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THE MONOTONICITY OF THE SYSTOLE OF CONVEX RIEMANNIAN TWO-SPHERES

Throughout this note, the notion of convexity must be understood in the differentiable sense: A compact three-ball B ⊂ R 3 with smooth boundary is strictly convex when there exists a smooth function F : R 3 → [0, ∞) with positive definite Hessian at every point and such that ∂B = F -1 (1). Equivalently, the boundary sphere M = ∂B, which will always be equipped with the Riemannian metric g that is the restriction of the ambient Euclidean metric, has strictly positive Gaussian curvature. The systole sys(M ) > 0 is the length of the shortest closed geodesic of (M, g). Our main result answers in dimension 3 a question that was posed to us by Yaron Ostrover: Theorem 0.1. Let B 1 ⊆ B 2 be two compact strictly convex three-balls in R 3 with smooth boundary. Then sys(∂B 1 ) ≤ sys(∂B 2 ).

The main ingredient of the proof is the observation that the systole of positively curved Riemannian two-spheres coincides with the classical Birkhoff min-max, as we will now prove. Let (M, g) be a Riemannian two-sphere. We denote the energy functional on the W 1,2 free loop space by

E : ΛM = W 1,2 (S 1 , M ) → [0, ∞), E(ζ) = S 1 ζ(t) 2 g dt.
Here and in the following, we denote by S 1 = R/Z the 1-periodic circle. We consider the unit sphere S 2 ⊂ R 3 . For each z ∈ [-1, 1], we denote by γ z : S 1 → S 2 the parallel at latitude z, parametrized as

γ z (t) = 1 -z 2 cos(2πt), 1 -z 2 sin(2πt), z .
For each continuous map u : [-1, 1] → ΛM such that E(u(0)) = E(u(1)) = 0 there exists a unique continuous map ũ :

S 2 → M such that u(z) = ũ • γ z for each z ∈ [-1, 1].
We denote by U the space of such maps u whose associated ũ has degree 1. The Birkhoff min-max value bir(M, g) = inf

u∈U max z∈[-1,1] E(u(z)) 1/2
is the length of some closed geodesic of (M, g).
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Lemma 0.2. On every positively curved closed Riemannian two-sphere (M, g), we have bir(M, g) = sys(M, g).

Proof. Let γ : S 1 → M be a shortest closed geodesic of (M, g) parametrized with constant speed, so that E(γ) = L(γ) 2 = sys(M, g) 2 . A theorem of Calabi-Cao [START_REF] Calabi | Simple closed geodesics on convex surfaces[END_REF] implies that γ is simple, that is, an embedding γ : S 1 → M . We fix an orientation on M , and consider the corresponding complex structure of (M, g).

Namely, for every non-zero v ∈ T x M , the tangent vector Jv ∈ T x M is obtained by rotating v in the positive direction of an angle π/2. We consider the vector field ν(t) = J γ(t) orthogonal to γ(t). Notice that ν is a parallel vector field, since the complex structure J is parallel. If K g denotes the Gaussian curvature of (M, g), we have

d 2 E(γ)[ν, ν] = S 1 ∇ t ν 2 g -K g γ 2 g ν 2 g dt = - S 1 K g γ 4 g dt < 0. (0.1)
We now consider Morse's finite dimensional approximation of the free loop space (see, e.g., [START_REF] Milnor | Morse theory[END_REF]). We fix a positive integer k that is large enough so that

d(ζ(t 0 ), ζ(t 1 )) < injrad(M, g) for all ζ ∈ ΛM with E(ζ) ≤ E(γ) = sys(M, g) 2 and for all t 0 , t 1 ∈ R with |t 1 -t 0 | < 1/k.
Here, d denotes the Riemannian distance on (M, g). We consider the open finite dimensional manifold

Λ k M = x = (x 0 , ..., x k-1 ) ∈ M × ... × M d(x i , x i+1 ) < injrad(M, g) ∀i ∈ Z k .
Such a manifold admits an embedding

ι : Λ k M → ΛM, ι(x) = γ x ,
where each restriction γ x | [i/k,(i+1)/k] is the shortest geodesic parametrized with constant speed joining x i and x i+1 . We denote the restricted energy functional by

E k = E • ι : Λ k M → [0, ∞), E k (x) = k i∈Z k d(x i , x i+1 ) 2 .
Let x := ι -1 (γ). We consider the tangent vector v := (v 0 , ..., v k-1 ) ∈ T x (Λ k M ) such that v i = ν(i/k) for all i ∈ Z k . Inequality (0.1) readily implies that dι(x)v lies in the negative cone of the Hessian d 2 E(γ), since

d 2 E k (x)[v, v] = d 2 dz 2 z=0 E(ι(exp x (zv)) ≤ d 2 dz 2 z=0 E(exp γ(•) (zν(•))) = d 2 E(γ)[ν, ν] < 0. (0.2)
Here, the exponential map in Λ k M is the one associated with the natural Riemannian metric g ⊕ ... ⊕ g.

The complement M \ γ has two connected components B + and B -, each one diffeomorphic to a two-ball. The vector field ν points into one of them, say B + . We define the continuous map

w : [-1/3, 1/3] → Λ k M, w(z) = exp x (z v).
Notice that w(0) = x. We fix > 0 small enough so that, for all z ∈ (0, 1/3], the loop ι(w(±z)) is entirely contained in the open ball B ± , and by Equation (0.2) we have

E k (w(z)) < E k (w(0)) = sys(M, g) 2 , ∀z ∈ [-1/3, 1/3] \ {0}.
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We now consider the open subspaces U + , U -⊂ Λ k M given by

U ± = Λ k M ∩ (B ± × ... × B ± ).
We have w(±1/3) ∈ U ± . The flow φ s of the anti-gradient -∇E k is complete in positive time s in the sublevel set E -1 k ([0, sys(M, g) 2 ]). We claim that φ s (w(±1/3)) ∈ U ± , ∀s ≥ 0.

Indeed, assume by contradiction that there exists s 0 > 0 such that φ s0 (w(±1/3)) ∈ ∂U ± , and take s 0 to be the minimal such time. If y := φ s0 (w(±1/3)), the components of the anti-gradient vector z := -∇E k (y) are given by

z i = 2( γy ( i k + ) -γy ( i k -)), ∀i ∈ Z k .
Since y ∈ ∂U ± , at least one of its components y i must belong to ∂B ± . Assume that all the y i 's belong to ∂B ± , and therefore they are of the form y i = γ(t i ) for some t i ∈ S 1 . In this case, we have z i = λ i γ(t i ) for some λ i ∈ R; but this is impossible, since it would imply that all the components of φ s (w(±1/3)) belong to ∂B ± for all s ∈ R, and thus that φ s (w(±1/3)) belong to ∂U ± for all s ∈ R. Therefore at least one component y i ∈ ∂B ± is adjacent to a component in the interior y i-1 ∈ B ± . However, this implies that the vector z i points inside B ± , and therefore φ s0-δ (w(±1/3)) ∈ U ± for all δ > 0 small enough, contradicting the minimality of s 0 . We set δ := min{injrad(M, g), sys(M )/(4k)}. Since E k (φ s (w(±1/3))) < sys(M, g) 2 for all s ≥ 0, and since sys(M, g) 2 is the smallest positive critical value of E k , we can fix a large enough s > 0 such that E k (φ s (w(±1/3))) < δ 2 . We extend w to a map w : [-2/3, 2/3] → Λ k M by setting w(±z) = φ (3z-1)s (w(±1/3)),

∀z ∈ [1/3, 2/3].

Notice that w(±z) ∈ U ± for all z ∈ (0, 2/3], and E k (w(±2/3)) < δ 2 . We set y ± = (y ± 0 , ..., y ± k-1 ) := w(±2/3). For each r ∈ [0, 1], we define y ± (r) = (y ± 0 (r), ..., y ± k-1 (r)) by

y ± i (r) := exp y ± 0 ((1 -r) exp -1 y ± 0 (y ± i )).
Notice that y ± (0) = y ± , y ± (r) ∈ U ± , and

E k (y ± (r)) = k i∈Z k d(y ± i (r), y ± i+1 (r)) 2 < 4k 2 δ 2 ≤ sys(M, g) 2 , ∀r ∈ [0, 1], E k (y ± (1)) = 0.
We extend w to a continuous map w :

[-1, 1] → Λ k M by setting w(±z) = y ± (3z -2), ∀z ∈ [2/3, 1].
Finally, we define u := ι • w : [-1, 1] → ΛM . Notice that the associated continuous map ũ : S 2 → M has degree 1; indeed, the preimage u -1 (γ(t)) is a singleton for every t ∈ S 1 , and the restriction of u to a neighborhood of u -1 (γ) is a homeomorphism onto its image. Therefore u ∈ U, and bir(M, g) ≤ max

z∈[-1,1] E(u(z)) 1/2 = E(u(0)) 1/2 = sys(M, g).
On the other hand, bir(M, g) 2 is a positive critical value of E, and therefore bir(M, g) ≥ sys(M, g).

Proof of Theorem 0.1. We set M i := ∂B i , i = 1, 2. Since the regions B 1 ⊂ B 2 are strictly convex, for each x ∈ M 2 there exists a unique π(x) ∈ M 1 such that

x -π(x) = min y∈M1

x -y .

The map π : M 2 → M 1 is a 1-Lipschitz homeomorphism with respect to the Riemannian metrics g i on M i that are restriction of the ambient Euclidean metric. In particular, for every W 1,2 curve γ 2 : S 1 → M 2 , if we denote by γ 1 := π • γ 2 its image in M 1 , we have E(π • u(z)) 1/2 ≥ bir(M 1 ).

This, together with Lemma 0.2, implies that sys(M 2 ) ≥ sys(M 1 ).
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