (nm) -(mm) + ρω 2 Î k(mn)(nn) -1   , (4) 
where (ab) jk = c ijkl a i b l for a, b = n, m and Î is the 3 × 3 unit matrix. The Stroh matrix obeys the symmetry relation

N = T NT T, (5) 
where the matrix T has zero diagonal and unit off-diagonal blocks. We assume henceforth that ω and k are real, hence so is N.

The corresponding transfer, or propagator, matrix M (T, 0) ≡ M relating the state vector at the opposite edges y = 0 and y = T of the unit cell,

ξ ξ ξ(T ) = Mξ ξ ξ(0), (6) 
is either a product of propagators Mi = e ih i Ni through the constituent homogeneous layers, each with the constant matrix Ni and width h j , or it is a multiplicative integral of a continuously varying matrix Ni (y) [START_REF] Pease | Methods of Matrix Algebra[END_REF]- [START_REF] Shuvalov | General formalism for plane guided waves in transversely inhomogeneous anisotropic plates[END_REF]. In either case, Eq. ( 5) provides the identity [START_REF] Pease | Methods of Matrix Algebra[END_REF]- [START_REF] Shuvalov | General formalism for plane guided waves in transversely inhomogeneous anisotropic plates[END_REF] M-1 = T M † T,

where † means Hermitian conjugation. By [START_REF] Deymier | Acoustic Metamaterials and Phononic Crystals[END_REF], the eigenvalues

γ α of M = M (ω, k) , Mζ ζ ζ α = γ α ζ ζ ζ α , α = 1, . . . , 6, (8) 
are pairwise related, namely,

either |γ α | = |γ α+3 | = 1 or γ α = 1/γ * α+3 for |γ α | = 1, α = 1, 2, 3. ( 9 
)
where * means complex conjugation. Each eigenvector

ζ ζ ζ α = (A α , L α ) T (10) 
taken as the initial data for Eq. ( 2) may be said to generate an αth partial mode ξ ξ ξ α (y), whose absolute value at the consecutive period edges stays constant in the case (9) 1 or increases or decreases in the case (9) 2 . Correspondingly, the occurrences of the two options (9) map out the plane (ω, k)

into the spectral zones called pass bands and stop bands. Aiming at the localised wave solutions, we will be interested in the full stop bands defined as the areas on the plane (ω, k) where all six eigenvalues obey (9) 2 . The orthonormalization relation, fulfilled by the eigenvectors ζ ζ ζ α due to the identity [START_REF] Deymier | Acoustic Metamaterials and Phononic Crystals[END_REF], takes in the full stop bands the form

ζ ζ ζ † α Tζ ζ ζ β = δ α+3,β , α = 1, 2, 3; β = 1, . . . , 6, (11) 
where δ αβ is the Kronecker symbol.

The present paper is concerned with the periodic structures whose unit cell is symmetric relative to its midplane. In the case of discretely inhomogeneous (layered) materials, a symmetric unit cell is composed of an odd number n = 2m + 1 of layers, the ith and (2m + 1 -i)th layers (i = 1, . . . , m) being identical. In particular, as noted in [START_REF] Chadwick | Harmonic waves in a periodically bilaminated anisotropic elastic composite[END_REF], it may be a structure of identical bilayers, where the period edge is referred to the middle of one of the layers. For functionally graded materials, this implies an even profile N (y) = N (-y) of inhomogeneity over a unit cell. In the former case of a layered unit cell, the transfer matrix M(S) is

M(S) = M1 M2 • • • Mm+1 • • • M2 M1 , (12) 
where we add the label (S) for "symmetric". From Eq. ( 5), in view of [START_REF] Djafari-Rouhani | Rayleigh waves on a superlattice stratified normal to the surface[END_REF] and real-valuedness of N, it follows that M(S) satisfies the identities

M(S) = T M(S)T T, M(S)-1 = M(S) * . (13) 
The same relations hold for the case of an even functionally graded unit cell, as can be seen either from the equality M(S) N(y) = M(S)T NT (-y) of the unitcell propagators for Eq. ( 2) with the matrices of coefficients indicated in the subscript, or from the limiting consideration of ( 12) with h i → 0 and n → ∞.

Note that a conjunction of the identities (13) 1 and (13) 2 is consistent with Eq. ( 7), but none of ( 13) is valid on its own for phononic crystals with a generic (asymmetric) unit cell.

According to (13) 1 , the orthonormalization relation for the eigenvectors

ζ ζ ζ α of M(S) holds in the form ζ ζ ζ T α Tζ ζ ζ β = δ αβ , α, β = 1, . . . , 6, (14) 
which, due to (13) 2 , is complemented in the full stop bands by the relation

ζ ζ ζ * α = ζ ζ ζ α+3 , α = 1, 2, 3, (15) 
Equations ( 14) and ( 15) taken together are equivalent to two equalities

ζ ζ ζ † α Tζ ζ ζ β = 0, ζ ζ ζ T α Tζ ζ ζ β = δ αβ , α, β = 1, 2, 3, (16) 
where the former is consistent with (11) but the latter is essentially different.

They may also be written in the matrix form,

 † L + L †  = 0, ÂT L + LT  = Î, (17) 
where  and L are the 3 × 3 matrices whose columns are the vectors A α and L α , α = 1, 2, 3, respectively. Note that Eqs. ( 14)-( 17) are valid for any α under the assumption of a semisimple (diagonalisable) transfer matrix, adhered below. Contrary case takes place at the pass band/stop band borders and it may exceptionally occur within the bands but this option does not affect subsequent results.

It is seen that the symmetric arrangement of unit cell leading to the identities [START_REF] Podlipenets | Numerical study of Rayleigh and Lamb waves in orthotropic periodic structures[END_REF] in place of ( 7) has no effect on the properties of the transfermatrix eigenvalues ( 9) and hence on the band structure. On the other hand, this symmetry provides additional eigenvector relations ( 14) and ( 15) instead of [START_REF] Djafari-Rouhani | Sagittal elastic waves in periodically layered infinite and semi-infinite superlattices[END_REF]. It is this particularity which underlies an essential difference in the considerations of existence of localised waves developed for the cases of symmetric and asymmetric unit cell. In consequence, as demonstrated for SAWs in [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF][START_REF] Darinskii | Non-leaky surface acoustic waves in the passbands of one-dimensional phononic crystals[END_REF], the results for the former case do not follow as a simple corollary of the results for the latter.

In the following, we address the full stop bands (9) 2 as frequency intervals ω l < ω < ω u at fixed k, with ω l and ω u implying the lower and upper band edges. For the future use, let us specialise the eigenvalue numbering in full stop bands as

|γ α | < 1, |γ α+3 | > 1, α = 1, 2, 3. (18) 
This means that the vector of amplitudes (3) for a localised (evanescent)

wave in a half-space y ≥ 0 is a superposition of partial modes α = 1, 2, 3, generated by the initial value taken at the surface y = 0 in the form

ξ ξ ξ y=0 = 3 α=1 b α ζ ζ ζ α ≡ (A, L) T , (19) 
where b α are disposable constants.

Impedance matrix

Consider a semi-infinite phononic crystal y ≥ 0. Assuming ω and k in the full stop band and bearing in mind [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF], introduce the surface impedance Ẑ by analogy with the case of a homogeneous half-space [START_REF] Lothe | On the existence of surface wave solutions for anisotropic half-spaces with free surface[END_REF][START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF][START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF][START_REF] Barnett | Free surface (Rayleigh) waves in anisotropic media: the surface impedance method[END_REF] via any one of the equivalent formulas

L α = -i ẐA α (α = 1, 2, 3) , L = -i Ẑ Â, Ẑ = i L Â-1 , (20) 
where  and L are defined below Eq. ( 17). In view of Eq. ( 17) 1 , the matrix Ẑ is Hermitian.

The impedance possesses certain sign-definiteness properties, which may be proved similarly to [START_REF] Lothe | On the existence of surface wave solutions for anisotropic half-spaces with free surface[END_REF][START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF]. However, differently from the above-cited works, we will not invoke the Lagrangian function and appeal directly to kinetic and strain energy of the wave (1). In particular, the time average local kinetic energy per unit surface can be written in the form [START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF] 

E(y) = ρω 2 4 |u| 2 = - ω 8 ξ ξ ξ † ∂ ∂ω T N ξ ξ ξ = iω 8 d dy ξ ξ ξ † T ∂ξ ξ ξ ∂ω , (21) 
where ξ ξ ξ(y) is the vector of amplitudes [START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF]. Apply [START_REF] El Boudouti | One-Dimensional Phononic Crystals[END_REF] to the evanescent wave field generated in a half-space y ≥ 0 by the initial data [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF] and tending to zero as y → ∞. Then, in view of continuity of ξ ξ ξ (y) at the layer interfaces, the total kinetic energy per unit surface

E = ∞ 0 E (y) dy is E = - iω 8 ξ ξ ξ † T ∂ξ ξ ξ ∂ω y=0 = - iω 8 A † ∂L ∂ω + L † ∂A ∂ω = - ω 8 A † ∂ Ẑ ∂ω A, (22) 
where the last equality assumes that the vector A does not depend on frequency and it takes into account the definition (20) of Ẑ along with its Hermiticity. Thus, since the kinetic energy is a positive quantity and A is arbitrary, ∂ Ẑ/∂ω at fixed k is a negative definite matrix in a full stop band.

In consequence, the eigenvalues of Ẑ decrease with increasing frequency in a full stop band.

(

) 23 
Next consider the time average local elastic energy per unit surface

W = 1 8 σ ij ∂u * i ∂x j + σ * ij ∂u i ∂x j . (24) 
Referring [START_REF] Darinskii | Non-leaky surface acoustic waves in the passbands of one-dimensional phononic crystals[END_REF] to the wave (1), using the equation of motion and taking the static limit ω = 0 yields

W (y) ω=0 = 1 8 d dy u † f + f † u . ( 25 
)
As above, consider the evanescent wave field evolving from [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF] in a half-space y ≥ 0. Then the total static elastic energy per unit surface W = ∞ 0 W (y)dy reduces to

W ω=0 = - 1 8 u † f + f † u y=0 = i 8 A † L -L † A = 1 4 A † ẐA, (26) 
where Ẑ = Ẑ † was used. Since the strain energy is positive and the vector A is arbitrary, it follows that Ẑ is a positive definite matrix at ω = 0, and so the eigenvalues of Ẑ are positive at ω = 0.

Note that Eq. ( 27) takes into account the fact that the line ω = 0 gives rise to a full stop band once k = 0. This can be proved by invoking the static limit of the local strain energy W α (y) of the αth partial mode generated at

y = 0 by the eigenvector ζ ζ ζ α (α = 1, ..., 6 
). Integrating it over the unit cell and using (8) yields

W α ω=0 = T 0 W α (y) ω=0 dy = - i 8 |γ α | 2 -1 A † α L α -L † α A α . (28) 
Since W α ω=0 cannot turn to zero at k = 0, it follows that |γ α | = 1 at ω = 0 and hence, by continuity, at some non-zero ω.

A central role in the subsequent analysis is played by the real part of the impedance Ẑ which we denote by Ĝ. Since Ẑ considered in the full stop band is Hermitian, its real part is a symmetric matrix, so that Ĝ ≡ Re Ẑ = ĜT .

By this definition, the properties ( 23) and ( 27) of Ẑ carry over to the matrix Ĝ, so that the eigenvalues of Ĝ are positive at ω = 0 and they decrease with increasing frequency in a full stop band.

(

) 30 
The above-outlined features characterise the impedance of a periodic structure with any unit cell. The next following relation holds specifically in the case of a symmetric unit cell [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF]. It can be obtained by combining identity Hence, with regard for (29

), Ĝ = -Q-1 , where Q = 2i  ÂT . ( 32 
)
This relation is similar to that for the matrices built from the eigenvectors of the Stroh matrix of a homogeneous material [START_REF] Lothe | On the existence of surface wave solutions for anisotropic half-spaces with free surface[END_REF][START_REF] Chadwick | Foundation of the theory of surface waves in anisotropic elastic media[END_REF][START_REF] Pease | Methods of Matrix Algebra[END_REF].

The matrix Q can be shown to be finite inside any full stop band including possible exceptional points where the unit-cell transfer matrix is nonsemisimple. Hence det Ĝ = 0 and so none of the eigenvalues of Ĝ vanishes in a full stop band.

According to [START_REF] Darinskii | Surface acoustic waves on onedimensional phononic crystals of general anisotropy: Existence considerations[END_REF] 

In consequence of ( 30), ( 33) and ( 35), the matrix Ĝ is positive definite in the lowest stop band.

In the upper stop bands, two eigenvalues of Ẑ and one eigenvalue of Ĝ are continuous functions of ω, the latter having a permanent sign due to [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF].

Note in conclusion that, except ω = 0, the eigenvalues of Ẑ and of Ĝ at the stop band edges may generally have arbitrary signs (or turn to zero).

3 Interface waves in phononic bicrystals with symmetric unit cells

Dispersion equation

Consider a phononic bicrystal formed of two perfectly bonded periodic halfspaces with symmetric unit cells. We will be interested in IAWs localised at the bicrystal interface and decaying away from it. In this regard, we assume that ω and k lie within a full stop band, which is common for both phononic crystals, that is, we consider a frequency interval ω l < ω < ω u ,

where ω l = max(ω

l ) and ω u = min(ω

u ) with ω

l,u and ω

l,u being the edges of full stop bands for the crystal 1 and 2.

Let the crystal 1 and crystal 2 occupy the half-spaces y ≥ 0 and y ≤ 0, respectively (Fig. 1). The evanescent wave field decaying with depth y → ∞ in the crystal 1 is produced by the initial value [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF] at y = 0. The initial value, which gives rise to the evanescent wave field decaying with depth y → -∞ in the crystal 2, is

ξ ξ ξ (2) y=0 = 3 α=1 b (2) α ζ ζ ζ (2) * α ≡ (A (2) , L (2) ) T , (37) 
where

ζ ζ ζ (2) * α = ζ ζ ζ (2)
α+3 [see [START_REF] El Boudouti | Surface elastic waves in superlattices: Sagittal localized and resonant modes[END_REF]] are the eigenvectors of the transfer matrix M 2 (T, 0) ≡ M 2 corresponding to its eigenvalues |γ Figure 1: Phononic bicrystal with symmetric unit cells. Crystal 1 is made of materials 1a and 1b. Crystal 2 is made of materials 2c and 2b. Dash line y = 0 is the boundary between crystals. The thickness of exterior layers 1a e and 2c e is half the thickness of interior layers 1a and 2c, respectively. Dot lines 1p and 2p are midlines of layers 1a and 2c, respectively, and truncate, together with line y = 0, symmetric unit cells. Unit vectors m and n specify the direction of propagation and the normal to the layer surfaces, respectively.

The boundary condition at the interface y = 0 implies continuity of displacement and normal traction. Hence, i.e., by [START_REF] Shuvalov | Existence and spectral properties of shear horizontal surface waves in vertically periodic halfspaces[END_REF] (with the superscript (1) referring to crystal 1) and ( 37), the sought IAW must satisfy equality

3 α=1 b (1) α ζ ζ ζ (1) α = 3 α=1 b (2) α ζ ζ ζ (2) * α .
Extending the definition [START_REF] Norris | The matrix sign function for solving surface wave problems in homogeneous and laterally periodic elastic half-spaces[END_REF] to the surface impedance of crystal 2, so that 2) , and using its Hermiticity Ẑ * 2 = ẐT 2 yields the dispersion equation of the form similar to the case of homogeneous media [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF], namely

L (2) = i Ẑ2 A (
det ẐI = 0, (38) 
where

ẐI = Ẑ1 + ẐT 2 (39) 
and the subscript I implies "interfacial". Our further objective is to analyse the existence and maximum possible number of solutions of Eq. [START_REF] Shuvalov | General formalism for plane guided waves in transversely inhomogeneous anisotropic plates[END_REF]. With this in mind, we introduce the notation for the real symmetric part of ẐI = Ẑ † I , Re ẐI = ĜI = Ĝ1 + Ĝ2 = ĜT I ,

where Ĝ1 = Re Ẑ1 and Ĝ2 = Re Ẑ2 have the properties listed in §2b. We will also denote the eigenvalues and eigenvectors of ẐI by λ i and e i , and the eigenvalues and eigenvectors of Ĝ1,2 by g

(1,2) i and t (1,2) i , i = 1, 2, 3.

Unrestricted anisotropy

Consider the lowest stop band 0 < ω < ω u of the bicrystal. It occurs that at most one IAW can exist in the lowest stop band at fixed k.

(

) 40 
The proof of this fact is the same as that given by [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF] for the case of homogeneous anisotropic media. In view of the properties ( 27), [START_REF] Ingebrigtsen | Elastic surface waves in crystals[END_REF] and Eq. ( 38), the statement (40) implies that not more than one eigenvalue of ẐI can vanish in the lowest stop band at fixed k. Assume on the contrary that two eigenvalues λ 1 and λ 2 vanish at frequencies ω I1 and ω I2 > ω I1 , so that λ 1 , λ 2 < 0 above ω I2 . Multiplying the spectral decomposition Z I = 3 i=1 λ i e i ⊗ e † i from both sides by the (real) vector product q = Re(e 3 ) × Im(e 3 ) yields

q T ẐI q = q T ĜI q = 2 i=1 λ i |q T e i | 2 < 0. ( 41 
)
However, the inequality in ( 41) violates [START_REF] Pease | Methods of Matrix Algebra[END_REF], and this contradiction proves (40). Note also two other observations of [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF] which remain valid within the lowest stop band of a phononic bicrystal. Given a fixed k, they read that if IAW exists in this band then it must have the frequency greater or equal than that of the minimal frequency of SAW in one of the crystals, and if none of the crystals admits a SAW then neither the IAW exists in the lowest stop band.

A different situation takes place in the upper full stop bands. This is due to two factors. First, the impedance ẐI is not sign definite at the lower edges of upper stop bands ω l = 0. Second, by [START_REF] Barnett | Free surface (Rayleigh) waves in anisotropic media: the surface impedance method[END_REF], the eigenvalues of Ẑ1 and/or of Ẑ2 can have a pole associated with SAW on a clamped surface of crystal 1 and/or crystal 2, hence the eigenvalues of ẐI can have one or two poles in an upper stop band at fixed k. In the following, the reference to a fixed k is understood and kept tacit unless otherwise specified.

To begin with, assume that the eigenvalues of ẐI have no poles and are therefore continuous monotonically decreasing functions λ i (ω) in a given upper stop band. Since ĜI does no longer have to be positive definite, each eigenvalue λ i (ω) at fixed k can vanish once per a stop band. Hence three IAWs are possible in this case.

Now consider an upper full stop band where one of the eigenvalues of ẐI has a pole at frequency ω = ω cl which corresponds to the pole of eigenvalue of, say, Ẑ1 and hence of two eigenvalues g

(1) 1

and g

(1) 2

of the matrix Ĝ1 .

In view of (33), g

1 , g

< 0 at ω < ω cl and g

(1)

1 , g

> 0 at ω > ω cl .

The third eigenvalue g

(1) 3

of Ĝ1 and the eigenvalues g First, suppose that g

< 0 and g

(2) i < 0 (i = 1, 2, 3), so that the matrix ĜI is negative-definite at ω < ω cl . In this case the contraction q T ẐI q appearing in (41) taken at ω < ω cl is negative which rules out occurrence of two positive eigenvalues of ẐI ; hence at least two of them must be negative at ω < ω cl . Similarly, if g

3 > 0 and g

> 0 (i = 1, 2, 3), then the matrix ĜI is positive-definite at ω > ω cl and therefore at least two eigenvalues of ẐI must be positive at ω > ω cl . In either of these two cases, not more than two eigenvalues of ẐI can vanish, see Fig. 2. Hence at most two IAWs can exist. Next, let g

< 0 and g

> 0 (i = 1, 2, 3). Multiplying ẐI from both sides by the vector product q 1 = t

3 of two (real) eigenvectors of Ĝ1 and Ĝ2 yields

q T 1 ẐI q 1 = q T 1 ĜI q 1 = 3 i=1 λ i |q T 1 e i | 2 = 2 j=1 2 i=1 g (j) i (q T 1 t (j) i ) 2 . ( 42 
)
The right-most sum is positive at ω > ω cl , meaning that ẐI cannot be negative-definite, hence at least one eigenvalue of ẐI is positive. If g

3 < 0 20 and g

2 < 0, while g

3 > 0, then the right-most sum in (42) is negative at ω < ω cl and hence so is at least one eigenvalue of ẐI . In either of these two cases, not more than three eigenvalues of ẐI can turn to zero (Fig. 3), so at most three IAWs can occur. 

3 < 0 and g

(2) 1 , g (2) 
2 > 0, then the contraction of ẐI with q 2 = t (2)

1 × t (2) 2 , q T 2 ẐI q 2 = q T 2 ĜI q 2 = 3 i=1 λ i |q T 2 e i | 2 = 3 i=1 g (1) 
i (q T 2 t

(1)

i ) 2 + g (2) 
3 (q T 2 t

(2)

3 ) 2 , (43) 
is negative at ω < ω cl and the contraction ( 42) is positive at ω > ω cl . Therefore at least one eigenvalue of ẐI must be negative at ω < ω cl and simultaneously at least one of them must be positive at ω > ω cl . Under these conditions the eigenvalues of ẐI vanish at most twice (see examples in Fig. 4), so at most two IAWs can exist. 

1 , g

2 (curves 1 and 2) and g

(2)

1 , g

2 (curves 3 and 4) of the matrices Ĝ1 and Ĝ2 , respectively, in an upper full stop band. Now we proceed to the case where the eigenvalues of ẐI have two poles corresponding to the pole ω = ω cl1 of the pair of eigenvalues g be of the same sign, e.g., g

3 , g

3 > 0. Then Ĝ1 and Ĝ2 and hence ĜI are positive-definite matrices at ω > ω cl2 (where g (j) i > 0, i, j = 1, 2, see Fig. 5). Hence the contraction (41) is positive and so at least two eigenvalues of ẐI must be positive at ω > ω cl2 . At the same time, the contraction (42) taken at ω < ω cl2 (where g

(j) i < 0, i, j = 1, 2)
is negative, hence at least one eigenvalue of ẐI is negative at ω < ω cl1 . By drawing possible frequency dependences of eigenvalues λ i (ω) of ẐI with the above properties, we discover that λ i (ω) can cross the zero at most twice (as exemplified in Fig. 6), that is, at most two IAWs can exist. Still in the framework of the case depicted in Fig. 5, assume that g

(1)
3 and g

(2)

3 have opposite signs, e.g., g

3 < 0 and g

(2)
3 > 0. Then the contraction (42) is negative at ω < ω cl1 and positive at ω > ω cl2 . Hence at least one eigenvalue of ẐI is negative at ω < ω cl1 and at least one of them is positive at ω > ω cl2 .

Under this condition, it follows that the eigenvalues of ẐI can vanish not more than thrice (see Fig. 7), so at most three IAWs can exist. Lastly, let g

(1)
3 < 0 and g

(2)

3 < 0, so that Ĝ1 and Ĝ2 and hence ĜI are negative-definite matrices at ω < ω cl1 . Now the contraction (41) is negative at ω < ω cl1 and hence so are at least two eigenvalues of ẐI , whereas the contraction (42) is positive at ω > ω cl2 and hence so is at least one eigenvalue of ẐI . Such an option admits occurrence of at most two zero eigenvalues of ẐI (Fig. 8) and therefore at most two IAWs within a given stop band. Note that the poles, assumed 

1 > 0 and g 

i,y ) T , i = 1, 2, of the matrix Ĝ2×2

2 , we observe that

p T 1 Ẑ2×2 I p 1 = 2 i=1 g 1,i (p T 1 t (1) 
i ) 2 + g 2,2 (p T 1 t

(2)

2 ) 2 < 0 at ω < ω cl , p T

2

Ẑ2×2

I p 2 = 2 i=1 g 1,i (p T 2 t

(1) i ) 2 + g 2,1 (p T 2 t

(2) 1 ) 2 > 0 at ω > ω cl . (50)

Conclusions

The paper has considered existence of interfacial acoustic waves (IAWs) in the 1D phononic bicrystals with a symmetrically arranged unit cell. The main objective is to deduce how many IAWs with a fixed tangential wave number k can exist per a full stop band of the Floquet frequency spectrum.

The analysis is based on the properties of surface impedance matrix, which is a generalisation of a similar concept pivotal in the theory of surface and interface waves in homogeneous anisotropic media. It is found that the maximum possible number of IAWs in the lowest stop band is different from that in the upper ones. The lowest stop band admits at most one IAW at fixed k. This observation is similar to the theorem of uniqueness of the Stoneley wave at the interface between homogeneous half-spaces [START_REF] Barnett | Considerations of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic half-spaces[END_REF]. Differently from that, an upper stop band can admit up to three IAWs with a fixed k.

The difference comes from the facts that the impedance matrix, in contrast to being positive-definite at zero frequency, is not sign-definite at the lower frequency edge of an upper stop band, and that, specifically, the upper stop bands admit existence of SAW solutions on a mechanically clamped boundary, which cause poles of the impedance. The admissible number of IAWs splits between the sagittaly and shear horizontally polarised IAWs in the case of a symmetric sagittal plane.
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( 17 )

 17 2 with the definition (20) of Ẑ and taking into account the Hermiticity Ẑ = Ẑ † , so that ÂT L+ LT Â = ÂT L Â-1 + ÂT -1 LT Â = -i ÂT Ẑ + Ẑ * Â = I. (31)

  , the dispersion equation det L = 0 for SAW on a traction-free surface with σ σ σn = 0 can have at most one solution per full stop band at fixed k in a semi-infinite phononic crystal with a symmetric unit cell. Hence at most one eigenvalue of Ẑ can vanish in a full stop band at fixed k. Besides, contrary to the case of a homogeneous elastic half-space, a semi-infinite phononic crystal admits existence of SAWs on a clamped surface with the boundary condition of zero displacement u = 0, which provides the dispersion equation det  = 0. Specifically, it was shown in [22] that a phononic crystal with symmetric unit cell subjected to clamped boundary condition cannot support SAWs in the lowest full stop band 0 < ω < ω u and admits at most one SAW at fixed k per a upper full stop band ω l < ω < ω u . Denote the frequency of SAW on a clamped surface by ω cl [= ω cl (k)]. We also note from the definition of Q in (32) that det Q = -8i(det Â) 2 and that the eigenvalues of Q and hence of Ĝ can vanish only pairwise in a full stop band [22]. Thus, with regard for (23), it follows that the eigenvalues of Ẑ and of Ĝ are continuous monotonically decreasing functions of frequency throughout the lowest stop band; (34) one eigenvalue of Ẑ and simultaneously two eigenvalues of Ĝ can have one simple pole ω cl in an upper stop band at fixed k.

  13) 2 for the latter].

  of a permanent sign within a stop band. Let us successively examine different options regarding their signs.

Figure 2 :

 2 Figure 2: Possible frequency dependence of the eigenvalues λ i of matrix ẐI (curves 1,2,3) in an upper full stop band, where one eigenvalue has a pole and either at least two eigenvalues are negative at ω < ω cl (a) or at least two eigenvalues are positive at ω > ω cl (b). In this and subsequent figures, the origin point of the frequency axis implies the lower stop band edge ω = ω l , not ω = 0.

Figure 3 :

 3 Figure 3: Possible frequency dependence of the eigenvalues λ i of matrix ẐI (curves 1,2,3) in an upper full stop band, where one eigenvalue has a pole and either at least one eigenvalue is negative at ω < ω cl (a) or at least one eigenvalue is positive at ω > ω cl (b).

Figure 4 :

 4 Figure 4: Possible frequency dependence (a) and (b) of the eigenvalues λ i of matrix ẐI (curves 1,2,3) in an upper full stop band, where one eigenvalue has a pole and at least one eigenvalue is negative at ω < ω cl and at least one is positive at ω > ω cl .

Figure 5 :

 5 Figure 5: Frequency dependence of the discontinuous pairs of eigenvalues g

  to the pole ω = ω cl2 of the pair of eigenvalues g(2) i of Ĝ2 (i = 1, 2), see Fig.

  are either positive or negative throughout the given stop band. Consider the possible options of their signs. Let g

Figure 6 :

 6 Figure 6: Possible frequency dependence of the eigenvalues λ i of matrix ẐI (curves 1,2,3) in an upper full stop band, where one eigenvalue has two poles and at least one eigenvalues is negative at ω < ω cl1 and at least two are positive at ω > ω cl2 .

Figure 8 : 2 and

 82 Figure 8: Possible frequency dependence of the eigenvalues λ i of the matrix ẐI (curves 1,2,3) in an upper full stop band, where one eigenvalue has two poles and at least two eigenvalues are negative at ω < ω cl1 and at least one is positive at ω > ω cl2 .

( 2 ) 2 <

 22 0 throughout the stop band. Multiplying Ẑ2×2 I from both sides by the real vector p i = (t

  one eigenvalue of Ẑ2×2 I is negative at ω < ω cl and at least one eigenvalue is positive at ω > ω cl (see Fig. 4b with curve 2 removed). In this case, only one eigenvalue zero of Ẑ2×2 I occurs and so only one S-IAW can exist. Lastly, suppose that the pair of eigenvalues of Ĝ2×2 1 each in a given full stop band, as shown in Fig. 5, so that Ĝ2×2 I is negative-definite at ω < ω cl1 and positive-definite at ω > ω cl2 . Correspondingly, at least one eigenvalue of Ẑ2×2 I is negative at ω < ω cl1 and one is positive at ω > ω cl2 . Examining possible shapes of frequency dependence of eigenvalues of Ẑ2×2 I consistent with the above condition, we conclude that they can vanish at most twice (see, e.g., Fig. 7 without curve 2), and hence at most two S-IAWs can exist. Thus, as expected, at most two S-IAWs can exist in an upper full stop band at fixed k.
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in Figs. 678to occur on the same eigenbranch λ 1 (ω) of ẐI , may certainly come about on different eigenbranches, but this does not affect the overall conclusions regarding the maximum possible number of zero eigenvalues. (44)

Symmetric sagittal plane

Suppose that the sagittal plane spanned by the vectors m and n is the plane of crystallographic symmetry for both upper and lower phononic crystals.

Then the components (ab) i3 and (ab) 3i , i = 1, 2, of the matrices (ab) in ( 4) are identically zero. As a result, the Stroh matrix along with the transfer matrix split into 4 × 4 and 2 × 2 submatrices describing, respectively, four
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