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ABSTRACT
This paper presents a proposal for learning users’ behavior pat-

terns when they interactively analyse data. Users’ explorations

(sequences of queries) are compared looking for subsequences

of common actions or operations performed by the users dur-

ing data analysis. We use a hierarchical clustering algorithm to

retrieve groups of similar explorations. The main difficulty is

to devise a similarity measure suitable to measure similarities

between sequences of human actions. We propose to use a Con-

textual Edit Distance (CED), a generalization of Edit Distance that

manages context-dependent edition costs. CED compares two

users’ explorations, making special emphasis in the similarity of

queries with nearby queries in the exploration, which determines

a local context. We test our approach on three workloads of real

users’ explorations, extracting common analysis patterns, both

in explorations devised by students and expert analysts. We also

experiment on an artificial workload, generated with CubeLoad

[19], showing that our approach is able to identify the patterns

imposed by the generator. To the best of our knowledge, this

is the first attempt to characterize human analysis behavior in

workloads of data explorations.

1 INTRODUCTION
Analyzing a database workload offers many practical interests,

from the monitoring of database physical access structures [5]

to the generation of user-tailored collaborative query recommen-

dations for interactive exploration [10]. There has been much

attention lately devoted to the analysis of user past activities

to support Interactive Database Exploration (IDE) [12]. OLAP

analysis is a particular case of IDE, that takes advantage of simple

primitives like drill-down or slice-and-dice for the navigation of

multidimensional data. These particularities enable the design of

approaches for characterizing user explorations in how focused

they are [8], in how contributive a query is to the exploration [7],

or even in how to ensure that a sequence of analytical queries

forms a coherent exploration [20]. Characterising user behavior

while analysing data, i.e. learning the way users analyse data (the

type and order of operations, the level of detail, the degree of

focus) is a step forward in the understanding of analysis activities.

Identifying analysis behavior has several applications. The

more natural one is a better support of IDE, for instance to under-

stand users’ information needs, to identify "struggling" during

the exploration, or to provide better query recommendations.

Notably, IDE systems usually do not offer such facilities. The pre-

diction of next analysis steps is particularly interesting, enabling

beforehand execution of probable queries and caching of results,

as well as advanced optimization strategies. Another benefit is

the design of more realistic workloads for database benchmark-

ing. Classical benchmarks like TPC-H or TPC-DS poorly include

interactive exploration activities in their synthetic workloads,
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and are not appropriate to evaluate modern IDE systems [9].

Identifying analysis patterns would allow to better model user’s

explorations and mimic such activities in benchmark workloads.

Finally, we mention the detection of clandestine intentions [1]

as another potential benefit. Indeed, as reported by [1], query se-

quences may reflect such intentions, where users prefer to obtain

information by means of sequences of smaller, less conspicuous

queries to avoid direct queries which may disclose their true

interests. The identification of typical analysis patterns may help

distinguishing normal from clandestine intentions.

In this paper we deal with the identification of analysis pat-

terns in a log of explorations devised by real users. We consider

that an exploration is a coherent sequence of queries over a

database schema, done by a user with the goal of fulfilling an

information need. In [19], Rizzi and Gallinucci described 4 re-

current types of user analyses and propose a tool for generating

realistic explorations based on these usage types. Our goal is to

go a step forward and learn more analysis patterns from the ex-

plorations of real users. Concretely, we aim to cluster together
explorations showing similar analysis patterns. The idea

behind analysis patterns is to look for sequences of common

actions or operations performed together when analysing data,

as some kind of movements in a data space. From this point of

view, OLAP operations (e.g. drilling down, adding a filter, chang-

ing a measure) are first class citizens, while the actual analyzed

data is less important. For example, we can retain that a user

performed a sequence of drills down, disregarding the dimension

that was drilled down or the semantics of the underlying data.

Explorations can be compared in such terms, i.e. to what extent

they share the same sequences of operations and evolve at the

same level of aggregation and filtering.

Many distances proposed to compare sequences, for example

the Damerau-Levenshtein distance [6] or the Smith-Watermann

algorithm [21], part of Edit Distance family, count the mini-

mum number of operations (modification, addition, deletion)

required to transform one sequence into the other. They are

particularly adapted for sequences of independent symbols, as

DNA sequences or strings. However, when symbols represent

human behavior, including homogeneous, interconnected and

repetitive actions, an appropriate distance should satisfy other

requirements. In particular, we want the following requirements:

(R1) edition cost depends on the similarity of nearby symbols.

(R2) edition of repeated close symbols has little cost.

(R3) permutation of close symbols has little cost.

Indeed, while edition cost is constant in classical Edit Distance,

for comparing interconnected actions, it should take context (i.e.

the nearby actions) into account. For example, removing a mea-

sure should be costly within a focused sequence of drills down

and filters, while it should be cheaper inside a sequence with

other changes inmeasures. In addition, sequences of filters should

be similar, no matter how many filters there are. Furthermore,

permuting operations should have little impact, e.g. filtering and

then drilling vs. drilling then filtering.



Previous attempts made for measuring the similarity of se-

quences of OLAP queries (like e.g. [3], that extends the Smith-

Watermann algorithmm) were not designed to satisfy the stated

requirements. We propose a Contextual Edit Distance (CED)
specially designed to satisfy them.

Our contributions, sketched in Figure 1 include: (i) a represen-

tation of queries and explorations in the space of OLAP opera-

tions, including a similarity function among OLAP operations

in such space (described in Section 3), (ii) a CED for comparing

explorations considering context (Section 4), (iii) a proposal for

clustering explorations, based on CED (Section 5), and (iv) a set

of experiments showing that CED outperforms state of the art

distances allowing the learning of analysis behavior in varied

logs of explorations (Section 6).

2 RELATEDWORK
The recurrent types of user analyses described by Rizzi and

Gallinucci [19] are the first attempt to define analysis patterns in

OLAP workloads. Authors claim that obtaining real OLAP work-

loads by monitoring the queries actually issued in companies

and organizations is hard, and propose a parametric generator

of OLAP workloads, CubeLoad, based on a four templates that

model recurrent types of user analyses:

• Slice And Drill. Following the default behavior of several
OLAP front-ends, hierarchies are progressively navigated

by choosing a member of a current group-by level, cre-

ating a selection predicate on such member and drilling

down on it. Therefore, explorations of this template con-

tain sequences of filter and drill-down operations.
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Figure 1: Overview of the approach: (a) explorations and
queries are represented in a space of OLAP operations, (b)
computation of CED, (c) clustering of explorations based
on CED, (d) extraction of patterns of user behavior (here,
represented as the patterns of Cubeload).

• Slice All. Users are sometimes interested in navigating a

cube by slices, i.e., repeatedly running the same query but

with different selection predicates. Then, this templates

generates sequences of unfilter/filter operations.

• Exploratory. The motivation for this template is the as-

sumption that several users, while exploring the cube in

search of significant correlations, will be “attracted” by one

surprising query and then evolve casually. So, explorations

based on this template contain varied random operations.

• Goal Oriented. Explorations of this type are run by users

who have a specific analysis goal, but whose OLAP skills

are limited so they may follow a complex path to reach

their destination. Explorations of this template contain

varied operations but converging to some specific point.

Other works analyse real workloads and observe tendences

or patterns. Aligon et al. [2] analyse a workload of explorations

devised by master students and observe some general tendence.

They report the number of OLAP operations used between two

consecutive queries, the level of detail and the number of filters

of queries in the explorations, as well as the queries indicated

as relevant by the students. As general behavior, they highlight

that explorations are more focused at the end (i.e. the number of

filters and level of detail increase along the exploration, while the

number of OLAP operations between consecutive queries varies

before a final drop at the end of the exploration) and contain

more relevant queries at the end. The term focus is used as in [8]:

“When focused, an analyst would expect more precise queries,

related to what she is currently analyzing. On the contrary, when

exploring the data, the analyst would prefer more diverse queries,

for a better data space coverage." Djedaini et al. [7] analyse an-

other workload of explorations of master students and propose a

model for learning the quality of an exploration (and the skill of

the user) based on a set of query features.

To our knowledge, our work is the first devoted to discover

exploration patterns in OLAP workloads.

Many recent works aimed at comparing queries and sessions.

We mention as good recent surveys [3] for OLAP queries and

explorations, and [4] for SQL queries.

Aligon et al. [3] also proposes two similarity measures: one

tailored for OLAP queries and another tailored for OLAP sessions.

Their measures were designed for satisfying other requirements,

in particular capturing the portions of the cube that are more

explored for improving query recommendation. Consequently,

similarity measures are based on common query parts (e.g. filters

and measures) more than common operations, and are strongly

dependent on cube schema. To our knowledge, no similarity

already proposed in the literature for comparing explorations

includes the requirements presented in the previous section.

3 EXPLORATION MODEL
This section introduces the description of queries and explo-

rations used all along the paper as well as their representation in

a space of OLAP operations.

3.1 Queries and explorations
In order to keep the formalism simple, we only take into account

cubes under a ROLAP perspective, described by a star schema

[14]. For convenience, we consider that a dimension consists of

a unique hierarchy without branches, i.e., consisting of chains

of levels. In this paper, we focus on multidimensional queries



modeled as a collection of fragments extracted from the query

expression, as in [3].

Definition 3.1 (OLAP query). AnOLAP query over cube schema

S is a triple q = ⟨G, P,M⟩ where:

(1) G = {д1, . . . ,дj } is the query group-by set, each дi being
a level of a hierarchy of the cube;

(2) P = {p1, . . . ,pk } is a set of Boolean predicates, of the form
l = v , with l a level and v a value. Compound predicates

are build as the disjunction of predicates on a same level

(l), at most one for each hierarchy, whose conjunction

defines the selection predicate for q;
(3) M = {m1, . . . ,ml } is the measure set whose values are

returned by q.

We intentionally remain independent of presentation and op-

timization aspects, specially the order in which attributes are

projected (and visualized), the order of joins, etc.

Finally, an exploration is a coherent sequence of queries over

a cube schema, devised by a user with the goal of fulfilling an

information need that may not be well defined initially.

Definition 3.2 (Exploration). Let S be a cube schema. An ex-

ploration e = ⟨q1, . . . ,qp ⟩ is a sequence of queries over S . We

note q ∈ e if q appears in the exploration e , and exploration(q)
to refer to the explorations where q appears.

3.2 Query features
For each query, we extract a set of simple features computed from

the query text and its relationship with previous query in an ex-

ploration. The set of features is inspired from our previous works

[7, 8]. It intends to capture various aspects of OLAP navigation,

in particular the set of OLAP operations that express one query

w.r.t. the previous one (e.g. a query being a drill down of the

previous one), the level of aggregation (i.e. how deep the query

is in the aggregation lattice) and the level of filtering (i.e. how

filtered is the data space). Table 1 presents an overview of the

features, where added (resp., deleted) indicates the modification

made compared to the previous query.

For the following definitions let qk = ⟨Gk , Pk ,Mk ⟩ be the

query occurring at position k in the exploration e over cube

schema S . All the queries we considered are supposed to be

well formed, and so we do not deal with query errors. Features

are computed comparing the query qk to the previous query

in the exploration e , qk−1 = ⟨Gk−1, Pk−1,Mk−1⟩. For the first

query of e , i.e. q1, we consider as predecessor the "empty" query

q0 = ⟨∅, ∅, ∅⟩. All the following features are defined for k ≥ 1.

Number of Added Levels. NAL(qk ,qk−1) counts the number of

levels in the group by set of qk that were not part of the group

by set of qk−1.

NAL(qk ,qk−1) = |Gk −Gk−1 | (1)

Number of Deleted Levels. NDL(qk ,qk−1) counts the number

of levels in the group by set of qk−1 that are not longer used in

qk .

NDL(qk ,qk−1) = |Gk−1 −Gk | (2)

Number of Added Filters. NAF (qk ,qk−1) counts the number

of filters of qk that were not filters of qk−1.

NAF (qk ,qk−1) = |Pk − Pk−1 | (3)

Feature Description
NAL Number of added levels

NDL Number of deleted levels

NAF Number of added filters

NDF Number of deleted filters

NAM Number of added measures

NDM Number of deleted measures

Adepth Aggregation depth

Fdepth Filter depth

Table 1: Query features

Number of Deleted Filters. NDF (qk ,qk−1) counts the number

of filters of qk−1 that are not longer used in qk .

NDF (qk ,qk−1) = |Pk−1 − Pk | (4)

Number of Added Measures. NAM(qk ,qk−1) counts the num-

ber of measures of qk that were not measures of qk−1.

NAM(qk ,qk−1) = |Mk −Mk−1 | (5)

Number of Deleted Measures. NDM(qk ,qk−1) counts the num-

ber of measures of qk−1 that are not longer used in qk .

NDM(qk ,qk−1) = |Mk−1 −Mk | (6)

Aggregation Depth. Adepth(qk ) measures the granularity of

qk in terms of the depth of each level in its hierarchy. It can

be seen as the number of drills down necessaries for obtaining

Gk from the most aggregated group-by set. Let depth(дi ) be the
depth of level дi in the hierarchy hi to which it belongs (ranging

from 0 if дi is the top level of hi to |hi | − 1 if дi is the bottom
level of hi ):

Adepth(qk ) =
∑

дi ∈Gk

depth(дi )
(7)

Filter Depth. Fdepth(qk ) measures the number of filters ap-

pearing in qk .
Fdepth(qk ) = |Pk | (8)

In what follows, we represent an OLAP query in the space

of query features, i.e. as a 8-dimensional vector, each position

corresponding to one of the features described above. This rep-

resentation is at the core of our proposal for computing the

similarity between queries and then between explorations. It

focuses in operations between queries and is independent of the

underlying data cube, i.e. a given sequence of operations, even

on different data cubes, will result in the same sequence of query

vectors.

Example 1. Consider an exploration e1 composed of 4 queries:
q1 = ⟨{year }, ∅, {qty}⟩ – sales quantity per year;
q2 = ⟨{year }, {year = “2019”}, {qty}⟩ – adds a filter;
q3 = ⟨{year , country}, ∅, {qty}⟩ – unfilter, drill-down;
q4 = ⟨{year , city}, ∅, {qty,amount}⟩ – drill-down, adds measure;
Vector for q1, ⟨1, 0, 0, 0, 1, 0, 1, 0⟩, indicates an added level (year)
and an added measure (qty) w.r.t. the empty query; last positions
correspond to aggregation and filter depths. Vectors forq2,q3 andq4
indicate the differences w.r.t. previous queries and the changes in ag-
gregation and filter depths: ⟨0, 0, 1, 0, 0, 0, 1, 1⟩, ⟨1, 0, 0, 1, 0, 0, 2, 0⟩,
⟨1, 0, 0, 0, 1, 0, 3, 0⟩, resp.

Finally, we use cosine similarity for computing similarity be-

tween queries. This measure is adapted to compute similarity of

two vectors and is normalized in [0, 1]. In this way, it privileges

the nature of OLAP operations and not their number.



4 CONTEXTUAL EDIT DISTANCE
This section describes our proposal of Contextual Edit Distance:

definition and implementation issues.

CED is a generalization of the Edit Distance that incorporates

the following requirements:

(1) Context-dependent cost: Edition cost depends on the simi-

larity of nearby queries. The more similar and closer the

queries, the lower the cost of operation.

(2) Repetition: Edition of repeated close queries has low cost.

(3) Permutation: Similar and close queries can be exchanged

with a low cost.

Example 2. Consider an exploration reflecting an exploratory
behavior at the beginning (many changes in measures and group by
set) and more focus at the end (drilling and filtering). We can sketch
it as follows (where L, F and M means level, filter and measure,
+ means addition and - means deletion; we skip aggregation and
filter depth for simplicity):
⟨ +D+M, +M, +M, +D, +M-M, -M+D, -D+D, +F+D, +F+D, +F, +F ⟩.

Consider the insertion of a query adding an additional measure
(+M). The edition cost should be low if the query is inserted at the
beginning (as it is similar to near queries), even lower at positions
2 to 4 (because repeating the same operations), but high at the end.

This requirements ensure that explorations reflecting a given

pattern (e.g. sequences of drill-downs) are judged to be very

similar no matter the exploration length (i.e. how many drill-

downs) nor the underlying data (which data was drilled-down).

We remark that although this paper deals with explorations,

CED definition and properties are independent on the type of

explorations, the type of queries and even the nature of data. In-

deed, CED can be adapted to any type of sequence on an alphabet

of symbols provided that exists a similarity metric among them.

4.1 Definition of Contextual Edit Distance
The main contribution of CED is the modification of the cost

function γ which generalizes the classical definition of Edit Dis-

tance and takes into account the local context of each query in

the exploration. Intuitively, the cost of an edit operation will

be lower if the edited query (e.g. a query to be added to an ex-

ploration) is similar to nearby queries (e.g. the queries that are

near the position where the query is added). This notion of local

context is modeled as a context vector, which controls the zone of

influence of the context. This subsection presents these concepts

and a formal definition of CED.

Let Q be the set of all possible queries over a cube schema S
andQ∗ the set of all possible explorations onQ . For the following

definitions, let e = ⟨q1, ...,qn⟩ be an exploration, qk be a query

in e , 1 ≤ k ≤ n, and qx be a new query to be edited in e . These
notations are partially adapted from the formal language theory

community and particularly from [22].

CED extends the set of edit operations of Edit Distance (usually

modification, addition, deletion) to take context into account.

Definition 4.1 (Contextual edit operation). A contextual edit

operation o is a function o : (Q∗ × Q ∪ {ε} × N) → Q∗ whose
arguments are an exploration, a new query to be included in the

exploration (or none) and the index (position) in the exploration

where the edition takes place. We consider the following set

O = {mod, add, del} of edit operations:

• mod : (e,qx ,k) 7→ q1, ...,qk−1,qx ,qk+1, ...,qn
Replace the query at index k by the query qx .

• add : (e,qx ,k) 7→ q1, ...,qk−1,qx ,qk , ...,qn
Insert query qx at index k . The queries at and after index

k are shifted forward.

• del : (e, ε,k) 7→ q1, ...,qk−1,qk+1, ...,qn
Delete the query at position k . The queries after position
k are shifted backward.

Given an operation o(e,qx ,k), a context vector is a numeric

vector that indicates the level of influence of nearby queries for

this operation, being stronger near index k and softening farther.

We use the context vector for weighting the similarity between

queries. Intuitively, the context vector quantifies the relationship

between a query qx and another query qi . Thus, the greater vi ,
the greater the impact of query qi on qx . A seed function is used

to generate context vectors.

Definition 4.2 (Context function and context vector). Consider
a contextual edit operation o(e,qx ,k) and a seed function fk :

N→ [0, 1] which holds the following properties:

(1) fk (k) = 1.

(2) fk is a monotonically increasing function on ] − ∞,k].
(3) fk is symmetrically centered on k .

The third property guarantees to take with the same importance

previous and future queries located at equal distance from qk .
A context function φo : N∗ → [0, 1] is a transformation of fk

stretching the function according to the type of operation o. We

distinguish three cases for o in {mod, add, del}:

• φmod(x) = fk (x)

• φadd(x) =

{
fk (x + 1) if x ≤ k − 1

fk (x) if x ≥ k

• φdel(x) =


fk (x + 1) if x ≤ k − 1

0 if x = k

fk (x − 1) if x ≥ k + 1

Finally, a context vector v : O → [0, 1]n is defined as

v(o) = ⟨v1, . . . ,vn⟩

where vi = φo (i).

About add and del contextual vector functions:

• For an insertion add : (e,qx ,k), query qk−1 and qk are

fully taken into account for the addition of qx in e because
we insert qx between index k − 1 and k i.e. φadd(k − 1) = 1

and φadd(k) = 1.

• For a deletion del : (e, ε,k), the absence of the query

qk in e is quantified in relation to the remaining of e i.e.
φdel(k) = 0.

q 1 q 2 q 3 q 4

f4 = exp (− 1
2 ( x − 4

2 )
2

)
φ"##

o = "## : (e, q x,4)

| {z }
e

Figure 2: Add a new query qx in position 4 in e.



Example 3. Consider the operation o = add(e,qx , 4), adding
a query at index 4 of an exploration. Figure 2 illustrates the com-
putation of φadd (plotted in blue) from a given seed function (in
red). The corresponding context vector is v(o) = ⟨0.61, 0.88, 1, 1⟩. It
indicates that the similarity score of queries at indexes 3 and 4 is
fully considered (weight of 1) while a lower score is considered for
query at index 1.

The cost function γ of CED generalizes the classical definition

of Edit Distance and takes into account the local context of each

query in the exploration.

Definition 4.3 (Cost function γ ). Given an operation o(e,qx ,k),
a cost function γ : O → [0, 1] for the contextual edit operations
is defined as:

γ (o) = α × δ (o)+

(1 − α)

(
1 − max

i ∈[[1,n]]
{sim(qi ,qx ) ×vi (o)}

)
(9)

where:

• α ∈ [0, 1] is a contextual parameter.

If α → 0 the contextual part is maximal and therefore the

distance between two queries will be strongly evaluated

according to the content of the exploration being edited ;

if α → 1 then cost of edition is fixed.

• δ (o) =

{
1 − sim(qk ,qx ) i f o = mod

1 else

is the local cost of the Edit Distance.

• sim : Q ×Q → [0, 1] is a similarity measure between two

queries, computed as the cosine of query vectors.

Example 4. Consider the exploration e1 of Example 1 and con-
sider the insertion of query qx , with vector ⟨0, 0, 1, 0, 0, 0, 2, 1⟩ (ad-
dition of a filter), at position 4, as shown in Figure 2, with α = 0.1.
Then, the cost γ (o) is such that:

γ (o) = 0.1 + 0.9
©­­­«1 −max


cos(q1,qx ) × φadd(1)
cos(q2,qx ) × φadd(2)
cos(q3,qx ) × φadd(3)
cos(q4,qx ) × φadd(4)


ª®®®¬

= 0.1 + 0.9
©­­­«1 −max


0.47 × 0.61

0.94 × 0.88

0.66 × 1

0.74 × 1


ª®®®¬

= 0.1 + 0.9 × (1 − 0.83) = 0.25

The insertion of qx at position 2 (i.e. closer to other filter opera-
tion) has cost 0.15.

Definition 4.4 (Edit path). Given two explorations e, e ′ ∈ Q∗,
an edit path P = ⟨o1,o2, ...,om⟩ from e to e ′ is a sequence of

operations that transform e in e ′. We note P(e, e ′) the set of all
edit paths to transform e in e ′.

An important point to be mentioned here is that, for efficiency

reasons, the context is static, i.e. it only considers the original

queries in exploration e . This means that the contextual edit

operation oi has no impact on the cost of operation oi+1. If it was
otherwise, i.e., dealing with dynamic context, the edition problem

would have been NP-hard by reduction to Job shop scheduling

problem [13]. Also note that as the add operator is not the reverse
of del operator, the edition is asymmetric. Thus, by re-using the

definition of the Edit Distance in [22], we can define the one-side

distance from an exploration e1 to an exploration e2.

Definition 4.5 (One-sided Contextual Edit Distance). Let ˜dCED :

Q∗ × Q∗ → R+ be the Contextual Edit Distance from e1 to e2
such that:

˜dCED (e1, e2) = min

P ∈P(e1,e2)


|P |∑
i=1

γ (oi )

 (10)

In this form, CED would be very similar to Hausdorff distance

[11], but would remain asymmetric. This is why we use the same

trick as Hausdorff distance and we apply the max operator on

each one-sided contextual edit distance to recover the symmetry.

Definition 4.6 (Contextual Edit Distance). Let dCED : Q∗ ×
Q∗ → R+ be the Contextual Edit Distance such that:

dCED (e1, e2) = max

{
˜dCED (e1, e2), ˜dCED (e2, e1)

}
(11)

4.2 Implementation of CED
We can compute dCED using a Dynamic Programming approach

like the classical Edit Distance [22]. This solution has a polyno-

mial complexity in O(n × p) and can be adapted easily for the

computation of CED.

Algorithm 1 computes the context vector and the cost function

(as in Equation 9). Note that φo : N∗ → [0, 1] and α ∈ [0, 1] are
fixed parameters and operator · represents vector concatenation.

Algorithm 2 computes the one-sided Contextual Edit Distance

(Equation 10), and Algorithm 3 recovers the symmetry.

Algorithm 1: Cost function γ
Data: Contextual edit operator o : (e,qx ,k).
Result: Cost γ (o) of the operation o.
v(o) ← ⟨⟩
for i ∈ ⟦1, |e |⟧ do

v(o) ← v(o) · ⟨φo (i)⟩

vsim ← ⟨⟩
for i ∈ ⟦1, |e |⟧ do

vsim ← vsim · ⟨sim(qi ,qx ) ×vi (o)⟩

if e = mod then
δ (o) ← 1 − sim(qk ,qx )

else
δ (o) ← 1

return α × δ (o) + (1 − α) × (1 −max(vsim ))

Next, we prove that the computation of CED is polynomial in

time:

Theorem 4.7. CED is in O(n × p × max(n,p)) where |e1 | = n
and |e2 | = p.

Proof : Let’s note T (Ai ) the big O time complexity of the

algorithm Ai , with i ∈ {1, 2, 3}.
So we have :

• T (A1(o)) = |e | where e is the edited exploration.

• T (A2(e1, e2)) = n × p ×T (A1(o : e1,qx ,k))
= n2 × p

• T (A2(e2, e1)) = n × p ×T (A1(o : e2,qx ,k))
= n × p2

• T (A3(e1, e2)) = T (A2(e1, e2)) +T (A2(e2, e1))
= n2p + p2n
∈ O(n × p ×max(n,p))

As a result, the Algorithm 3 has a time complexity in O(n × p ×
max(n,p)).

□



Algorithm 2: One-sided Contextual Edit Distance ˜dCED

Data: Exploration couple (e1, e2).

Result: One-sided Context Edit Distance
˜dCED (e1, e2)

D ← [0...|e1 |][0...|e2 |]
for i ∈ ⟦0, |e1 |⟧ do

for j ∈ ⟦0, |e2 |⟧ do
if i = 0 ∨ j = 0 then

D[i, j] ← i + j
else

omod ← mod : (e1,q
(2)

j−1, i − 1)

odel ← del : (e1,q
(1)

i−1, i − 1)

oadd ← add : (e1,q
(2)

j−1, i − 1)

D[i, j] ← min{

D[i − 1, j − 1] + γ (omod),
D[i − 1, j] + γ (odel),
D[i, j − 1] + γ (oadd)
}

Algorithm 3: Contextual Edit Distance dCED
Data: Exploration couple (e1, e2).
Result: Context Edit Distance dCED (e1, e2).
return max

{
˜dCED (e1, e2), ˜dCED (e2, e1)

}
5 CLUSTERING OF EXPLORATIONS
Our objective is to cluster together explorations showing the

same user behavior. To this end, we pair CED to an off-the-shell

clustering algorithm, and we test it against several workloads

concerning users with varied analytical skills and different UI,

aiming to discover different types of patterns. In addition, as some

datasets come with a ground truth, they allow for the quantifica-

tion of clustering quality and the comparison to state of the art

distances. The following subsections describe the workload used

in experiments, the experimental protocol and implementation

details.

5.1 Workloads
In our experiments, we reuse several workloads described in

the literature [2, 7, 15] consisting of navigation traces of real

users on real data. We chose to test our proposal in several work-

loads to avoid learning specific behavior of a set of users. The 3

workloads concern users with different analysis skills (students,

experts), using different analysis tools (an OLAP tool, a research

prototype and an advanced IDE interface) and accessing data

cubes of different sizes and complexities. We are not aware of

other public analytical workloads, specially from senior analysts,

whose analysis activity is jealously guarded by companies [19].

We also generated artificial explorations on artificial data using

a state-of-the-art workload generator [19].

Real explorations on ipums data. The first workload, hence-
forth dubed Ipums, consists of navigation traces of OLAP users

collected during the testing phase of the development of Falseto

[2], a tool meant to assist query and exploration composition, by

letting the user summarize, browse, query, and reuse former ana-

lytical explorations. The 17 OLAP users engaged in the test were

students of two Master’s programs specialized in Business Intelli-

gence. The test was not part of the programs, was not graded and

all the participants were volunteers. They developed explorations

for answering four analytical questions on the IPUMS cube. The

IPUMS cube integrates data from the IPUMS (Integrated Public

Use Microdata Series) website
1
. It is organized as a star schema

with 5 dimensions, 12 (non-top) levels, 25 measures, and contains

500,000 facts recorded in the fact table. From this experiment,

we reuse 27 explorations and 306 queries, with an average of 11

queries per exploration.

During a preliminary analysis of the workload, Aligon et al.

labelled explorations distinguishing five analysis styles:

• FOCUS. The exploration is more focused as time passes,

• OSCILLATE-FOCUS. The exploration is more exploratory

(the levels of detail and filtering oscillate) at the beginning

but is more focused at the end,

• OSCILLATE. The exploration is always exploratory,

• FIX. The exploration keeps constant levels of detail and

filtering,

• ATYPICAL. The exploration has atypical or erratic behav-

ior.

Real explorations on open data. The second workload, hence-

forth dubed Open, consists of navigation traces collected in the

context of a French project on energy vulnerability. These traces

were produced by 8 volunteer students of a Master’s degree in

Business Intelligence, answering fuzzy information needs defined

by their lecturer, to develop explorative OLAP navigations using

Saiku
2
over three cubes instances [7]. The main cube is organized

as a star schema with 19 dimensions, 68 (non-top) levels, 24 mea-

sures, and contains 37,149 facts recorded in the fact table. The

other cubes are organized in a similar way. From this experiment,

we reuse 28 explorations and 941 queries, with an average of 34

queries per exploration. A particularity of some third party OLAP

tools, like Saiku, is that their user interface submits a new query

for each user action (including intermediate drag-and-drops),

resulting in very long explorations in the log. Nevertheless, there

were some extremely short explorations (6 explorations counting

less than 10 queries), which mainly correspond to incomplete

studies.

Real explorations on cyber security data. The third workload,
henceforth dubed Security, consists of analysis sessions made by

real analysts in the context of the "Honeynet Project" [15]. 56 an-

alysts specialized in the domain of cyber-security were recruited

(via dedicated forums, network security firms, and volunteer se-

nior students from the Israeli National Cyber-Security Program)

and asked them to analyze 4 different datasets using a prototype

web-based analysis platform. Each dataset contains between 350

to 13K rows of raw network logs that may reveal a distinct se-

curity event, e.g. malware communication hidden in network

traffic, hacking activity inside a local network, an IP range/port

scan, etc. (there is no connection between the tuples of different

datasets). The analysts were asked to perform as many analysis

actions as required to reveal the details of the underlying security

event of each dataset. They used a web-based analysis platform

developed for the project [15].

Even if there is no ground truth for this workload, it is inter-

esting because queries were devised by expert analysts.

Artificial explorations. The last workload, with artificial data,

comes from the Star Schema Benchmark [17], and was used with

1
Minnesota Population Center. Integrated Public Use Microdata Series.

http://www.ipums.org, 2008.
2http://meteorite.bi/products/saiku



artificial explorations. The Star Schema Benchmark (SSB) is a

variation of TPC-H, a popular benchmark from the Transaction

Processing Performance Council (TPC). SSB cube consists of a

relational database under the form of a star schema, with one

fact table and 4 dimension tables.

Instead of using the rather limited SSBworkload, we generated

artificial explorations using CubeLoad [19].

5.2 Protocol
In order to cluster explorations, we execute an off-the-shelf clus-

tering algorithm using CED as distance function. For comparison,

we execute the same clustering algorithm with two alternative

distances: (i) the classical Edit Distance (henceforth dubed ED) as

a baseline, and (ii) Aligon et al.’s distance [3] (henceforth dubed

AD), a state of the art metric for session similarity. We analyze

the obtained clusters under several angles:

Firstly, whenwe have some knowledge qualifying explorations,

even if it is not exactly a ground truth, we compare our results

to such knowledge. For the artificial explorations we compare

the obtained clusters with the Cubeload templates used for the

generation of the workload. This experiment aims to show that

our approach is able to cluster together all the explorations cor-

responding to a given template. For the ipums workload we com-

pare to the preliminary labels assigned by Aligon et al. Actually,

such labels are not a ground truth, as there were not produced

with the goal of clustering explorations, but they may provide a

nice idea of the quality of the exploration. We report Adjusted

Rand Index (ARI) and V-measure (harmonic mean of clusters

homogeneity and completeness) scores
3
, and we compare our

clustering scores to those obtained with ED and AD distances.

Second, for the four workloads, we report further scores con-

cerning intrinsic cluster quality. Indeed, too few clusters will mix

different behaviors, too many clusters will overfit user behav-

ior. We aim to balance: number of clusters, cluster diameter (the

distance between the farthest objects in the cluster) and mean

Silhouette Coefficient (a measure of how similar an object is to

its own cluster (cohesion) compared to other clusters (separa-

tion)). Silhouette scores
3
are merely informative in out tests, as

the metric is more adapted to hyper-spherical clusters.

Finally, we study the medoids of each cluster (the exploration

that is the most similar to all other explorations in the cluster)

and we manually observe the OLAP operations of the medoid

for providing an explanation of the concerned behavior pattern.

5.3 Implementation and setting
Our methods are implemented in Python, using Scipy, Sklearn

[18] and Matplotlib libraries. Code and data are available from

Github
4
. CED parameters were tuned and set as follows:

• Cosine similarity is used to compare two queries in an

exploration.

• α parameter is set to 0 to give fully priority to context.

• We use the following seed function.

fk (x) = exp

©­«−12
(
2

√
k + 1(x − k)

|e |

)
2ª®¬

It is a Gaussian function centered at k , therefore satisfying
the properties announced in Definition 4.2. Furthermore, it is

3
Metrics for clustering performance evaluation are well described in

https://scikit-learn.org/stable/modules/clustering.html sect. 2.3.10.

[18]

4https://github.com/ClementMoreau-UnivTours/CED_Dolap

f1 f3 f5

q 1q 1 q 2 q 3 q 4 q 5

Figure 3: Example of context function with k = 1, 3, 5 and
|e | = 5

based on a Gaussian function with a standard deviation coeffi-

cient equal to
2

√
k+1
|e | . This coefficient is interesting because, as

it depends on k , it allows to vary context size along the explo-

ration. In particular, when k is small (at the beginning of the

exploration, when user intents are less defined and behavior is

more exploratory), the standard deviation is high (i.e. the curve

of fk is flattened) which allows to include in local context, some

queries that are far from the index k . On the other hand, when

k → |e | (at the end of the exploration, when behavior is more

focused), the curve of fk narrows around k reducing context size.

Figure 3 illustrates the context function for several values of k .
As we do not know, a priori, the form of clusters, nor their

density, we use a hierarchical clustering algorithm, which pro-

vides more flexibility than hyper-spherical and density-based

algorithms. In addition, it outputs a dendrogram that allows to

parameter the setting of number of clusters and eases the visual

analysis of clusters. In order to find a good balance, we experi-

mentally combine some criteria to cut the dendrogram: relative

loss of inertia, cluster diameter and minimum number of clusters.

We use theWard method as agglomeration criteria.

Finally, a correlation study among query features revealed that

Fdepth was highly correlated with Adepth in all workloads. In

consequence, we excluded Fdepth from query vector.

6 EXPERIMENTS
In this section we report the results of the experiments conducted

to validate our proposal.

6.1 Comparison against ground truth
In this experiment on Artificial and Ipums workloads, we com-

pared the clusters obtained with our method to the available

ground truth (i.e. the template used to generate each exploration

and the preliminary classification of Ipums).

Figure 4 (a and d) shows the obtained dendrograms. Explo-

rations (identified by numbers) are arranged in the horizontal

axis, plotting similar explorations close (according to CED). Links

indicate which explorations are clustered together, shorter links

meaning more similar explorations (vertical axis reports dis-

tances). Links of the same color represent a cluster, while dotted

links just indicate inter-cluster distances. For easing the interpre-

tation we also color explorations ids, according to ground truth

labels. We deliberately chose the same set of colors as clusters to

visually highlight the good matches.

Artificial workload. The dendrogram exhibits a perfect match

among CubeLoad templates (Slice and Drill, Slide All, Exploratory

and Goal Oriented, described in Section 2) constituting well sep-

arated clusters. We expected a good result with this workload, as

CubeLoad templates are well differentiated.
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(a): CED on Artificial

(b): ED on Artificial

(c): AD on Artificial

(d): CED on Ipums

(e): ED on Ipums

(f): AD on Ipums

Figure 4: Dendrogram results on Artificial (on left) and Ipums (on right) workloads.

In addition, many explorations of the Slice All template (and

some of the Slice and Drill template) are highly similar (distance

near 0) as they contain sequences of the very same operations,

even if exploration size is variable. This is one of the characteris-

tics that makes CED a well-adapted distance for this problem.

Ipumsworkload. CED correctly classesmost FOCUS andATYP-

ICAL explorations. However, it fails to distinguish between OSCI-

LLATE-FOCUS and OSCILLATE explorations, the frontier being

quite fuzzy, and FIX explorations are not distinguished from FO-

CUS ones. We remind that these labels are not a real ground

truth, but a preliminary classification for other purpose. Table 2

indicates ARI and V-measure scores.

6.2 Comparison with other distances
In this experiment we compare the clusters obtained using 3

distances: CED, ED and AD. Results are reported in Table 2 and

Figure 4. In Table 2 we can see that CED outperforms AD and ED

in both Artificial and Ipums workloads on both quality metrics.

With ED, clusters reflect exploration sizes instead of query

operations. For example, in Figure 4(e) the first cluster includes

short explorations, the second cluster contains the longest ones,

and the last cluster contains medium ones. Conversely, AD relies

Dataset Distance

Nb

ARI V-measure

clusters

Artificial

CED 4 1 1

ED 4 0.26 0.36

AD 6 0.76 0.88

Ipums

CED 4 0.29 0.42

ED 3 0.09 0.23

AD 4 0 0.19

Table 2: Comparison of clustering results for CED, ED and
AD distances

more on the actual query parts to establish similarity, and tends

to cluster together explorations navigating in the same portion of

a cube. Consequently, very different behaviors (e.g. those of Slice

and Drill and Goal Oriented templates) are clustered together

(see Figure 4 (b)). On the other hand CED is solely based on the

structural properties of the explorations.

6.3 Other quality considerations
In addition to ARI and V-measure scores (calculated w.r.t. a

ground truth), we computed cluster diameters and Silhouette



Dataset

Nb Max

Silhouette ARI V-measure

clusters diameter

Artificial 4 2.22 0.49 1 1

Ipums 4 3.31 0.28 0.29 0.42

Open 6 4.53 0.37

Security 5 3.81 0.16

Table 3: Nb of clusters, diameter, Silhouette, ARI and V-
measure scores for each workload using CED

scores to complete our quality analysis. Results are reported in

Table 3 for the 4 datasets.

Globally, we observe that most diameters are low, indicating

that clusters are compact. Therefore, medoids are good represen-

tatives of each cluster. Most Silhouette scores are also positive,

which is a good result given that our clusters are not hyper-

spherical. In particular, we note that even if CED was able to

generate a pure partition for the Artificial workload, we observe

a low Silhouette score.

6.4 Interpretation of students’ behavior
The next experiment clusters students explorations of the Ipums

and Open workloads. We manually examine some explorations of

each cluster, including the centroid, with the goal of abstracting

students explorations patterns.

Ipums workload. The 27 explorations are arranged in 4 clusters
of different sizes.

Clusters of explorations represent the following behavior:

• The 2 explorations in the first cluster start bymany changes

in the measure set (as trying to choose the good measures),

followed by a long period of filter/unfilter operations, com-

bined with some drill-downs and roll-ups, but with little

changes in the level of detail.

• Globally, explorations in the second cluster alternates drill-

downs and roll-ups. Some of them include a few filters,

but most of them (this is the case of the medoid) do not

filter any data.

• The 3 explorations of the third cluster start alternating

drills down and rolls up (as in cluster 2), then alternate

filters/unfilters, some of them focusing at the end (as in

cluster 4). This cluster has common points with clusters 2

and 4, some kind of intermediate behavior.

• The last cluster includes focused explorations, which reg-

ularly increase the level of detail and filtering by adding

drill-down and filter operations. Some of them mix other

operations, mostly at the beginning, but drill-downs and

filters are the predominant operations.

From a more general perspective, our study shows that half of

the explorations follow a focused pattern (cluster 4) translating

that those students have developed a particular type of analy-

sis skills, while other students are more exploratory (cluster 2),

perhaps translating a lack of maturity in their analysis skills,

perhaps just showing their style. Clusters 1 and 3 depicts outlier

behaviors.

Open workload. Our method organizes the 28 explorations in 6

clusters, 3 of them containing an outlier exploration, the first one

being very different from all the others (inter-cluster distance

around 50).

The interpretation of clusters is harder for this workload, as

Saiku tool produce very longs explorations (the longest in this

workload counts 127 queries). So manual inspection of explo-

rations is tedious and may lead to judgement errors. With this

disclaimer, we summarize the behavior represented by clusters

as follows:

• The outlier in first cluster is the shortest exploration (4

queries), whose queries are fully aggregated (only ALL

levels), and operations only change measures.

• The second cluster contains 10 explorations, many ones

being very short, including themedoid. A general behavior

is a constant or lightly increasing level of detail, sometimes

being high, sometimes medium. Most explorations (except

one) have little filters, but exhibit some changes in the

measure set.

• The third cluster contains 7 explorations, all of them con-

tinuously increasing the level of detail and filtering. There

are multiple drill-downs and multiple filters all along the

explorations.

• Cluster 4 contains another outlier clustered alone. It ex-

hibits several abrupt changes in the level of detail with

several peaks, continuous changes of measures and some

filters in the middle.

• Another exploration also clustered alone. It also shows

many abrupt changes in the level of detail, with some

changes in filters and measures at the beginning and an

increase in the filter level at the end.

• The last cluster contains 8 explorations. Its medoid has no

filters nor changes in the measure set. OLAP operations

include only drill-downs and roll-ups, with an increase of

the level of detail in the middle, decreasing at the end of

the exploration. Other explorations in the cluster include

other OLAP operations. The common behavior resides in

the increasing-decreasing pattern in the level of detail.

In conclusion, this clustering confirmed some of the already

identified patterns and enabled to discover a new one. Specifically,

cluster 3 corresponds quite well to the Focus cluster of Ipums

workload and the Slice and Drill template of CubeLoad; while

cluster 6 corresponds to the Oscillate cluster of Ipums (having no

equivalent template in CubeLoad). The new pattern, reflected by

cluster 2, corresponds to less skilled students, making timid usage

of OLAP operations (some drill-downs and roll-ups, few filters,

some changes of measure). The recognition of outlier behavior

is another strong point of our method.

6.5 Interpretation of experts’ behavior
This experiment shows the application of our approach to a

larger workload, whose explorations were devised by expert

analysts using an advanced IDE interface. Surprisingly, many

explorations of the Security workload contain only one query

(260 out of 723); we excluded them from the study. Another

interesting point is that there are long sequences of repeated

queries (i.e. the exploration contains many times the same query).

Thismay reflect movements in theway query results are arranged

and visualized, while referring to the same underlying query.

There is no ground truth and a manual observation of the 723

explorations is not doable, however, we provide some general

comments and a detailed analysis of themedoids of the 5 retrieved

clusters (and some randomly picked explorations):

• Explorations in cluster 1 do many movements in the group

by set, oscillating the level of detail, with some peaks in



Pattern Artificial Ipums Open Security

Slice and Drill 4 4 3

Slice All 3

Exploratory 2

Goal Oriented 1

Oscilating 2 6 1

Oscilate+Focus 3

Constant Agg. level 2 5

Add-Delete Fragment 2

Few operations 3

Repeted queries 4

Outliers 1 1,4,5

Table 4: Summary of discovered patterns and ids of the
concerned clusters.

the middle. There are other operations; the medoid does

many changes in measure set.

• Cluster 2 contains many long explorations, which char-

acteristic is the alternation of adding and deleting one

fragment (a level in the group by set, a filter or a measure).

• Explorations in the third cluster are highly similar (many

distances are around 0). It includes many short explo-

rations (as the medoid), with few operations, mainly drill-

downs.

• Explorations in cluster 4 have very few operations, and

globally exhibit long subsequences of identical queries.

• In the last cluster, queries have constant level of detail

(generally low), with some movements in the group by set

and few filters.

As expected, analysts’ behavior is different from students’.

Globally, their explorations exhibit less operations, with more

emphasis in the grouping of data, probably also in their arrange-

ment and visualization (which is not captured in our method)

of the data; while students are more click-oriented and produce

longer explorations with much more operations.

Clusters 3 and 4 evidence this behavior and Cluster 2 is some

kind of generalization of the Slice All pattern of CubeLoad. Clus-

ters 1 and 5 coincide with those of the other workloads. Table 4

summarizes the discovered patterns.

7 CONCLUSION
This paper addressed the problem of learning analysis patterns

in OLAP explorations, which is a hot topic for the understanding

of human behavior and providing IDE support. Concretely, we

propose to cluster similar explorations using a Contextual Edit

Distance, and then extract analysis behavior from clusters. CED

is a new distance that is well-suited for comparing explorations

taking into account their local context, and then lowering the

edition cost of similar queries, repetitions and permutations. Our

experiments with four workloads allowed to detect CubeLoad

templates and to learn some new analysis patterns from students

and expert analysts explorations. Even if these results are promis-

ing, our method needs to be tested in larger workloads, with

varied skilled and non-skilled users and different types of user

interfaces, before abstracting more general patterns.

As future work, we plan to tune our method and study its

sensibility and robustness with respect to CED parameters, query

features and query similarity. We would also like to compare our

results to other clustering methods and distances. Our long term

goal is to automatically classify explorations and qualify users

skills, allowing the recommendation of pertinent next queries,

among other applications.

Finally, we remark that CED is not endemic to analysis behav-

ior and it can be adapted to study other types of human behavior

(provided that such behavior could be represented as a sequence

of symbols). In particular, we have used CED for comparing

human daily moves [16] and we are currently discovering and

analysing peculiar patterns of children mobility.
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