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Abstract Over the past, deep neural networks have proved to be an essential
element for developing intelligent solutions. They have achieved remarkable
performances at a cost of deeper layers and millions of parameters. Therefore
utilising these networks on limited resource platforms for smart cameras is a
challenging task. In this context, models need to be (i) accelerated and (ii)
memory efficient without significantly compromising on performance. Numer-
ous works have been done to obtain smaller, faster and accurate models. This
paper presents a survey of methods suitable for porting deep neural networks
on resource-limited devices, especially for smart cameras. These methods can
be roughly divided in two main sections. In the first part, we present compres-
sion techniques. These techniques are categorized into: knowledge distillation,
pruning, quantization, hashing, reduction of numerical precision and binariza-
tion. In the second part, we focus on architecture optimization. We introduce
the methods to enhance networks structures as well as neural architecture
search techniques. In each of their parts, we describe different methods, and
analyse them. Finally, we conclude this paper with a discussion on these meth-
ods.
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Fig. 1: Roadmap of our paper.

1 Introduction

Since the advent of deep neural network architectures and their massively par-
allelized implementations [1,2], deep learning based methods have achieved
state-of-the-art performance in many applications such as face recognition,
semantic segmentation, object detection, etc. In order to achieve these perfor-
mances, a high computation capability is needed as these models have usually
millions of parameters. Moreover, the implementation of these methods on
resource-limited devices for smart cameras is difficult due to high memory con-
sumption and strict size constraints. For example, AlexNet [1], is over 200MB
and all the milestone models that followed such as VGG [3], GoogleNet [4] and
ResNet [5] are not necessarily time or memory efficient. Thus finding solutions
to implement deep models on resource-limited platforms such as mobile phones
or smart cameras is essential. Each device has a different computational capac-
ity. Therefore, to run these applications on embedded devices the deep models
need to be less-parametrized in size and time efficient.

Few works has been done focusing on dedicated hardware or FPGA with
a fixed specific architecture. Having a specific hardware is helpful to optimize
a given application. However, it is difficult to generalise. The CPU architec-
tures of the smartphones are different from each other. Thus, it is important
to develop generic methods to help optimize neural networks. This paper aims
to describe general compression methods for deep models that can be im-
plemented on a large range of hardware architectures, especially on various
generic-purpose CPU architectures. Moreover, we are specifically interested in
multilayer perceptron (MLP) and Convolutional Neural Networks (CNNs) be-
cause these types of state-of-the-art models have a large number of parameters.
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However, some methods could be applied to recurrent neural networks such as
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) [6,7].

Few surveys exist on deep neural compression [8,9]. However these works
are mainly focused on compression and acceleration algorithms of existing
models. In this paper, we present not only the methods to compress or ac-
celerate deep model, but also the recent research concerning optimized archi-
tectures search and design. The article is organized as follows. The first part
addresses the compression techniques (Section 2) which reduce the size and
computation requirements of a model by using different algorithms. Knowledge
distillation methods are explained to tackle the problem of transfer learning
(Section 2.1). Followed are the hashing (Section 2.2), pruning (Section 2.3)
and quantization (Section 2.4) methods which explore the redundancy of the
networks. Numerical precision (Section 2.5) and binarization (Section 2.6) are
presented by introducing the use of data with lower precision. The second part
of this paper describes architecture optimization (Section 3). We begin with
the description of implementations to optimize network architecture and the
way different modules are designed to interact with each other (Section 3.1).
Then we explain methods to automatically search optimized architecture (Sec-
tion 3.2). In each of these parts, we present existing methods, their strengths,
weaknesses and in which context they may be applied. The structure of the
article is detailed in Figure 1.

2 Compression techniques

2.1 Knowledge distillation

To design a neural network, it is important to evaluate how deep the network
needs to be. A neural network is composed of an input, an output and inter-
mediate layers. A shallow neural network is a network with a lower number
of intermediate layers as opposed to a deep neural network. A deeper network
has more parameters and can potentially learn more complex functions e.g.
hierarchical representations [10]. The theoretical work from [10] revealed the
difficulty involved to train a shallow neural network with the same accuracy
as a deep network. However, an attempt was made to train a shallow network
on SIFT features in order to classify the Imagenet dataset [1]. The authors
concluded that it was a challenging task to train highly accurate shallow mod-
els [10].

In spite of that, Ba et al. [11] reported that neural networks with a shal-
lower architecture are able to learn the same function as deep networks, with a
better accuracy and sometimes with a similar number of parameters (see Fig-
ure 2). Inspired by [12], their model compression consists in training a compact
model to approximate, to mimic, the function learned by a complex model.
This is what knowledge distillation is about : transfer the knwoledge learned
by a model to another one. The preliminary step is to train a deep network
(the teacher network) to generate automatically labelled data by sending un-
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labelled data through this deep network. Next, this "synthetic" dataset is then
used to train a smaller mimic model (the student network), which assimilates
the function that was learned by the larger model. It is expected that the
mimic model should produce same predictions and mistakes as the deep net-
work. Thus, similar accuracy can be achieved between an ensemble of neural
networks and its mimic model with 1000 times fewer parameters. In [11], the
authors demonstrated this assertion on the CIFAR-10 dataset. An ensemble of
deep CNN models was used to label some unlabeled data of the dataset. Next,
the new data were used to train a shallow model with a single convolution and
maxpooling layer followed by a fully connected layer with 30k non-linear units.
In the end, the shallow model and the ensemble of CNN acquired the same
level of accuracy. Further improvements have been made on student-teacher
techniques, especially with the work of Hinton et al. [13]. Their framework uti-
lizes the output from the teacher’s network to penalize the student network.
Additionally it is also capable of retrieving an ensemble of teacher networks
to compress their knowledge into a student network of similar depth.

Fig. 2: Accuracy of different deep neural networks, shallow neural networks
and shallow mimic neural networks against their number of parameters on
TIMIT speech database Dev (left) and Test (right) sets. Results and figures
are from [11].

In recent years, other compression methods that are described in this paper
are preferred. However, some works are coupling transfer learning techniques
with their own methods to achieve strong improvements. For example, the
works of Chen et al. [14] and Huang et al. [15] follow this approach employing
additional pruning techniques (see section 2.3). The former uses a deep metric
learning model, whereas the latter handles the student-teacher problem as a
distribution matching problem by trying to match neuron selectivity patterns
between them to increase the performance. Aguilar et al. [16] propose to distill
the internal representations of a teacher models into a simplified version of it to
improve the learning and the performance of the student model. Lee et al. [17]
use a self-supervised learning algorithm to improve transfer learning methods.
These methods are efficient. However their performances can vary largely ac-
cording to the application. Classification tasks are easy to learn for a shallow
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model, but tasks like segmentation or tracking are difficult to apprehend even
with a deep model. Furthermore, Muller et al. [18] recently showed with label
smoothing experiments that teacher and student networks are sensitive to the
format of the data. Thus, improving knowledge distillation methods is also a
difficult mission.

2.2 Hashing

Hashing is employed to regroup data in a neural network to avoid redundancy
and access the data faster. Through empirical studies, hashing methods have
proven themselves to be an effective strategy for dimensionality reduction [19].

HashedNets [20] is a hashing methods utilized and developed by Nvidia. In
this model, a hash function is used to uniformly and randomly group network
connections into hash buckets. As a result, every connection that is in the ith
hash bucket has the same weight value wi. This technique is especially efficient
on fully connected feed forward neural networks. Moreover, It can also be used
in conjunction with other neural network compression methods.

Several other hashing methods have been developed in the past few years.
Spring et al. [21] proposed an approach where adaptive dropout [22] (i.e. choos-
ing nodes with a probability proportional to some monotonic functions of their
activations) and hash tables based on locality-sensitive hashing (LSH) [23–26]
are utilized. These techniques once combined allowed the authors to construct
a smart structure for maximum inner product search [27]. This technique ex-
hibits better results, reducing computational costs for both training and test-
ing. Furthermore, this kind of structure leads to sparse gradient updates and
thus a massively asynchronous model. Thereby, models can be easily paral-
lelized as the data dispersion could be wider. However, wider data dispersion
can result in a slow down of the model. A trade-off between these criteria is
necessary.

2.3 Pruning

The compression of neural networks by using pruning techniques has been
widely studied. These techniques enable to remove parameters of a network
that are not necessary for a good inference. The early work in this domain
was aiming to reduce the complexity and the over-fitting in networks [28,29].
In these papers, the authors used pruning techniques based on the Hessian
of the loss function to reduce the number of connections inside the network.
The method finds a set of parameters whose deletion would cause the least
increase of the objective function by measuring the saliency of these parame-
ters. The authors use numerous approximations to find these parameters. For
instance, the objective function is approximated by a Taylor series. Finding
parameters whose deletion does not increase this function is a difficult problem
that involves, for example, the computation of huge matrices as well as second
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derivatives. Also, these methods suggest that reducing the number of weights
by using the Hessian of the loss function is more accurate than magnitude-
based pruning like weight decay. Additionnally, it reduces the network over-
fitting and complexity. However, the second-order derivatives introduce some
computational overhead.

Signorini et al. [30] utilized an intuitive and efficient method to remove
parameters. The first step is to learn the connectivity of the network via a
conventional training of the network i.e. to learn which parameters (or con-
nections) are more important than the other. The next step consists in pruning
those connections with weights below a threshold i.e. converting a dense net-
work into a sparse one. Further, the important step of this method is to retrain
(fine-tune) the network to learn the weights of the remaining sparse connec-
tions. If the pruned network is not retrained, then the resulting accuracy is
considerably lower. The general steps for pruning a network are presented on
Figure 3.

Training the network Evaluate the neurons Remove the unimportant
neurons  

Fine-tuningContinue pruning ?

YES

NO

Pruning ends

Fig. 3: Basic steps for pruning a deep network. Figure inspired by [31].

Anwar et al. [32] used a similar method. However, they state that pruning
has the drawback of constructing a network that has "irregular" connections,
which is inefficient for parallel computing. To avoid this problem, the authors
introduced a structured sparsity at different scales for CNN. Thus, pruning
is performed at : the feature map, the kernel and the intra-kernel levels. The
idea is to force some weights to zero but also to use sparsity at well defined
activation locations in the network. The technique consists in constraining each
outgoing convolution connection for a source feature map to have similar stride
and offset. This results in a significant reduction of both feature and kernel
matrices. Usually, sparsity has been studied in numerous works in order to
penalize non-essential parameters [33–36].

Similar pruning approach is seen in Molchanov et al. [31]. However differ-
ent pruning criteria and technical considerations are defined to remove features
maps and kernel weights, e.g. the minimum weight criteria [30]. They assume
that if an activation value (an output feature map) is small, then the fea-
ture detector is not important in the application. Another criteria involves
the mutual information which measures how much information is present in
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a variable about another one. Further, the Taylor expansion is used similar
to LeCun [28], to minimise the computational cost between the pruned and
the non-pruned network. In this case, pruning is treated as an optimization
problem.

A recent pruning method [37] consists in removing filters that are proven
to have a small impact on the final accuracy of the network. This results
in automatically removing the filter’s corresponding feature map and related
kernels in the next layer. The relative importance of a filter in each layer
is measured by calculating the sum of its absolute weights, which gives an
expectation of the magnitude of the output feature map. At each iteration,
the filters with the smallest values are pruned. Recently, Jian-Hao et al. [38]
developed a pruning network called ThiNet which, instead of using information
of the current layer to prune unimportant filters of that layer, uses information
and statistics of the subsequent layer to prune filters from a given layer. Not
only weights and filters but also channels can be pruned [39] using complex
thresholding methods.

Fig. 4: Comparison of the speed of AlexNet and VGG before and after pruning
on CPU, GPU and TK1. Figure from [40].

These past few years, numerous networks compression algorithms using
pruning methods and achieving state-of-the-art results have emerged. Yu et al.
[41] proposed a neurons importance score propagation (NISP) method based
on the response of the final layers to evaluate the pruning impact of the prior
layers. Zhuang et al. [42] developed discrimination-aware losses in order to de-
termine the most useful channels in intermediate layers. Some methods such as
Filter Pruning Via Geometric Median (FPGM) [43] are not focused on pruning
filters with less importance but only by evaluating their redundancy. Similarly,
Lin et al. [44] tackled the problem of redundant structures by proposing a gen-
erative adversarial learning method (GAL) (not only to remove filters, but also
branches and blocks).

Factorization methods are also use such as matrix or tensor decomposi-
tion [45,46]. However decomposition operations are computationally expen-
sive and factorization methods are also time-consuming as the model needs to
be retrained numerous times. As a result, we will not go into detail on these
methods in this paper. However, an overview of these techniques can be found
in [47].
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Numerous pruning methods exist and each of them has strength and weak-
nesses. The main disadvantage of these methods is that it takes a long time to
prune networks due to the constant retraining that they demand. Recent tech-
niques like [48] try to bypass some steps by pruning neural networks during
their training by using recurrent neural networks. However, all of them result
in considerable reduction of parameters. Pruning methods allow to eliminate
10 to 30 percent of the network’s weights. Regardless of the method, the size
of a network can be decreased with pruning without change or significant drop
in accuracy. The inference with the resulting models will also be faster (see
Figure 4) but the actual speed depends on which method has been utilized
and the sparsity of the network after pruning.

2.4 Quantization

Network quantization is similar to pruning as this is a common technique in
the deep learning community. It aims to reduce the number of bits required to
represent every weight. In other words, it decreases the number of parameters
by exploiting redundancy. Quantization reduces the storage size with minimal
loss in performance. In a neural network, it means that parameters will be
stacked into clusters and share the same value with the parameters within the
same cluster.

Gong et al. [49] performed a study on a series of vector quantization meth-
ods and found that performing scalar quantization on parameter values using
a simple k-means is sufficient to compress them 8 to 16 times without a huge
loss in accuracy. Few years later, Han et al. [40] utilized a trivial quantiza-
tion method using k-means clustering. They performed a pruning step before
and a Huffman coding step after the quantization in order to perform a larger
compression of the network. In their experiments, the authors were able to
reduce network storage by 35 to 49 times across different networks. Pruning
and quantization are methods that are often used together to achieve a solid
compression rate. For example, for a LeNet5-like network [50], pruning and
quantization compressed the model 32 times and with huffman coding even 40
times.

It is possible to apply several quantization methods on neural networks.
Choi Y. et al. [51] defined a Hessian-weighted distortion measure as an ob-
jective function in order to decrease the quantization loss locally. Further,
a Hessian-weighted k-means clustering is used for quantization purposes to
minimize the performance loss. Recent neural network optimizers can provide
alternatives to the Hessian and thus reduce the overall computation cost, like
Adam [52], AdaGrad [53], Adadelta [54] or RMSProp [55]. However one of the
advantages of using the Hessian-weighted method is that the parameters of all
layers in a neural network can be quantized together at once compared to the
layer-by-layer quantization used previously [40,49].

Quantization techniques are efficient as they achieve an impressive com-
pression rate and can be coupled with other methods to compress the models
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further. Their efficiency is integrated in some frameworks and tools to directly
quantify a network and port it on mobile devices [56,57].

2.5 Reducing numerical precision

Although the number of weights can be considerably reduced using pruning
or quantization methods, the overall number of parameters and costly matrix
multiplications might still be enormous. A solution is to reduce the computa-
tional complexity by limiting the numerical precision of the data. Deep neural
networks are usually trained using 32-bit floating-point precision for parame-
ters and activations. The aim is to decrease the number of bits used (16, 8 or
even less) and to change from floating-point to a fixed-point representation.
Selecting the precision of data has always been a fundamental choice when it
comes to embedded systems. When committed to a specific system, the mod-
els and algorithms can be optimized for the specific computing and memory
architecture of the device [58–60].

However, applying quantization for deep neural networks is a challenging
task. Quantization errors might be propagated and amplified throughout the
model and thus have a large impact on the overall performance. Since the be-
ginning of the 90’s, experiments have been made in order to limit the precision
of the data in a neural network, especially during backpropagation. Iwata et
al. [61] created a backpropagation algorithm with 24-bit floating-point pro-
cessing units. Hammerstrom [62] presented an architecture for on-chip learn-
ing using 8-16 bits fixed-point arithmetic. Furthermore, Holt and Hwang [63]
showed empirically that only 8-16 bits are enough for backpropagation learn-
ing. Nonetheless, even if all these works are helping to understand the impact
of limited numerical precision on neural networks, they are done on rather
small models such as multilayers perceptron with only a single hidden layer
and very few units. More sophisticated algorithms are required for more com-
plex deep models.

In 2015, Gupta et al. [64] trained deep CNN using 16-bit fixed-point instead
of 32-bit floating-point precision. It constrained neural networks parameters
such as bias, weights and other variables used during the backpropagation
such as activations, backpropagated error, weight updates and bias updates.
Different experimentations have been made with this 16-bit fixed-point word
length, e.g. varying the number of bits that encode the fractional (integer)
part between 8 (8), 10 (6) and 14 (2), respectively. In other terms, the number
of integer bits IL added to the number of fractional bit FL is always equal to
16. Tested on the MNIST and CIFAR-10 datasets with a fully connected and
a convolutional network, the results were nearly the same as the floating-point
baseline when decreasing the fractional part to 12-bit precision.

The crucial part in this method is the conversion of a floating point number
(or higher precision format) into a lower precision representation. To achieve
this, [64] describe two rounding schemes. The first one is the round-to-nearest
method. It consists of defining bxc as the largest integer multiple of ε = 2−FL
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less than or equal to x. So given a number x and the target representation
(IL,FL), the rounding is done as follows:bxc ifbxc ≤ x ≤ bxc+ ε

2

bxc+ ε ifbxc+ ε

2
≤ x ≤ bxc+ ε .

(1)

The second rounding scheme is stochastic rounding. It is a statistic and unbi-
ased rounding where the probability of x to be rounded to bxc is proportional
to its proximity to bxc: 

bxc w.p. 1− x− bxc
ε

bxc+ ε w.p.
x− bxc

ε
.

(2)

Courbariaux et al. [65] investigated the impact of numerical precision, espe-
cially to reduce the computational cost of multiplications. Their experiments
were performed with three formats: floating point, fixed point [64] and dy-
namic fixed point [66] (which is a compromise of the first two). Instead of
having a single scaling factor with a fixed number for the integer part and
another fixed number for the fractional part, several scaling factors are shared
between grouped variables and are updated from time to time. The authors
achieved similar conclusions as [64]: a low precision is sufficient to run and
train a deep neural network. However, limited precision can be efficient when
it is paired and optimized with a specific hardware. Gupta et al. [64] achieved
good results when they paired the fixed point format with FPGA-based hard-
ware but the hardware optimization of dynamic fixed point representations
is not as simple. Neural networks with limited-precision parameters and their
optimized integration on hardware have already been studied in the past. For
example, Mamalet et al. [67] and Roux et al. [68] developed optimized CNNs
to detect faces and facial features in videos on embedded platforms in real-
time. They used a fixed-point parameter representation but also optimized
the inference algorithms for specific platforms. This allowed them to exploit
parallel computing and memory locality.

To conclude, a limited numerical precision is sufficient to train deep models.
It is helpful to save memory storage and computation time, even more if a
dedicated hardware is used. However, not every step can be done with low
precision in a neural network. For instance, a higher precision must be used
to update the parameters during training.

2.6 Binarization

In recent works, limited numerical precision was extended to binary operations.
In a binary network, the weights and the activations at least are constrained
to either +1 or −1. Following the same idea as previously with limited numer-
ical precision [65], the same authors decided to apply two rounding schemes
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to binarize a variable: deterministic and stochastic rounding [69]. The most
common rounding method is to maintain the sign of the variable. So for a
variable x, its binary value xb will be the sign of x (+1 if x ≥ 0, −1 other-
wise). The second binarization scheme is a stochastic rounding. Thus xb = +1
with probability p = σ(x) and xb = −1 with probability 1− p where σ is the
hard sigmoid function [69]. The stochastic method is difficult to implement
as it requires randomly generating bits from the hardware. As a result, the
deterministic method is commonly used. However, recent works like [70] are
focusing on alternative methods to approximate the weight values in order to
obtain a more accurate network. For example, weights can be approximated
using a linear combination of multiple binary weight bases.

Nevertheless, just like limited numerical precision, a higher precision is re-
quired at some point and real-valued weights are required during the backprop-
agation phase. Adding noise to weights and activations (such as dropout [71,
72]) is beneficial to generalization when the gradient of the parameters is com-
puted. Binarization can also be seen as a regularization method [69].

With all these observations, Courbariaux et al. [73] developed a method
called BinaryConnect to train deep neural networks using binary weights dur-
ing the forward and backward propagation, while storing the true precision
of the weights in order to compute the gradients. Firstly the forward propa-
gation: layer-by-layer, the weights are binarized and the computation of the
neuron’s activation is faster because multiplications are becoming additions.
Secondly the backward propagation: the training objective’s gradient is com-
puted in function of each layer’s activation (from the top layer and going
down layer-by-layer until the first hidden layer). Lastly the parameter update:
the parameters are updated using their previous values and their computed
gradients. During this final step more precision is needed.

As a consequence the real values are used (the weights are binarized only
during the first two steps). Tests on datasets like MNIST, CIFAR-10 and
SVNH can achieve state-of-the-art results with two-thirds less multiplications,
training time accelerated by a factor of 3 and a memory requirement decreased
by at least 16.

In a binary weight network, only weight values are approximated with
binary values. This also works on CNNs where the models are significantly
smaller (up to 32 times). Then, the operation of convolution can be simplified
as follows:

I ∗W ≈ (I ⊕B)α , (3)

where, I is the input, W the real-value weight filter, B the binary filter
(sign(W )), α a scaling factor such that W ≈ αB and ⊕ indicates a con-
volution without multiplications. Further improvements have been done with
the XNOR-Net proposed by Rastegari et al. [74] where both the weights and
the input to the convolutional and fully connected layers are binarized. In this
case, all the operands of the convolutions are binary, and thus the convolution
can be performed by only XNOR and bitcounting operations:

I ∗W ≈ (sign(I)⊕ sign(W ))�Kα , (4)
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where, I is the input, W is the real-value weight filter and K is composed of
the scaling factors for all sub-tensors in the input I.

The resulting network in [74] is as accurate as a single-precision network. It
also runs faster (58 times on GPU) and is smaller (AlexNet is reduced to 7MB).
Many existing models (like the hourglass model [75]) have been enhanced with
the XNOR-Net method to achieve state-of-the-art results [76]. Recently, the
XNOR-Net method has been studied to be transformed from a binarization
task to a ternarization task [77]. Values are constrained in a ternary space -1,
0, +1. It allows to remove the need for full-precision values during the training
by using a discretization method.

3 Architecture optimization

Compression methods are widely studied. In present times, some of them are
part of popular deep learning frameworks. Tensorflow Lite [56] has tools to
quantify models, allowing to transfer models to mobile devices easier. Core
ML [57], the Apple framework for deep learning, is also able to apply some
of these methods on the devices of the brand. Thus, on the one hand, a few
compression techniques are already integrated in useful tools for developers
but on the other hand, we are still quite far from understanding the intricacies
of deep neural models.

However, these methods are usually applied on already constructed mod-
els as they aim to reduce their complexity. Thereby, recent research focuses
directly on the architectures of these deep models, i.e. creating optimized ar-
chitectures from the ground-up instead of finding methods to optimize them
afterwards. This section of the survey is adressing these approaches. Firstly,
a review of optimized architectures and modules to obtain efficient models is
performed. Secondly, we present neural architecture search (NAS) methods to
construct models "from scratch".

3.1 Architecture overview

To begin with, convolution operations are responsible for an important frac-
tion of the computation time in a network. In early works of LeCun et al. [78],
5x5 and 3x3 filters are used. Although, some common deep models use larger
kernels (e.g. Alexnet [1]), recent works recommend the use of 3x3 filters (e.g.
VGG [3]). An architecture like GoogleNet [4] even use 1x1 filters. GoogleNet
introduced the idea of modules, followed by ResNet [79] and DenseNet [80].
Modules are blocks composed of multiple convolution layers with different sizes
and with a specific organization.
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Fig. 5: Architecture of the SqueezeNet Fire module. Figure from [81].

Using the concept of modules, Iandola et al. [81] designed an architecture
called SqueezeNet, which relies on a particular organisation of its layers. The
fire module (see Figure 5) allowed to decrease the number of parameters of
the network which helped to reduce the model size. The design strategy of this
module is based on three main choices:

– the use of 1x1 filters to replace most of the 3x3 filters that are usually
present in CNNs,

– decreasing the number of input channels with 3x3 filters,
– downsampling later in the network in order to have convolution layers with

larger activation maps.

The first two choices are aiming to reduce the global number of parameters.
The third point improves the classification accuracy due to the large activation
maps induced by the 1x1 filters and the delay of the downsampling step [5].
Thereby, the fire module is composed of a squeeze convolution layer with only
1x1 filters followed by an expand layer incorporating a mix of 1x1 and 3x3
filters. The final SqueezeNet model is 50 times smaller than AlexNet while
maintaining the same accuracy.

This architecture has been taken one step further by Nanafack et al. [82] to
create the Squeeze-SegNet architecture, a deep fully convolutional neural net-
work for pixel-wise semantic segmentation. This model is an encoder-decoder
style network. The encoder part is similar to the SqueezeNet architecture while
the decoder part is composed of inverted fire and convolutional layers proposed
by the authors and inspired by the SqueezeNet architecture. Thus, the inverted
fire module is called a DFire module, which is a series of alternating expand
and squeeze modules. Both of these modules are retrieved from SqueezeNet.
The downsampling stages are replaced by upsampling steps as the model needs
to produce dense activation maps. Inspired by SegNet [83], the Squeeze-SegNet
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model is able to get the same level of accuracy as SegNet [83] on a dataset like
CamVid [84] with 10 times fewer parameters.

In 2012, Mamalet et al. [85] introduced the simplification of convolutional
filters by using separable convolution layers. This work was improved by
Howard et al. [86] in the MobileNet model. Inspired by the work of Chol-
let [87], the core layers of their architecture is based on depthwise separable
features [88]. Stated differently, the convolution step is factorized into two
separate steps to decrease the computation time taken by multiplication op-
erations. Firstly, a depth-wise convolution applies a single filter to each input
channel. Secondly, a point-wise convolution applies a 1x1 convolution in order
to combine the outputs of the depth-wise convolution. This factorisation intro-
duced in [88] drastically reduces the computational cost of the convolutions.

Convolution 
Layer 

Fire 
Module 

x3 

Fire 
Module 

x4 
Fire 

Module 
Convolution 

Layer 

Deconvolution 
Layer 

DFire 
Module 

DFire 
Module 

x4 

DFire 
Module 

x3 
Deconvolution 

Layer 

MaxpoolMaxpool Maxpool

UpsampleUpsampleUpsample

Fig. 6: Simplified architecture of the Squeeze-SegNet network. Figure inspired
by [82].

Separable convolution layers have become an effective solution to acceler-
ate convolution operations. Zhang et al. [89] also investigated this path with
a neural network called ShuffleNet by adding to the depth-wise separable fea-
tures a ShuffleNet unit. This unit allows the model to shuffle channels for
group convolutions. Usually, each output channel is only related to a group of
input channels. Here, we suppose a convolution layer with g ∗ n channels and
g groups. The output channel dimension is first reshaped into (g, n) and then
transposed and flattened as the input of the next layer. Compared to other
models, the complexity is widely reduced. Compared to MobileNet [86], the
efficiency and accuracy are slightly improved.

In section 2.6, we presented methods to binarize deep models. Inspired by
this approach, Bulat et al. [76] developed a binary version of an architecture
called the stacked hourglass network [75], a state of the art model in human
pose estimation. The main contribution of the binarized model is to improve
a bottleneck layer by limiting 1x1 filters and augmenting skip layers to limit
the loss of binary information. On 3D face alignment, this model outperforms
the current best performing methods up to 35%. However on human pose
estimation tasks, the binary model is far behind the real-valued version. Thus
there is still room for improvements on binary networks. It is important to note
that an architecture can be changed and improved in order to use parameters
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with limited numerical precision. Compression and architecture design are
deeply intertwined.

3.2 Neural architecture search

These past few years, the understanding of deep networks has grown due to
the development of new modules and architectures. However, knowing which
model to use for a specific idea is still a difficult task. Tasks have become
more challenging and to overcome them, the key is to find an architecture to
fit them perfectly. But the more challenging is the task, the more difficult it
is to design a network "by hand". Since constructing a proper architecture
can be time-consuming, work has been done to study the possibility of letting
networks automatically grow, adapt or even construct their own architectures.
It is interesting to note that the first works in this field were oriented around
physics and biology. Rosenblatt [90] Kohonen [91] or Willshaw and al. [92] were
associating the organisation of the brain structure to the neural networks in
order to find theoretical self-organising processes. Since then, numerous works
on the subject have been done and they could be regrouped under the name
of neural architecture search (NAS).

We give an overview of different methods in this field. We begin by in-
troducing NAS with the early works in the domain regarding neural gas, fol-
lowed by the neuroevolution methods, inpired by genetical algorithms, and
the network morphism methods which aim to transform trained architectures.
In these methods, the designed architectures are mostly optimized to obtain
the best performance for a resulting task. However the size or memory con-
sumption of these structures may not be optimized. Thus, in a last section we
describes supergraph methods capable of finding structure optimized on these
criteria.

3.2.1 Neural gas

Followed by these initial works, the neural gas methods, introduced by Mar-
tinetz and Schulten [93] were among the first approaches to push forward the
idea of self-organized structures. they aimed to find an optimal data repre-
sentation based on features vectors. In the beginning of the 90’s, the works of
Fritzke B. [94–97] studied the basis of self-organizing and incremental neural
networks by enhancing the neural gas methods into growing structures. The
authors mainly explored two ideas:

The first one, described in [97], was to develop an unsupervized learning
approach for data visualisation, clustering and vector quantization to find a
suitable architecture automatically. In this work, a neural network could be
seen as a graph where a controlled growth process is applied. Furthermore, a
supervized learning approach was also developed adding a radial basis func-
tion. This addition permitted, for the first time, to add new units and to
supervise the training of the parameters at the same time. Moreover, the new
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units were not added randomly anymore, leading to small networks that were
able to generalise better. Their method was tested on vowel recognition prob-
lems and had better results than the nearest neighbour algorithm (the former
state-of-the-art technique).

The second idea described by Fritzke B. in [94] is an extension of the first
method based on a Hebb-like learning rule. As opposed to [93], the model has
no parameters which change overtime but is still able of continuous learning
until a performance criterion is met. From a theoretical point of view, these
research works helped to better understand how the information is passed and
transmitted inside a network.

3.2.2 Neuroevolution

Genetic algorithms are a well-known technique to find solutions of complex op-
timization problems. Adapted to deep networks, these methods were used to
design evolutionary architectures and named neuroevolution. The basic state-
ment of the evolutionary methods is as follows: an evolving topology along with
weights should provide an advantage over evolving weights on a fixed topology.
For decades, neuroevolution methods [98,99] were successfully applied on se-
quential decision tasks. Part of this success comes from the fact that sequential
decision tasks are optimizing the weights of the neural networks instead of the
gradient descent. Stanley et al. [100] went further ahead with a method called
NeuroEvolution of Augmenting Topologies (NEAT). This technique minimises
the dimensionality of the search space of connection weights, resulting in an
efficient and rapid search of new topologies.

B C H A G E F D

A E F A G C H DA E F G B C H D

B C H G B E F D

Crossover Points

PARENTS OFFSPRINGS

Fig. 7: Example of a crossover step. The two parent structures (left) are ran-
domly decomposed at certain points and reconstructed to build offspring struc-
tures (right).

However, an important issue in neuroevolution is the permutation prob-
lem [101]. In evolutionary methods, there is more than one way to express a
solution. In neural networks, it means that there is more than one architecture
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to express the same weight optimization problem. The basis of evolutionary
algorithms is to automatically design topologies that will compete with each
others. The best topologies (or solutions) are mixed together to obtain an even
better topology. This step is called a crossover (see Figure 7). These processes
are repeated until the solution can not be improved anymore. During, these
processes, the permutation problem is occurring when structures representing
the same solution do not have the same encoding. Indeed, if two topologies with
the same architecture but different encoding are mixed with each other, the
resulting structure may lead to damaged structures and missing information
(see Figure 8). Thereby, these algorithms are following conventions for fixed or
constrained topologies such as non-redundant genetic encoding [102]. Stated
differently, it becomes impossible to obtain two similar structures. Nonetheless,
on neural networks where both weights and topologies are constantly evolv-
ing, these conventions may not be respected. Thus, using neural networks, the
permutation problem is difficult to avoid. The work of Stanley et al. [100] has
found one solution by keeping tracks of the history of the networks in order to
define which parts must be shuffled without losing information. However, this
method is memory-consuming due to the constant tracking of the networks.
As a consequence NEAT model [100] is only successful with small networks.

Fig. 8: The two networks compute the same solution, even if their units are
appearing in a different order. This is making crossover impossible or one of
the main unit will disappear. Figure from [100].

The NEAT model [100] is enhanced in a method called CoDeepNEAT [103].
This improvement consists of a coevolution of components, topologies and hy-
perparameters. Moreover, the evolution and optimization are based on the
gradient, as opposed to previous methods where the optimization is based
on the weights. On the CIFAR-10 image recognition dataset, CoDeepNEAT
is able to automatically discover structures that have performances compa-
rable to the state-of-the-art. Furthermore, on image captionning problem the
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approach is able to find better structures than human design with enough
computation time. These methods are able to find automatically adapted and
efficient structure for a specific task. However the computational cost is ex-
pensive.

3.2.3 Network morphism

NAS is not only limited to neuroevolution methods. Network morphism [104–
106] is also an important part of the domain. This approach aims to modify
(to morph) a trained neural network into a new architecture. Thus, morphism
operations are applied on the network e.g inserting a layer or adding a skip-
connection. As a consequence, the main difficulty is to determine which op-
eration should be applied. In [106], the authors use Bayesian optimization
and select the most promising operations each time in the search space. The
upside of this technique is that it does not need an important additional num-
ber of epochs to be operational. However, as the morphism operations are
limited to a layer level, the topologies of the networks are constrained to be
chain-structured. As most of the state-of-the-art networks are in multi-path
structures, this is an noticeable limitation. Nonetheless, Cai et al. [107] were
able to expand the search space to multi-path structures by allowing weight
reusing and tree-structured architectures. As a result, expensive computational
resources to achieve these searches are needed.

3.2.4 Supergraphs

Nowadays, an important number of NAS techniques and numerous other meth-
ods can be found in the literature. One of the principal issues that these meth-
ods are confronting with is the enormous size of the search space of possible
solutions. Theoretically, this search space is infinite. Thereby, it is necessary to
limit this space. In the methods described in the previous section, this limita-
tion is mainly done by limiting and controlling the number of operations that
could be done during the evolution of the networks. However an alternative
approach would be not to limit the operations but the search space where they
are operating. This is the idea behind supergraphs.
A supergraph is a large computational graph, where each subgraph is a neural
network [108–110] (see Figure 9 for an example). Thus, the supergraph is be-
coming the search space and the solution to the task at hand will be one of its
subgraphs. The benefit of this method is the reduced computational capacity
needed as the solution is searched in a smaller space than in other methods.
In recent times the work of Pham et al.[109] have decreased the computation
resources required to produce networks with strong performance. Their idea
is as follows: all the subgraph (child models) produced by the supergraph are
sharing parameters to avoid a constant retraining from scratch. We could ar-
gue that sharing parameters between different models could lead to numerous
mistakes. However, transfer learning methods have shown that parameters
learned for a specific task can be used by other models on other tasks [13,
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111]. Thus, in principle the fact that child models are using their parameters
for different purposes is not a problem.

Fig. 9: Example of subgraph found via the convolutional neural fabrics
method [108]. All edges are convolutionnal layers. All edges are oriented to
the right. Feature map size of each layers are given by height. Thus, red and
green are seven-layer convolutional layers and blue is a ten-layer convolutional-
deconvolutional network. Figure from [108].

A different approach was developed by Veniat et al. [110] in their method
called Budgeted Super Networks (BSN). Here, the supergraph is defining a
set of possible architectures but a maximum authorized cost must also be de-
fined. This cost is directly related to the performances, computation capability
and memory consumption, allowing the authors to chose which criteria the al-
gorithm must privilege during the search of the solution. To achieve this, a
stochastic model is proposed and is optimized using policy-gradient-inspired
methods. Moreover, the authors have also demonstrated that the solution of
their stochastic model corresponds to the optimal constrained architecture of
the supergraph. Tested on the CIFAR image classification and segmentation
datasets, their solution was able to converge to design architectures similar to
the ResNet model [79]. Furthermore, the designed models have the same com-
putational cost or memory consumption than the original ResNet but with a
better accuracy.

Several conclusion can be drawn from these experiments. Firstly, constrain-
ing the search of optimized architectures leads to a reduction of the compu-
tational capability needed for this search. Secondly, it also permits to obtain
networks that have a limited computation and memory cost with negligible
compromise on the accuracy.

Tan et al. [112] have pushed their research in this direction. The authors
proposed an automated NAS specifically for mobile devices called MnasNet.
In their work the accuracy and the inference latency of the model on a mobile
device are both taken into account for the optimization of the model. Thus,
the model is trying to find the best trade-off between these two criterias. In
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order to reach this balance, two different hierarchical search spaces are used:
one to factorise a deep network into a sequence of blocks and another one to
determine the layer architecture for each block. Thereby, different layers are
able to use different operations but all the layers in one block are sharing the
same structure. The adapted block is chosen at different depth of the network
to reduce the overall latency. These improvements allow to reduce the search
space while finding architecture that are performing better and faster than
MobileNets [86,113].

Technique Method Pros Cons

Knowledge
distillation

Using a deep CNN
to train a smaller
CNN.

Small models with
comparable perfor-
mances.

Models can only be
trained from scratch;
Difficult for the tasks
other than classifica-
tion.

Hashing Indexing neurons
into a hash table.

Better parallelization;
Better data dispersion;
Less computation time.

Considerably slower if
the model is too sparse.

Pruning Deleting neurons
that have minor
influence on the
performance.

Significant speed up
and size reduction;
Compression rate is
10x to 15x (up to 30x).

Pruning process is
time-consuming; Less
interesting for too
sparse model.

Quantization Reducing the num-
ber of distinct neu-
rons by gathering
them into clusters.

High compression rate :
10x to 15x; Can be cou-
pled with pruning.

Considerably slower if
the model is too sparse.

Numerical
Precision

Decreasing the nu-
merical precision of
the neurons.

High compression rate
and speed up.

Higher precision is
needed during the
parameters update;
Could require specific
hardwares.

Binarization Decreasing the nu-
merical precision of
the data to 2 bits.

Very high compression
rate (30x) and speed
up (50x to 60x).

Higher precision is
needed during the
parameters update.

Table 1: Summary of different compression methods.

4 Discussion and Conclusion

In Table 1, we summarized and compared various deep-learning model com-
pression methods from the literature discussed in this paper. These methods
aim to reduce the size, computation time or the memory employed by deep
models. However, a sparse model may not always be computationally efficient.
Pruning and quantization can be utilized to achieve impressive performances
on trained models. However, they can easily lead to sparse model (same prob-
lem for hashing methods). In this case, binarization or reducing the numerical
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precision method can be one of the solutions. The speed gained for limiting
the numerical precision is important, especially if the structures is well de-
signed. Nevertheless, higher precision is needed in some steps and accuracy
could vary significantly. In the end, compressing a deep model will always lead
to a trade-off between accuracy and computational efficiency.

Faster models provide a great benefit for resource-limited devices and fur-
ther work needs to be done in this direction if we want to leverage all of their
power on mobile devices. However, finding new methods to compress deep
models is not the only solution. We can focus on how the models are con-
structed beforehand. For example a simple architecture like SqueezeNet [81]
is able to reach the same accuracy as a deep model like AlexNet [1], but is 50
times smaller.

Compared to the size of the model, computational efficiency is crucial for
running such algorithms on mobile platforms. Despite the effort on hardware
optimization, algorithmic optimizations like [85] and recent works such as
Mobile-Net[86] and Shuffle-Net[89] have shown that it is promising to not only
compress models but also to construct them intelligently. Thus a well-designed
architecture is the first key to optimized networks.

The works on NAS design an optimized architecture (performance-wise and
computational efficiency-wise) for a specific tasks. Though this is a challenging
exercise, some research works have already shown promising results through
new algorithms and theories like the lottery ticket hypothesis [114]. All these
works are pushing forward the understanding of the mechanics behind deep
models and towards building optimized models capable of solving challenging
applications at a lower cost.
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