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Effect of nonlinear superparamagnetic response on susceptibility curves for nanoparticle assemblies
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We examine the effect of the applied magnetic field amplitude on zero field-cooled/field-cooled (ZFC/FC)
curves, through the nonlinear susceptibility of superparamagnetic particles (i.e., at thermondynamic equilibrium,
but taking into account the magnetic anisotropy). This nonlinear effect is shown to be the first to manifest itself
when going away from the linear response regime (i.e., when the magnetic moment is simply proportional to
the applied field), largely before the modification of the macrospin switching energy due to the external field.
We demonstrate that it has a significant impact on ZFC/FC curves, especially for the low-temperature behavior
of the FC curve, even in usual experimental conditions. We then show how this nonlinearity can be taken into
account, in an easy way, to obtain a better modeling of the susceptibility curves and consequently a more reliable
determination of the nanoparticles’ magnetic properties. The theoretical considerations are confronted in a series
of experimental measurements on Co nanoparticles.

DOI: 10.1103/PhysRevB.87.174404 PACS number(s): 75.75.−c, 75.50.Tt, 75.20.−g, 75.30.Gw

I. INTRODUCTION

The numerous potential applications of magnetic nanopar-
ticles, in areas ranging from medicine to catalysis, are driving
research on nanoparticle synthesis and characterization.1–6 In
this context, low field susceptibility curves, following the
so-called zero field-cooled/field-cooled (ZFC/FC) protocol,
are widely used for the determination of the nanoparticle
properties, in particular the distribution of magnetic anisotropy
energy (MAE) and particle size.

This technique consists in measuring the magnetic moment
of a nanoparticle assembly, under a low applied field (typically
50 Oe), as a function of temperature. The ZFC curve starts
from low temperature (typically 2 K), with a demagnetized
sample cooled down from room temperature under no applied
field. In contrast, for the FC curve the temperature is decreased
from room to low temperature while the magnetic moment is
measured, keeping the applied field constant. The obtained
curves then reflect the progressive crossover, as a function of
temperature T , between the blocked regime and the superpara-
magnetic (SP) regime (i.e., where the magnetic moments are at
thermodynamic equilibrium). The main characteristic features
of these susceptibility curves are the existence of a peak in the
ZFC curve, occurring at a temperature Tmax, and the merging
of the ZFC and FC curves when all the particles are in the
superparamagnetic regime. The value of Tmax is often used to
characterize and compare, with a single figure, the magnetic
anisotropy of nanoparticle samples. However, such a usage
may be hazardous because both the magnetic anisotropy and
the details of the size distribution control the shape of the
ZFC/FC curves.7

In order to perform a more reliable analysis of these
magnetization curves, a full modeling is yet possible both for
the ZFC and the FC curve, using either a “two-states model”
(or abrupt transition model, where the particles are supposed to
be either blocked or SP),8–11 or a more elaborate “progressive
crossover model.”7,12,13 These two semianalytic models are
equivalent as long as the MAE dispersion is large enough and
with a carefully defined transition temperature (i.e., “blocking
temperature”).7 One of the basic hypotheses of these models

is that the applied magnetic field is low enough to observe
a linear response of the nanoparticle assembly, which means
that its magnetic moment (response) is simply proportional to
the external field (i.e., the response scales linearly with the
excitation). If we are in such a linear response regime, then
the normalized ZFC/FC curves measured with various field
amplitudes H should all be superimposed, as the total magnetic
moment simply scales with H . However, this assumption
is far from being systematically verified. Anyway, from an
experimental point of view, a compromise needs to be found
between having a fair signal-to-noise ratio and remaining close
enough to the linear response regime.

On the other hand, it is well known that for applied
magnetic fields of increasing amplitudes, the Tmax value is
shifting.14 The nonintuitive fact that this ZFC peak shift can
be nonmonotonous has been discussed in the literature.15–17

In particular, Zheng et al.17 have pointed out that it can be
explained by the contribution of SP particles with a size dis-
tribution. The influence of the applied field on the equilibrium
magnetic moment is sometimes considered through a Langevin
function,17–19 which is only justified at high temperature20,21

(i.e., far above the blocked-superparamagnetism crossover,
when the anisotropy can be neglected).

In this paper, we examine the effect of the applied magnetic
field amplitude on ZFC/FC curves, through the nonlinear
susceptibility of SP particles (i.e., at thermondynamic equilib-
rium, but taking into account the MAE). This nonlinear effect
is shown to be the first to manifest itself when going away from
the linear response regime, largely before the modification of
the macrospin switching energy due to the external field. We
demonstrate that it has a significant impact on ZFC/FC curves,
especially for the low-temperature behavior of the FC curve,
even in usual experimental conditions. We then show how
this nonlinearity can be taken into account, in an easy way,
to obtain a better modeling of the susceptibility curves and
consequently a more reliable determination of the nanoparti-
cles’ magnetic properties. The theoretical considerations are
confronted in a series of experimental measurements on Co
nanoparticles.
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II. THEORETICAL ANALYSIS

A. Framework

In the following, we make the usual assumption that mag-
netic nanoparticle samples can be described by independent
macrospins of magnetic moment μ = MSV and a uniaxial
anisotropy corresponding to a MAE K = KeffV . Here MS is
the saturation magnetization, V is the particle volume, and
Keff is the effective anisotropy constant. We also assume that
the easy magnetization axes of the nanoparticles are randomly
oriented. The macrospin switching time is given by the Néel
model: τ = τ0 exp( �E

kBT
), where �E is the switching energy

barrier, i.e., simply equal to K in the absence of any external
magnetic field. Moreover, the evolution of Keff , MS , and τ0

with temperature is neglected in the range of interest for
ZFC/FC curves. It must be noted that the analysis presented
in the following can still be applied to more complicated
situations (texture of the macrospin orientations, dispersion
of Keff , evolution of MS , Keff , or τ0 with T ), at the expense
of a higher computational cost. The hypothesis of a macrospin
behavior is crucial but is well verified for few-nanometer-
diameter particles.22–24 From an experimental point of view,
the most stringent hypothesis is certainly the absence of
interparticle interactions, which requires particles far enough
from each other (i.e., high dilution in the case of particles
embedded in a nonmagnetic material).12,25–27

Before considering the realistic case of a nanoparticle
assembly with a particle-size distribution, we discuss the case
of a monodisperse assembly of randomly oriented macrospins.
In a simplified model, which we call the “abrupt transition
model,” the macrospins of a given MAE are supposed to be
either fully blocked (with a magnetic moment mb) or fully
superparamagnetic, that is, at thermodynamic equilibrium
(with a magnetic moment meq). The expressions of mb and meq

are discussed further later. Then, the ZFC curve is given by
mZFC = mb for T < TB and mZFC = meq for T � TB , where
the blocking temperature TB establishes a transition between
the two behaviors. The transition temperature corresponds
to the situation when the measurement time τm (or effective
measurement time, in the case of a continuous acquisition
during a temperature sweep13,28) is equal to the switching time
τ , which means

TB = �E

kB ln(τm/τ0)
.

On the other hand, we have for the FC curve mFC = meq(TB)
for T < TB and mFC = meq for T � TB .

One can distinguish the different effects of the applied
magnetic field on the ZFC/FC curves (beyond the simple
proportionality to the field, which does not modify the curves
shape). The field amplitude H will modify the macrospin
switching time through a variation of τ0

29 (this has only a
small incidence) and more importantly through a change of
�E in the exponential.14,30,31 In the end this will affect the
blocking temperature of particles of a given MAE. Besides,
the equilibrium (SP) magnetic moment meq also depends
on H and the deviation from the linear behavior meq,lin =
μ0μ

2H/(3kBT ) will contribute to modify the ZFC/FC curves
shape when the applied field is increased. Interestingly, it
should be noted that the blocked moment mb is strictly linear

in H (because it is related to the transverse susceptibility13),
as long as the saturation is not reached:

mb = μ0μ
2H

3K
.

While the magnetic field effect on �E and even τ0 has
already been considered in previous studies,14,16,17,30,32 the
dependence of meq upon H has been under-rated. Let us
emphasize that meq(H ) does not correspond to a simple
Langevin function. Indeed, the Langevin function is the
thermodynamic equilibrium response of a particle assembly
only in the case of a vanishing magnetic anisotropy.20,21,28 This
is a crucial point: The particles’ anisotropy still plays a role in
the SP contribution, especially close to TB . In particular, we
can expect it to have a strong impact on the FC curve, because
meq(TB) is involved (see above).

These observations also hold for the more elaborate
progressive crossover model, where we can write13

mZFC = mb e−δt/τ + meq(1 − e−δt/τ )

and

mFC = meq(TB) e−δt/τ + meq(1 − e−δt/τ ),

δt being an effective waiting time related to the tem-
perature sweeping rate rT . As explained in Ref. 13, δt

depends on the anisotropy and on the temperature [δt �
0.6727 (T/rT )(kBT /K)0.9], which means that it varies among
the particles and along the ZFC/FC curves. In this case, we
have (for a negligible applied field)13

TB � K/kB

0.9283 ln
(

K
kBτ0rT

) − 3.69
.

To go further, we can point out that the effects of the applied
field H on the macrospin switching time are controlled by
the dimensionless parameter h = H/HA, where HA is the
anisotropy field defined by HA = 2Keff/(μ0MS). These effects
are then negligible as long as h � 1. On the other hand, the
deviation of meq from a linear response to the applied magnetic
field is controlled by another dimensionless parameter (ratio
between Zeeman and thermal energies)33:

ξ = μ0MSV H

kBT
.

Therefore, the linear approximation for meq is acceptable as
long as ξ � 1, where we can write meq � meq,lin. By intro-
ducing a third dimensionless parameter σ = KeffV/(kBT ),
which reflects the relative importance of anisotropy vs thermal
effects, we can see how h and ξ are related: ξ = 2σ h. The SP
regime (equilibrium response) takes place typically for σ � 25
[this comes from the fact that for ZFC/FC measurements
we have ln(τm/τ0) � 25]. This means that around TB , at the
onset of the SP regime, we can write ξ � 50 h. For instance,
we can have a situation where h = 0.01, and hence TB will
not be noticeably changed, while ξ � 0.5 around TB so that
the SP contribution will clearly deviate from meq,lin. This
demonstrates that the applied field amplitude H modifies
meq much before having a sizable effect on the blocking
temperature (through the macrospin switching time τ ).

As a consequence, there exists an intermediate regime
where h � 1 but ξ is no more negligible, and hence
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the nonlinear effects in meq start to be significant (i.e.,
we are facing a nonlinear superparamagnetic response) while
the macrospin switching is almost unaffected by H . In
the following, we consider this particular regime, which
is the first to appear when one deviates from the linear response
regime (at low field).

B. Third-order magnetic susceptibility and ZFC/FC simulation

We consider a system of randomly oriented uniaxial
macrospins, having the same volume V , and consequently
the same magnetic moment μ = MSV and MAE K = KeffV .
We can determine its equilibrium response (component along
the applied field direction, meq) to an external field H , at
a temperature T . This can be done numerically without
any difficulty, as reported in several studies,20,21,33,34 using
statistical physics formulations involving the system partition
function.

Then, a Taylor expansion can be made as a function of ξ in
reduced units. One can write

meq/mS = ξ

3
+ α ξ 3 + · · · ,

where mS is the sample saturation magnetic moment. Thus, the
first nonlinear term is proportional to the reduced third-order
susceptibility α. This coefficient depends only on the parameter
σ . In the limit of small σ or large σ values, α(σ ) can be
expressed analytically using power series of σ or 1/σ . We can
write33

α = − 1

45
− 8

10125
σ 2 + · · · for σ � 1

and

α = − 1

15
+ 2

15 σ
+ · · · for σ � 1.

The extreme cases correspond to a Langevin function (σ =
0, no anisotropy barrier) and to a Ising function (σ → ∞, only
two possible orientations) with respectively α = −1/45 and
α = −1/15. In the case relevant for ZFC/FC measurements,
we are mostly interested in knowing the α value for σ around
20–25. Let us insist on the fact that in this range meq is closer to
a Ising function than to a Langevin function. Note that limiting
the nonlinear expansion of meq to the third-order susceptibility
is a good approximation up to ξ � 0.5–1, which corresponds to
an applied field H/HA � 0.01–0.02. Figure 1 indeed displays
the error on meq induced by such a truncation to the third-order
susceptibility. It also compares this truncation to the linear
approximation and a Langevin function. Note also that because
ξ is inversely proportional to T , the truncation becomes a
better approximation when going away from the blocking
temperature. Beyond the fact that meq does not correspond
to a Langevin function (see Fig. 1), taking into account the
true third-order magnetic susceptibility constitutes an essential
improvement because the dependence of α on σ (i.e., on the
particle anisotropy and size) is then considered. This will be
very important for a correct description of the ZFC/FC curves
in the case of a particle-size distribution.

In order to efficiently incorporate this third-order suscep-
tibility effect in ZFC/FC simulations, one needs an analytical
expression of α(σ ) in the entire range of interest for SP
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FIG. 1. (Color online) Relative error on the equilibrium magnetic
moment meq, as a function of the dimensionless parameter ξ , for
different approximations: the linear response approximation (red
[gray] dotted line), the Langevin approximation (blue [gray] dashed
line), and the true nonlinear response truncated to the third-order
susceptibility (black solid line). The calculations are done for
particles of 5-nm diameter, with MS = 1.35 × 106 A/m, Keff =
100 kJ/m3 (which corresponds to TB � 18 K and HA � 1500 Oe), at
a temperature of 25 K (i.e., σ � 19).

particles (i.e., from σ = 0 to about 25). Because we can already
describe with high precision the two extreme regimes (σ � 1
and σ � 1), we propose a linear interpolation35 between the
values α(σmin) and α(σmax), where σmin and σmax are the
boundary values where the extreme regimes approximations
start to fail. As shown in Fig. 2, one can find very good
polynomial fits in either σ or 1/σ (these fits are slightly
different from the Taylor expansions but allow us to extend the
domain of applicability), up to σ � 2 on the low-σ side and
down to σ � 5.5 on the high-σ side: The linear interpolation
is then limited to σ ∈ [2,5.5] and appears very satisfactory.

We now turn to ZFC/FC simulations, incorporating the
applied field effect on meq through the analytical expression
of the reduced third-order susceptibility discussed above. As
already mentioned, two models can be used to describe the
evolution from the blocked regime to the SP regime:13 The
abrupt transition model (ATM), where there is a discontinuity
for the ZFC at the transition temperature (in a case of a
single MAE), or the progressive crossover model (PCM),
where the evolution between the two regimes is gradual,
resulting in continuous ZFC curves even for a single MAE.
In both formulations (see above), the equilibrium magnetic
moment meq appears in a very transparent way, so that
there is no difficulty to add the third-order susceptibility
contribution (analytical approximation) to the usual linear
response meq,lin = μ0μ

2H/(3kBT ).
Figure 3(a) shows the effect of the applied field amplitude

on the ZFC/FC curves, for a single MAE (corresponding
typically to Co clusters in the fcc phase with a 5-nm diameter,
under a 25-Oe magnetic field). Different approximations for
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FIG. 2. (Color online) (a) Numerical calculation of the reduced third-order susceptibility α (red [gray] solid line) as a function of σ ,
compared to the low-σ and high-σ analytical approximations (blue [gray] dashed line and green [gray] dash-dotted line). The extreme cases,
corresponding to a Langevin or a Ising function, are indicated with horizontal dotted lines. In a ZFC/FC measurement, the superparamagnetic
regime (i.e., thermodynamic equilibrium) is observed typically for σ � 25, whereas the region σ > 25 (hatched region) corresponds to the
blocked regime. (b) Closer view, for σ between 0 and 10, of the numerically determined α(σ ) value (red [gray] solid line) and the low-σ and
high-σ analytical approximations (blue [gray] dashed line and green [gray] dash-dotted line). The two black squares indicate the σmin and σmax

values and materialize the range where a linear interpolation will be used for α(σ ).

the equilibrium response are compared (see the Appendix for
the analytical expression of the curves for each approxima-
tion): The linear approximation, the Langevin approximation,
and the third-order susceptibility approximation. In this case,
in addition to simulations using the PCM, what would be
obtained for the more common ATM is also displayed.
Note that the illustrative case considered here corresponds
to h � 0.017, a blocking temperature TB � 18 K, a σ value

around 26 at TB , and ξ � 0.9 at TB . We are thus typically
in the regime described previously, where the nonlinearity
cannot be neglected while the energy barrier (and consequently
TB) is almost unaffected (h � 1 is still satisfied). One can
immediately see that there is a clear deviation from the linear
case (i.e., what would be obtained with a very low applied
field), especially around the ZFC peak. As far as the FC curve is
concerned, the most striking effect is the significant decrease of

(b)
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FIG. 3. (Color online) ZFC/FC curves simulations using the progressive crossover model (PCM), for a single MAE (a) or for a MAE
distribution due to a log-normal particle-size distribution (b). Different approximations for meq are compared (the analytical expressions are
summarized in the Appendix): the linear response approximation (red [gray] dotted line), the Langevin approximation (blue [gray] dashed
line), and the true nonlinear response truncated to the third-order susceptibility (black solid line). The calculations are done for particles with
MS = 1.35 × 106 A/m, Keff = 100 kJ/m3 (which corresponds to HA � 1500 Oe), with a 25-Oe applied magnetic field (i.e., h � 0.017). τ0 is
fixed to 10−10 s and the temperature sweeping rate is rT = 0.033 K/s. The particle diameter is equal to 5 nm (single MAE case, case a), while
it follows a log-normal distribution (case b) with a median diameter of 3 nm and a dispersion parameter of 0.3. For the single MAE case, the
curves corresponding to the abrupt transition model (ATM, dash-dotted line) are also shown. In the case of a significant MAE distribution (as
in case b) the ATM and PCM are equivalent.
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FIG. 4. (Color online) Normalized ZFC/FC curves measured for a sample of Co nanoparticles embedded in a gold matrix, with different
applied field amplitudes (a). Simulated ZFC/FC curves, taking into account the third-order susceptibility in the superparamagnetic contribution,
for different applied magnetic fields (b). In insert, the experimental curves with a 50-Oe applied field are compared to the curves simulated
with the third-order susceptibility approximation and the linear response approximation. The nanoparticles have a log-normal size distribution
(median diameter of 2.75 nm and dispersion parameter of 0.26) and a Keff = 162 kJ/m3. A residual field of 0.7-Oe is included.

the low temperature limit, which can easily be explained by the
fact that the third-order susceptibility is always negative (i.e.,
it decreases the response magnitude as compared to the linear
regime). The inability of a Langevin description to correctly
account for the applied field effects is also clearly visible. In
Fig. 3(b), the same comparison between the different approx-
imations (linear response, Langevin function, and response
including the third-order susceptibility) for the superparamag-
netic particles response is done for the more realistic case of
a particle-size distribution (log-normal in this case). The same
type of behavior as for a single particle size is observed: The FC
curve slope is significantly decreased, and the ZFC peak has
a reduced amplitude. Note that the beginning of the ZFC (low
temperature) remains unchanged (because of mb linearity), as
well as the high-temperature limit, where both σ and ξ go to
zero so that the system’s response is simply given by the linear
susceptibility of a paramagnet (i.e., 1/T evolution).

This theoretical analysis demonstrates that the nonlinearity
of the SP contribution must be considered in order to accurately
analyze experimental curves. Using a Langevin function does
not at all constitute a reliable solution. Of course, for applied
field amplitudes that are too large, considering only the third-
order susceptibility is not enough and the simple approach
presented here cannot be applied (moreover, in this case the
blocking temperatures are also significantly affected by the
magnetic field). From an experimental point of view, however,
there is no real interest in choosing such conditions, highly
deviating from the linear response regime.

III. EXPERIMENTAL STUDY

The evolution of the ZFC/FC curves’ shapes, when varying
the applied magnetic field amplitude, has been experimentally
studied on a Co nanoparticle assembly. The sample consists
of Co nanoparticles (around 3 nm in diameter, with a log-
normal size distribution) synthesized by laser vaporization
and deposited in ultra-high-vacuum conditions using low-

energy cluster beam deposition (LECBD).36,37 During particle
deposition, a gold matrix is codeposited (by electron beam
evaporation) so that the magnetic clusters are embedded in Au
with a high dilution (0.5% in volume), resulting in negligible
interparticle interactions.26

ZFC/FC measurements have been performed with different
applied field amplitudes, using a superconducting quantum
interference device (SQUID) magnetometer (Quantum Design
MPMS 5XL). As can be seen in Fig. 4(a), there is a striking
evolution of the curves’ shapes (normalized by the applied
field) with a flattening of the FC curve (low-temperature limit)
and a decrease of the ZFC peak amplitude when the magnetic
field is increased from 5 to 50 Oe. A first observation is that, as
far as the FC curve is concerned, the linear response (invariance
of the curves shape) is satisfied up to a 10-Oe applied field in the
present case. The fact that ZFC curves are not superimposed,
as is the case for FC curves (5- and 10-Oe curves, and it almost
holds for the 25-Oe FC too), may seem surprising. Indeed, let
us remember that the blocked contribution is not affected by
the applied field (simple linear behavior) so that when all the
particles are blocked (which is almost the case at the lowest
temperature of 2 K) the normalized ZFC curves should have
the same value.

The downshift of the ZFC at low temperature, when the
field is increased, can fully be explained by the existence of
a small residual field in the SQUID when cooling the sample
in supposedly “zero field-cooled” conditions. As it has been
discussed previously, a tiny residual field of the order of 1/25
(i.e., 4%) of the measurement field amplitude is enough to
perturb the low-temperature part of a ZFC curve.13 The effect
of the residual field Hres can be taken into account in the
simulations: We first compute the low-temperature limit of a
FC curve with Hres as the applied field and then use this value as
the starting point of the experimental ZFC curve. Here, we find
that the measurements are consistent with a 0.7-Oe residual
field, which would be fully negligible for many measurements
but has a detectable impact in the case of ZFC curves acquired
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with a small amplitude field: Such a Hres represents around
14% of the measurement field in the case of H = 5 Oe and
7% for H = 10 Oe. When the applied field becomes large
enough, this residual field has a negligible effect on the ZFC
starting point, which is precisely what we observe for 25-Oe
and 50-Oe measurements.

The other features (flattening of the FC curve and decrease
of the ZFC peak) are well reproduced by the simulations [see
Fig. 4(b)], using the framework exposed above, which includes
the third-order susceptibility in the equilibrium magnetic
response. These effects then result only from the nonlinearity
of meq. Interestingly, we have found that it is often possible
to fit ZFC/FC curves, even in the nonlinear regime discussed
here, with the simple linear response formulation. As has just
been demonstrated above, such a successful fit does not prove
in any way that the magnetic response to the external field
is indeed linear. The series of experimental curves [Fig. 4(a)]
can be fitted using the previously reported “triple-fit” method
(simultaneous fit of the 300-K superparamagnetic m(H ) curve
and ZFC/FC susceptibility curves).12 The FC flattening is in
fact not prohibitive for the fit using linear expressions, because
the low-T limit of the FC is treated as an adjustable parameter
(it is chosen to give the experimental value). However,
depending on which measurement field is considered, the
parameters obtained by a best-fit procedure are not exactly
identical. While the impact on the deduced particle-size
distribution is very limited (0.1-nm change in the median
diameter and 0.01 variation in the log-normal dispersion),
the anisotropy constant increases from Keff = 162 kJ/m3 for
H = 5 Oe to Keff = 178 kJ/m3 for H = 50 Oe. In contrast,
a fit with the third-order nonlinear susceptibility provides a
constant Keff = 162 kJ/m3 value. In the case of a 50-Oe
measurement, and for this particular sample, neglecting the
nonlinearity of meq would result in a 10% overestimation of the
magnetic anisotropy constant. The inset in Fig. 4(b) displays
the best fit of the experimental curves with the third-order
susceptibility approximation and shows how important the
nonlinear effects are (the linear susceptibility approximation
gives drastically different curves).

Note that neglecting the effect of the residual field for
low-field measurements is worse and can easily lead to a 20%
error on Keff , which is then underestimated. More generally,
taking into account the nonlinearity effect allows one to avoid
the potentially significant error (even when remaining in the
regime where h � 1) on the magnetic anisotropy constant
that would be inferred from a fit based on a linear response
model. For instance, including the third-order susceptibility
would avoid a 18% overestimation in the case displayed in
Fig. 3(b), while in other cases errors up to 30% on Keff can
be avoided. A nonlinear modeling is then clearly beneficial
for the accuracy of the magnetic parameters determined
from experimental curves. It is also important to note that
a slight shift of the ZFC curve maximum temperature Tmax

can be observed as a function of the applied field, even
if the macrospin switching energy barriers are not affected
(i.e., h remains very small). Such a shift can be obtained
with a particle-size distribution, simply because there exists a
nonlinearity in meq, and may be amplified by the existence of
a tiny residual field in the magnetometer during the zero field-
cooling step.
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FIG. 5. (Color online) Experimental normalized �m = mFC −
mZFC curves for the sample of Co nanoparticles embedded in a gold
matrix, with the different applied field amplitudes.

According to the ZFC/FC curve expressions,7,13 both the
effect of a residual field and of a nonlinearity in meq should
vanish when considering the difference �m = mFC − mZFC.
As expected, in sharp contrast with the change in the ZFC/FC
curves with the applied field amplitude, the normalized
�m curves are found to be almost identical (see Fig. 5).
These curves are the signature of the gradual unblocking of
the particles with increasing temperature: They are similar to
remanence mR(T ) measurements and only bear the signature
of the blocked nanoparticles. �m is also directly related to
the distribution of blocking temperatures in the nanoparticle
assembly,7 and thus it reflects the switching energy distribution
in the sample. The fact that in the present experimental case
�m does not evolve with the applied field, in the range
considered here, is a proof that we are still in the h � 1 regime
where the field effect on the energy barriers can be neglected.
This justifies the use of the framework exposed above where
only the equilibrium contribution is modified by H .

One may want to take advantage of these properties of
the �m = mFC − mZFC curve, namely the insensitivity to a
residual field and to a nonlinearity in meq. Indeed, as already
evoked in a previous work,7 �m(T ) can be fitted directly
using a semianalytical model. In the case of a particle-size
distribution function ρ(V ), one can write for the progressive
crossover model

�m ∝ μ0M
2
SH

3Keff

∫ ∞

0
V e−δt/τ ρ(V )dV,

where both τ and δt (to a much lesser extent) depend on T

and V . Similarly, with the abrupt transition model, one can
write

�m ∝ μ0M
2
SH

3Keff

∫ ∞

Vlim

Vρ(V )dV,

with Vlim(T ) = ln(τm/τ0)kBT /Keff , which corresponds
typically to Vlim � 25kBT /Keff . There is thus no difficulty
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to fit an experimental �m curve, which can give access to
the particle-size distribution and the anisotropy constant.
However, going from two curves (FC and ZFC) to only one
results in a loss of information (contribution of the equilibrium
magnetic moments) and transforms a highly discriminating
feature (the ZFC peak) into a smooth curve, which appears
to be less sensitive to a parameter variation. In the end, we
believe that directly analyzing ZFC/FC curves is preferable.

Finally, this study stresses that special attention must be
paid to the choice of the applied field for ZFC/FC susceptibility
measurements. A compromise has to be found between a high
signal (and consequently a better quality of the experimental
curves) and a strong deviation from linearity, which precludes
a simple theoretical modeling of the curves. It is then strongly
advisable to check in which regime we are (linear response,
moderate nonlinear response with h � 1, highly nonlinear
response) when analyzing a particular sample. Some condi-
tions may be suited for one case and not for another one: In
particular, according to the material considered, the anisotropy
field HA can vary a lot, thus changing substantially the value
of h and the parameter ξ around the blocking temperature. It
must be kept in mind that with a fixed acquisition magnetic
field, the nonlinearity effects will be more pronounced for
systems with a small HA. By evaluating the maximum value
of ξ corresponding to a given experimental situation, one can
ensure that a reliable modeling of the curves is then possible.

IV. CONCLUSION

We have shown how the applied magnetic field amplitude
can alter the shape of ZFC/FC susceptibility curves of a
nanoparticle assembly. The first effect, when deviating from
the linear response regime valid at very low acquisition field,
is to modify the magnetic behavior of superparamagnetic
particles: A nonlinearity appears in the equilibrium magnetic
moment meq, the third-order susceptibility being the first
component that needs to be considered. Such a nonlinear effect
can be significant while the impact of the applied magnetic
field on the switching energy distribution (and hence on the
particles blocking temperatures) can safely be neglected.

In this moderate nonlinear regime, a simple theoretical
modeling of this nonlinear effect is possible with an accurate
analytical approximation of the reduced third-order equilib-
rium susceptibility. This framework is then fully compatible
with the usual theoretical description of ZFC/FC curves
(ATM or PCM) and only involves a marginal additional
computational cost. Unfortunately, a simple and reliable
theoretical description seems impossible for large applied
field amplitudes, where the third-order susceptibility is not
sufficient and where the switching energy barrier are also
affected.

The most visible effect of the appearance of a meq

nonlinearity is the flattening of the FC curve (lowering of
the low-temperature limit). In the case of a particle-size
distribution, a slight shift of the ZFC peak temperature with the
field is also possible, even if the individual particle blocking
temperatures remain unchanged. It must be noted that the use
of a Langevin function to describe the field dependence of
the superparamagnetic contribution is not physically sound,
as it misses the dependence of the nonlinear susceptibility

on the parameter σ = KeffV/(kBT ). As long as the applied
field is not too high, taking into account the nonlinear
behavior of the equilibrium magnetic response enables a
more accurate determination of the nanoparticles’ magnetic
properties from the fit of experimental ZFC/FC curves. This
has been illustrated on a sample of Co nanoparticles embedded
in a gold matrix, characterized with an applied magnetic field
ranging from 5 to 50 Oe. In this case, the linear response
regime is only met at low acquisition fields (H � 10 Oe).

Experimentally, when choosing the applied field amplitude
for ZFC/FC measurements, it is advisable to find a good
compromise between having an intense signal and keep-
ing a moderate nonlinearity in the nanoparticles’ magnetic
response. The existence of a very small residual field in
the magnetometer (even less than 1 Oe), during the zero
field-cooling step, has been shown to be critical in the case
of low acquisition field amplitudes (for instance, 5 or 10 Oe).
With these considerations, we think that in many cases the most
judicious choice is to use a 25-Oe applied field for ZFC/FC
measurements, keeping in mind that the conditions of validity
of the different approximations (h � 1, small ξ ) vary with
the experimental situation considered (in particular with the
material). Interestingly, and as expected from the theoretical
description, the quantity �m = mFC − mZFC appears to be
insensitive to the nonlinearity in the superparamagnetic re-
sponse and to the effect of a residual field. Since it can also be
easily modeled, this curve which reflects the unblocking of the
particles as a function of temperature may be useful in some
cases.

Finally, the flattening of the FC curve with increasing
field amplitude is reminiscent of the effect of interparticle
interactions. This should be related to the existence, in
concentrated samples, of an internal effective field reflecting
the dipolar interactions among the nanomagnets.
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APPENDIX: SUMMARY OF THE ANALYTICAL
EXPRESSIONS USED FOR ZFC/FC MODELLING

In the present article, analytical expressions have been used
to describe the evolution of the magnetic moment, in a ZFC/FC
measurement, for an assembly of particles having the same
volume V and consequently the same anisotropy K = KeffV

and magnetic moment μ = MSV . For a particle assembly with
a size distribution, these analytical expressions are numerically
integrated over the particle volume.

The progressive crossover model described in Ref. 13
allows us to write

mZFC = mb e−δt/τ + meq(1 − e−δt/τ )

and

mFC = meq(TB) e−δt/τ + meq(1 − e−δt/τ )
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with

mb = μ0μ
2H

3K
, TB = K/kB

0.9283 ln
(

K
kBτ0rT

) − 3.69
,

δt = 0.6727
T

rT

(
kBT

K

)0.9

, and τ = τ0 exp

(
K

kBT

)
.

Different approximations can then be used for the equilib-
rium magnetic moment meq.

(1) Linear response approximation:

meq = μ0μ
2H

3kBT
.

(2) Langevin approximation:

meq = μ

[
coth

(
μ0μH

kBT

)
− kBT

μ0μH

]
.

(3) Third-order susceptibility approximation:

meq = μ0μ
2H

3kBT
+ α μ

(
μ0μH

kBT

)3

,

where the coefficient α (reduced third-order susceptibility)
depends on the value of the dimensionless parameter σ =
K/(kBT ):

α = − 1

45
− 8.7 × 10−4σ − 6 × 10−5σ 2 if σ < 2,

α = −0.01355 − 0.00532 σ if σ ∈ [2,5.5],

α = − 1

15
+ 0.13257

σ
− 0.0083

σ 2
if σ > 5.5.

Note that these approximations for meq can also be used in
the framework of the abrupt transition model where we have

for T � TB : mZFC = mFC = meq,

for T < TB : mZFC = mb and mFC = meq(TB).
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