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ON THE HOMOGENEOUS ERGODIC BILINEAR AVERAGES
WITH 1-BOUNDED MULTIPLICATIVE WEIGHTS

E. H. EL ABDALAOUI

ABSTRACT. We establish a generalization of Bourgain double recurrence theo-
rem and ergodic Bourgain-Sarnak’s theorem by proving that for any aperiodic
1-bounded multiplicative function v, for any map T acting on a probability
space (X, A, ), for any integers a,b , for any f, g € L?(X), and for almost all
r € X, we have

oo

N
% nz::l v(n) f(T"z)g(T " z) ~ =0

We further present with proof the key ingredients of Bourgain’s proof of his
double recurrence theorem.

1. INTRODUCTION

The purpose of this paper is to consider the homogeneous ergodic bilinear averages
with arithmetical weight. But, we focus only on the case when the weight is given
by 1-bounded multiplicative function. This will give an another generalization of
Bourgain’s double recurrence theorem (BDRT) [9] and Bourgain-Sarnak’s ergodic
theorem [27]. For a simple proof of this later theorem, we refer to [3]. But, we
stress that our proof follows that of Bourgain. As a consequence, we present with
proof its key ingredients.

A careful understanding of Bourgain’s proof gives that for any invertible measure
preserving transformation 7', acting on a probability space (X, B, u), for any f €
L"(X,u), g€ L (X, u) such that % + % = 1, for any non-constant polynomials
P(n),n € Z, taking integer values, and for almost all 2 € X, we have,

1 N
~ D AT ) g(T" ).
n=1

(See Lemma 3.4 (equation (8)) and Lemma 5.4). The study of the almost ev-
erywhere convergence of the homogeneous ergodic bilinear averages with weight
was initiated by I. Assani, D. Duncan, and R. Moore in [5]. Therein, the au-
thors proved a Wiener-Wintner version of BDRT, that is, the exponential sequences
(e2™nt), ez are good weight for the homogeneous ergodic bilinear averages. Subse-
quently, I. Assani and R. Moore showed that the polynomials exponential sequences
(62”13 (”))n6Z are also uniformly good weights for the homogeneous ergodic bilinear
averages [6]. One year later, I. Assani [7] and P. Zorin-Kranich [34] proved inde-
pendently that the nilsequences are uniformly good weights for the homogeneous
ergodic bilinear averages. Their proofs depend also on Bourgain’s theorem. Very
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recently, the author extended Bourgain-Sarnak theorem by proving that the Mobius
and Liouville functions are a good weight for the homogeneous ergodic bilinear av-
erages [2]. But there is a gap in the proof. Here, we will generalize that theorem
to the bounded multiplicative function and we will thus fill the gap. Let us point
out that therein, the author extended Assani’s theorem [4] by proving , indepen-
dently of the gap, that the Mobius and Liouville functions are a good weight for the
homogeneous Fiirstenberg’s multilinear ergodic averages provided that the map is
weakly mixing and its restriction to its Pinsker algebra has singular spectrum.

Here, our proof follows closely Bourgain’s proof of his double recurrence theorem
which in turn is based on his method and the Calderén transference principal. For a
nice account on this method, we refer to [26], [31]. Despite the fact that the classical
spectral analysis can not be applied to study of Fiirstenberg’s multilinear ergodic
average, some kind of spectral analysis tools based on the Fourier transform can be
adapted for its studies. This is accomplished by applying Caldéron principal and
the discrete Fourier transform which can be seen as a spectral isomorphism. We
notice that in this setting, the dynamics on the diagonal in Fiirstenberg’s ergodic
average is interpreted as an operation on the kernels. The kernel is an average mass
on the particles X = {xl, e ,xN} and the operation act on the diagonal of X x X
and it is given as a kernel the Dirac mass (z;,2;), ¢ = 1,--- ,N. We emphasize
that the product on the observable functions in ¢? is interpreted as a convolution.
We thus believe that, as in Bourgain’s proof, the harmonic analyis methods can be
useful to address the problem of the convergence almost everywhere of Fiirstenberg’s
multilinear ergodic average. This approach is raised in [1].

We recall that the problem of the convergence almost everywhere (a.e.) of the
ergodic multilinear averages was initiated by Fiirstenberg in [18, Question 1 p.96].
Bourgain answered that question by proving the following:

Let T be a map acting on a probability space (X, A, v), and a,b € Z, then for any
fyg € L*™°(X), the averages

1 N
~ D (T a)g(1)
n=1

converge for almost every x. Here, we will state and formulate the fundamental
ingredients in Bourgain’s proof of his theorem. We will also present the proof of
the main ingredients. In fact, our proof is essentially based on those ingredients.

2. SET UP AND TOOLS

An arithmetical function is a complex-valued function defined on the positive in-
tegers. It is also called a number-theoretic function. The function v is called
multiplicative if v is not identically zero and if

v(nm) = v(n)v(m) whenever (n,m) = 1.
(n,m) stand for the greatest common divisor of n and m.
v is called completely multiplicative if we also have
v(nm) =v(n)v(m), Yn,m € N.
An easy example of function which is multiplicative but not completely multiplica-

tive can be given by the function f(n) = |/n| — [v/n — 1|, where, as customary,
| . | is the integer part.
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For the bounded completely multiplicative, the Liouville function is the famous
example. This function is defined for the positive integers n by

A(n) = (=1)%™,
where Q(n) is the length of the word n is the alphabet of prime, that is, Q(n) is
the number of prime factors of n counted with multiplicities.
Its allies is the Mobius function which is only multiplicative. It is given by
lif n=1;
(1) p(n) = < A(n) if n is the product of r distinct primes;
0 if not

These two functions are of great importance in number theory since the Prime
Number Theorem is equivalent to

(2) Do Am) =o(N) =Y u(n).
n<N n<N
Furthermore, there is a connection between these two functions and Riemann zeta

function, namely

n)

for any s € C with Re(s) > 1.

) 2
Moreover, Littlewood proved that the estimate

> u(n)

is equivalent to the Riemann Hypothesis (RH) ( [30, pp.315]).

=0 (x%“) as © — 400, Ve>0

We recall that the proof of Sarnak-Bourgain theorem [27] is based on the following
Davenport-Hua’s estimation [14], [19, Theorem 10.]: for each A > 0, for any k > 1,
we have

k N
3 max Z" un)| <C for some C'4 > 0.
3) nax| 30 2 o) < Cajrs A

We refer to [3] and [13] for this proof.

The inequality (3) can be established also for the Liouville function by applying
carefully the following identity:

n
A =3 u( )
d:d?|n
We further recall that the multiplicative function v is said to be aperiodic if

N
1
an::ly(an—i—b) mo,

for any (a,b) € N* x N. By Davenport’s theorem [14] and Bateman-Chowla’s
theorem [8], the M&bius and Liouville functions are aperiodic.
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3. WIENER-WINTNER’S VERSION OF
DABOUSSI-KATAI-BOURGAIN-SARNAK-ZIEGLER'S (DKBSZ) CRITERION
(WWDKBSZ)

For the proof of our main result, we need a straightforward generalization a la
Wiener-Wintner of the so-called DKBSZ criterion. This criterion is based on the
results of Bourgain-Sarnak-Ziegler [10, Theorem 2], and Katai [21] , which in turn
develop some ideas of Daboussi (presented in [15], [16]). we state now the WWD-
KBSZ criterion in the following form.

Proposition 3.1 (WWKBSZ criterion). Let (X, A, 1) be a Lebesgue probability
space and T be an invertible measure preserving transformation. Let v be a multi-
plicative function, f be in L with || f|lcc < 1 and € > 0. Suppose that for almost
all point z € X and for all different prime numbers p and ¢ less than exp(1/e), we
have

(4) lim sup sup Z 2min(p= q)tf(TIm )f(T""x)

N —o0

<e,

then, for almost all z € X, we have

1 N
N Z I/( 27mntf Tn

< 2y/elogl/e.

(5) lim sup sup
t

N—o0

Proof. The proof is verbatim the same as [10, Theorem 2], except that at the
equation (2.7) one need to apply the following elementary inequality: for any two
bounded positive functions F' and G, we have

sup(F(z) + G(x)) < sup(F(z)) + sup(G(x)).
O

3.1. Gowers Norms. Gowers norms are a great tools in additive number theory,
combinatorics and ergodic theory. We present its definition for the shift on the set
of integers.

Let d > 1 and Cy = {0,1}%. If h € Z? and ¢ € Cy, then c.h = Zle c;ih;. Let
( fc) ceCy be a family of bounded functions that are finitely supported, that is, for

each ¢ € Cy, fe is in L(Z) the subspace of functions that are finitely supported.
The Gowers inner product is given by

— el
<(fc)>Ud(Z) B w7heZGd+l C]E:C[dc felg + c.h),

where |c|] =¢.1,1=(1,1,---,1) € Cy and C is the conjugacy anti-linear operator.
If all f. are the same function f then the Gowers norms of f is defined by

115y = () ey

The fact that ||||U a(z) is a norm for d > 2 follows from the following generalization
of Cauchy-Bunyakovski-Schwarz inequality for the Gowers inner product.

Proposition 3.2. (Cauchy-Bunyakovskii-Gowers-Schwarz inequality)

(09 < Tl
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The proof of Cauchy-Bunyakovskii-Gowers-Schwarz inequality can be obtain easily
by applying inductively Cauchy-Bunyakovskii-Schwarz inequality. Indeed, it easy
to check that we have

(1) gy < 1 (e @)Yy

For all i = 1,--- ,d — 1, where 7; j(c) € Cy is formed from ¢ by replacing the *!
coordinates with j. Iterated this, we obtain the complete proof of Proposition 3.2.

[N

)

Combining Cauchy-Bunyakovskii-Gowers-Schwarz inequality with the binomial for-
mula and the multilinearity of the Gowers inner product one can easily check that
the triangle inequality for HHUd @) holds. We further have

1 lpazy < I lpass )0
by applying Cauchy-Bunyakovskii-Gowers-Schwarz inequality with fo = 1if ¢4 =0
and fo = 1 if ¢g = 1. The Gowers norms are also invariant under the shift and
conjugacy.

We define also the discrete derivative of function f : Z — C by putting

n(f) = f(z+h).f(x),

for all h,x € Z. We can thus write the Gowers norm of f as follows

2:1
£y = [, Onha - Ous () (ahand
If further f take values on R/Z and

ahl ahz T 'ahd+1 (f)(.%') = 0’
for all hy,---,hgt1,2 € G, then f is said to be a polynomial function of degree at
most d. The degree of f is denoted by d°(f).

According to this it is easy to see that for any function f and any polynomial
function ¢ of degree at most d, we have

12759 £ @)y = 1|y

Therefore

6 ‘/ 2mig(x) d ‘S .
( ) @, ;olzg)ﬁd Ge f(x) ’ ||f|‘Ud(Z)

In application and here we need to define the Gowers norms for a bounded function
defined on {1, e ,N}. For that, if f is a bounded function defined on {1, s N —
1}, we put

1/ wagsat.nz

)

f =
|| HU'i[N] HH[N]HUd(Z/Q'i,NZ)

where f: f(x). 1y, € 7./2¢.NZ, 1) is the indicator function of {1, e ,N}.
For more details on Gowers norms, we refer to [28], [29].
The sequence f is said to have a small Gowers norms if for any d > 1,

HfHUd[N] Notoo 0.

An example of sequences of small Gowers norms that we shall need here is given
by Thue-Morse and Rudin-Shapiro sequences. This result is due J. Konieczny [24].
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The notion of Gowers norms can be extended to the dynamical systems as follows.

Let T is be an ergodic measure preserving transformation on X. Then, for any
k > 1, the Gowers seminorms on L*°(X) are defined inductively as follows

17l = | [ sa

ok+1

H

! - .

1M1 :hmﬁZHlf-foTlllli :
=1

)

For each k > 1, the seminorm |||.|||x is well defined. Those norms are also called
Gowers-Host-Kra’s seminorms. For details, we refer the reader to [20]. Notice that
the definitions of Gowers seminorms can be also easily extended to non-ergodic
maps.

The importance of the Gowers-Host-Kra’s seminorms in the study of the nonconven-
tional multiple ergodic averages is due to the existence of T-invariant sub-o-algebra
Z._1 of X that satisfies

E(f|2k-1) = 0 <= ||| flllx = 0.

This was proved by Host and Kra in [20]. The existence of the factors Zj was
established by Host and Kra and independently by Ziegler in [33].

At this point, we are able to state the second main ingredient need it in our proof.
It is due to Assani-Dacuna and Moore [5]. This result extend & la Wiener-Wintner
Bourgain’s double recurrence theorem (WWBDRT).

Proposition 3.3. Let (X, u,T) be an ergodic dynamical system and a, b distinct
non-zero integers. Then, for any f,g € L* with min{||f1]yz, |lg|luz} = 0, there
exist a measurable set X’ of full measure such ,for any x € X’, we have

N-1

1
sup |— Y 2" f(T*"x)g(T""x) oo -
|Z|:1 n—0 — 1+ 00

Proposition 3.3 has been extended to the nilsequences independently by I. Assani [7]
and A. Zorin-Kranich [34]. We refer to [7] or [34] for the definition of nilsequences.

We need also the following straightforward lemma.

Lemma 3.4. Let T is be an ergodic measure preserving transformation on (X, B, u)
and f € L®(X, p). Then

;N1
7 limsup |— 2" f(T"x ’ < 2.
(7) Jim sup N; f(T")| < fllu
The previous lemma can be extended to the nilsequences. We thus have, for any
k-nilsequence (by,).

N-1
1
li —E b F(T™ ’< .
(8) Nlms}:p Nn:O f(T"2)| < || fllow

The proof can be obtained by applying by induction combined with the classical
van der Corput inequality [23, p.25].
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4. SOME TOOLS ON THE OSCILLATION METHOD AND CALDERON TRANSFERENCE
PRINCIPLE

Let k > 2 and (X, A, T;, 1)¥_, be a family of dynamical systems, that is, for each i =
1,--+,k, T; is a measure-preserving transformation, (VA € A, u(T; ' A) = u(A).).
The sequence of complex number (a,,) is said to be good weight in LPi (X, ), p; > 1,
i=1,--+,k, with 20 L =1, if for any f; € LP*(X,p), i = 1,--- , k, the ergodic
k-multilinear averages

1N k ‘
~ 2o [ f(Tw)
j=1 =1
converges a.e.. The maximal multilinear ergodic inequality is said to hold in

LPi(X,pu), pp 2 1,0 = 1,--- Kk, with Zlei = 1, if for any f; € LPi(X,p),
i=1,---  k, the maximal function given by

satisfy the weak-type inequality
k
Sup)\{x:fo>)\} <C fill
ap (oufe - 21000 I,

where C' is an absolutely constant.
As far as the author know, it is seems that it is not known whether the classical
maximal multilinear ergodic inequality (a, = 1, for each n) holds for the general

case n > 3. Nevertheless, we have the following Calderén transference principal in
the homogeneous case.

Proposition 4.1. Let (a,,) be a sequence of complex number and assume that for

any ¢, € ¢*(Z), for any non-constant polynomials P, Q mapping natural numbers
to themselves, for any 1 < p, q,r < +00 such that % = % + %, we have

N
>~ (i + P()u( + Q)

< C @Ml zy 19l enczy.

1
su -
I |

£ (2)

where C is an absolutely constant. Then, for any dynamical system (X, A, T, u),
for any f € LP(X,pu) and g € L9(X, ) , we have

T

N
1
sup |— an f(TT™ ) g(TM g
[sim | o ansr" gtz

< i1, llgll,-
We further have
Proposition 4.2. Let (a,) be a sequence of complex number and assume that

for any ¢,% € (*(Z), for any A > 0, for any integer J > 2, for any non-constant
polynomials P, ) mapping natural numbers to themselves, for any 1 < p,q < 4+00
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such that £ + 1 =1, | we have
p ' q

S andli + P + Qo) > A}

< Olléllen ) [[#ll o 2y

where C is an absolutely constant. Then, for any dynamical system (X, A, T, u),
for any f,g € L?(X, ), we have

1
sup()\‘{lgng : sup‘—
A>0 N>1I N

1 al n n
il;}:O) ()\,u{z eX : Jsvuzpl N;anf(TP( )z)g(TQ( )z)’ > )\})

< C|[lly-llgll,:

It is easy to check that Proposition 4.1 and 4.2 hold for the homogeneous k-
multilinear ergodic averages, for any k > 3. Moreover, it is easy to state and
to prove the finitary version where Z is replaced by Z/JZ and the functions ¢ and
1 with J-periodic functions.

5. MAIN RESULT AND ITS PROOF

The subject of this section is to state and to prove the main result of this paper
and its consequences. We begin by stating our main result.

Theorem 5.1. Let (X, A, u,T) be an ergodic dynamical system, let v be an ape-

riodic 1-bounded multiplicative function and a,b € Z. Then, for any f,g € L*(X),
for almost all x € X,

N

1 an bn

N AT RT ) S
Consequently, we obtain the following corollary.

Corollary 5.2 ( [2]). Let (X, A, u, T) be an ergodic dynamical system, and T3, T4
be powers of T. Then, for any f,g € L*(X), for almost all x € X,

1 N
OIS romedl

where v is the Liouville function or the Mobius function.

Before proceeding to the proof of Theorem (5.1), we recall the following notations.

Let T be a map acting on a probability space (X, A, 1) and v be an aperiodic
1-bounded multiplicative function. For any any p > 1, we will denote by I,, the set

{(Lp”J), neN } The maximal functions are defined by
| X
My, 5(f:9)@) = sup _|= > vm) f(T"2)g(T ")),

and
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Obviously,
lim My, 5(f,9)(x) = My, (f, 9)(x).

N—+c

For the shift Z-action, the maximal functions are denoted by my, x(¢,v) and
mn, (¢,1). We denote by ¢P(J), p > 1, the subspace of ¢P(Z), of the observable
functions with finite support subset of [0, J]. For each 0 < § < 1, we define a
function o5 by
os(t) = 60(5,t) — 6(26,1),
where 6(d,t) is the half of bumpfunction with support (4, 26] and 6(¢,20) = 1. We
thus get
Z os(t) =1, for each t € (0,1].

0<s<1
dyadic

For any N € N*, z € [1,J] and 0 € [0 1), we put

m N N Z 27rzn01/}

n=x—N
we further set
vy(n) =v(n+x), ¥n € N.
For a finite subset E of the torus T and € > 0, we denote its e-neighbourhood by
E(e). We recall that E(e) is given by

E(e):{)\e'ﬂ‘ : {Yneig‘)\—7|<e}.

We denote by A(T) the Weiner algebra of the absolutely convergent Fourier series

equipped with the norm |||.|||. We recall that for any ¢ € A(T), we have
llelll, = >_ 180
neL

The Fourier transform on ¢(Z) will be denoted by F. It is defined by

0) = Z f(n)e*™ ™ for ¢ € 1*(Z) and 0 € T.
nez
We need also the following lemma.

Lemma 5.3. Let ¢ € (2(Z) and ¢ € A(T). Suppose that ¢ is differentiable with
¢’ € L*(T) and $(0) = 0. Then

9) IF~ e F @)l < llellall £l

(10) lella < Cy/llell/ ¢

Proof. By the convolution theorem, we have

FHpF(9)) = FHp) * 0.

Therefore
[F~(0F (9))]loo —SHP\Z (k_n)‘
nez
<[ (sa))(n>\H¢Hoo
n€eZ

< llellal|8]] o
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We conclude the proof by noticing that F~1(¢)(n) = @(n), for all n € Z. We
proceed now to the proof of (10). By the time differential property of Fourier
transform, we have

~

1 ~
P(n) = %@'(n)-
We refer to [22, Theorem 1.6, p. 4], for the proof. Applying Cauchy-Schwarz
inequality combined with Parseval equality, we get

lolle =3 |—i|\<;’(n)!

n#0
1\2 1~ 2\ 2
(X)) (ZaElmr)
n#0 n#0
T Lo o )%
< ﬁ(%nl\w(nw(n)\
T 1 ~ 1 - 1
< (X mlewl) (o)’
n#0 n#0
m
< AV lelVllell
This finish the proof of (10) and the lemma. (]

Lemma 5.3 is stated in [9] as equations (3.1) and (3.3).
At this point, we state the key lemma from [9] in the proof of our main result.
Lemma 5.4. Let Ny, N1, J be a positive integers such that J >> N; > Nj. Let

), € £°(J), and 0 < § < 1 be a dyadic number. Suppose that for any interval
I C0,J], with |I| > Ny, we have

1 )
m Z 627”7“9’(/1(”)

nel

(11) sup < 4.

0€[0,1)

Then,

1 1
{z €[1,J] : No(dyadic) € [No, NiJ, Ny > 5.

(12) ‘/23(9)(PI,Nm(9)05(]13%%(9)‘))64m9d9‘ S 5#} < 5T

It follows, by Borel-Cantelli lemma, that under the condition (11), we have

J
1 1
i ZlmNo,Nl (¢, 9) <8107 ——— 0.
Lemma 5.4 is a compilation of the principal result proved by Bourgain in [9]. The
assumption (11) is stated as [9, eq (2.10), page 142] and the conclusion is formulated
as the last equation [9, eq (2.10), page 161]. For the proof of Lemma 5.4 one may

need the following proposition.

Proposition 5.5. Let J be a positive integer and 6 > 0. Then, there is a finite
subset Ej of the torus such that
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(1) For any (\,v) € EZ, A\ # ~, we have
c
A—l > =
| 7| — J’
where ¢ is some absolute constant.

(2) |Eo| < C572, for some constant C' > 0.

3) {)\ : ’ Z Y (n)e2™nA

1<n<J

> 6J} C EO(%)’ where ¢ is the constant in (1).

Proof. Let us denote by Py the analytic polynomial given by
PN = 3 e
1<n<J

By, appealing to Marcinkiewicz-Zygmund interpolation inequalities [35, Theorem
7.5, Chapter X, p.28],if Ay ;,7=0,---,J are the (J + 1)-roots of the unity. Then,
we have for a > 1, and for any analytic polynomial P of degree smaller or equal
than J, we have

J
(13) A—;Z|P(e2’f”~w /’P dz<—Z|P (2|7,
j=0

where A, and B, are independent of J and P. Accordmg, a finite family of
(Agj)j=0,-- g, is said to be a Marcinkiewicz-Zygmund family (MZ family) if 13
holds for it. Chui and Zhong [12] proved that (Aj;)j=o,... .7, is a MZ family if and
only if the sample points (A ;)j=o0,... .7, satisfies

min ‘Ale’Alklz

C
0<j<k<J J’

for some positive constant c.
Let (Ajj)j=0,--- .7, be @ MZ family and Ey be the mazimal subset of it such that

Ey C {/\ : ’PO(A)’ > 5J}.

Then, obviously Eq satisfy the condition (1). To check that the condition (2) is
fulfilled, it suffices to notice that, by (13) for a = 2, we have

PPIE| < 3 PP < Bod B[
I ,J > 5

Jj€Ep

Moreover, by Parseval identity, H2 < J since ¢ is 1-bounded. Whence,

|Eg| < Bad™2.
Finally, it is easy to check the last condition is satisfied by the mazimality of Ey.
Indeed, assume by contradiction that (3) does not holds. Then, there is A such that
A€ {)\ : ’PO()\) > 5J} and ‘)\— )\J7j| > %, for each j € Ey. Therefore, either
’)\ — )\JJ-’ > %, for each j € ES and we can thus add A to the family or for some
for each j € Ef, we have ’)\ — )\.]hj’ < 5. In this case, we replace \j; € Ej§ by

X in the family (A\jj)j=o,....7. In both cases we reach a contradiction since Ey is
maximal. (I
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Proposition 5.5 is stated in [9] as equation (3.4) and (6.1). The proof of Lemma
5.4 is based also on the following Local Partition Lemma. Its proof is based on the
nice properties of de la Vallée-Poussin Kernel. We recall that de la Vallée-Poussin
Kernel V,, ) of order n + p is given by

n-+p n
Vinp) (z) = Kpip(x) — ;Kn(m),

where K, is Fejer kernel. This later kernel is defined by

1) K= Y (1- L )emie - L {sin (W(nJrl)z)} |

=, n+1 n+1 sin(mzx)
Therefore
2 — 1 (sin (7(n +p)z))2 — (sin (ﬁnz))Q
(15) Voo () = 3 RS .

We further have @(j) = 1, if |j| < n. We can associate to V, , a compactly
supported piecewise linear function v, , on R given by

1 if |t| <n
Unp(t) = —"ﬂ;_‘tl ifn<|t|<n+p
0 if [t >n+p
The connection between those two families of functions is given by
(16) Vin) () = Vipm,(s—rym) (2)
sm—1 .
J N\ 2mij
17 = rs—r(_) FUZa
ar) Y ()
j=—sm+1

where m = ged(n,n + p), n = rm and n + p = sm. Notice that the classical de la
Vallée-Poussin kernel is given by

(18) Vi) (@) = 2Kan(x) — Ky (2)
— 2mijx _ m 2mijx
(19) = Z e + Z (2 N)e .
[71<n n<|jl<2n

Moreover, as suggested by Bourgain in [9, eq. (5.5), p.149], for any v > 0 and a
family of the de la Vallée-Poussin V(,, |.n|) kernel, the family of functions v s
can be made smooth such that for any M > v~!, there is D > 1 such that
_ -D
(20) /{ | |‘/(n,L'ynJ)(‘T)|d$ < C’y 1(’7-M)
x|>

M

2.n+1

In connection with Bourgain’s observation we have the following lemma.

Lemma 5.6. Let n, D be a positive integers with D > 2, v > 0 and M > v~ 1. Let
I be a finite interval of integers and V{,, ) be the associated de la Vallée-Poussin
kernel with p > yP+1MP=2|1|? and supp(v,, ) C I. Then, we have

(21) /{| N [Vin,p) (z)|dx < Cv’l(y.M)_D,

where C' is an absolute constant.
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Proof. By (15), we have

(22) /{| .- n,p)|d$
(sin (7(n + p)x))2 — (sin (7TTLSC))2‘

1
- - dx
/{NI » (sin(rz))?
1 2
(23) - 5y dr
{\w\> p (sin(ma))
Now, remembering that sin(5) > = for any 0 < 7 < 7, we obtain
1 1
(24) / Vi (@)ldz < -1
{lal> % P A
_ -D
(25) <Cy'(y.M).
The last inequality is due to the fact that p > yPTLMP=2|I|2 and the proof of the
lemma is complete. (I

We state now the Local Partition Lemma of Bourgain and we present its proof.

Lemma 5.7 (Local Partition Lemma of Bourgain (LP)). Let I be a finite interval of
integers and P(x) be a trigonometric polynomial such that, P(z) = >, ., gn€®™*

with |g,| < 1, for each n € I. Let {Ia} N be a partition of I in subintervales.
ae

Put
2minx
= Z gn€ )
nely

and let E be a finite set in the torus identify with (0,1]. Then, for any R > 1, we

have
/ ’P(z)’de
E(|1171)

(26) < Z/ Po(2)|?de + CRP|E||T| + CR™ 1],
—

where D is an arbitrarily chosen exponent and the constant C' depends on D.

Proof. By Riesz representation theorem, there exist ¢ € L?(T) such that
D #ll, =1,
(2) supp(¢) C E(II]7H),

@ [ e =[Pl

Let (Vi)aca be a family of the smooth de la Vallée-Poussin kernel which satisfy for
each a € A,

(1) supp(Va) C Ia,
(2) (20) with v € (0, 15).

Put
Qa:Pa*Va andwa:¢a*vaa
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where ¢ = F(F(4)|1.)- Notice that we have 1o = ¢ * Vo, ||¢all, < 1, and by
the convolution theorem HwaH , < Hd)HQ = 1. Moreover, by proprieties 3 of ¢ and
the definition of P, and ¢, we have

HP|E(|[|71) ) =< P(:c),(,b >

= Z Z gnqAﬁ(n)
acAnel,

= Z Z gna(n)lfa (n)
a€AnEL

=33 Pa(m)dlyr. ()
aEANEL

= Z < Pa7¢a >
acA

(27) <3| < Pasta>|

acA

For th estimation of HPlE(‘I‘fl) , we are going to replace up to some errors | <
2

Py, o > ’ with ’ < Qa, Go > ’ We start with the estimation of the error.

Applying Parserval identity combined with the definition and the properties of P,
and @, we get

2 2
’Pana QZ‘Pa*Pa*Va 5
- 2
= Z ‘(Pa—Pa*Va)(n)‘
nely

(28)

I
2V
2
—~
—

\
2
S
=

nely

But, by our assumption, we can write I, = I} |JI2, with I} I, = 0 and |I2| =
v.|Io|. This combined with the nice proprieties of V,, and the 1-boundness og (g.)

gives
2 _ _ 2
(29 [P-Qd| = =3 [P (1= Vam)| < 4311l
nels
Whence
(30) ‘Pa_Qoz 2<2\/’7|Ia|'

This combined with Cauchy-Schwarz inequality and 1-boundness of ||¢||2 yields
|(Pas 60) = Qs 60)| < |[Pa = Qa1 6l
(31) < 2v7llal.

|
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Now, we proceed to the estimation of (Q., do). By the definition of Q,, ¢, and
Yo, We have

<Qav¢a> = <Pa * Va7¢a>

= Z ]/D;(n)‘//;(n)a\a—(n)

nel,
= <Pou Pa * Va)
(32) = (P, Ya)-
We can thus write
(Qar $a) = (Pa(Lp(11-1)4+ 15y 1,0 ) Vo)
(33) = (Po Lg(11-1), Ya) + (Pa Lp(11-1)es Ya)
This combined with Cauchy-Schwarz inequality gives

B0 Qe o] < 1By Dllvally + 1Bl 1

Applying again Cauchy-Schwarz inequality combined with (1) and (2) we obtain,

for any 0 € (0,1]
|—‘/ 6 —1) dt‘
E(|1|~ 1)

= (/E(Il) Va8 - t>|2dt) E

9

(35) < |Val, = 1.
Therefore
oty oyl = [ 10a®f 1y )01
/\% \11 ‘L)c )df
(30 <[, py® (mfl)|¢<t>||va<e—t>|dt

But, assuming ¢t € E(|I|7!), we get that 6 € E(|I I) implies |6 — ¢| > 2|I ;- If not,
since for some )\ € E, we have |\ —t] < ﬁ < 2‘1 L by the triangle inequality, we

get |A — 0] < CI| I » which which gives a contradiction. We can thus rewrite (35) as
follows
2
60 ety aylis [ o) Va0 = 1)
ol B(1-1) (10—t 50}

Applying (20) and Cauchy-Schwarz inequality to get

<[ el Valo— )l
E(1171) {10—t1>5757}
<L |¢<t>|dt(lc.v-1<v.R>-D)
< (Leb(B(I7)) " (€7 (-B)77)
39 < (1117 (0 ()P,

2

H1/Ja B()°

Ml
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where Leb stand for Lebesgue measure on the circle. Summarizing, we get

HP|E(|I|*1) Z ‘ Qas Po)| +2v7 D VIl
a€cA
(39) < Z 1Pa 5 oy ol dall,

acA

-

(1B (et aem ) S mll,
acA
+2v7 ) Vil

acA
by (27), (31),(34) and (38). Applying again Cauchy-Schwarz inequality we see that

> VIl < Vi

acA

> 1Pat o yllollgall, < (Zupn )

acA ‘ acA ‘
> NPall; <
acA

2 < 1 and HPaHz < |I,|, for each a € A.

since, by our assumption, g HqﬁaHQ

acA
Consequently, we can rewrite (39) as follows

HP|E(‘]‘71) < Z ‘<QO¢)¢O¢> +2ﬁz m
acA a€A
(o) < (SR )’

acA ‘

|E|(C-7_1(7-R)_D)% + 27V

Taking v = f we obtain

1

(ZHP Lyal)

Ia

|E|( RTE) 2R T

(41) HP|E<|1|71>

Squaring, we get

(42) HP|E (11]-1)

+ 4RI

1-3D
4

ZHP 1, B(o) ||2+C|E|Rl’fD

+2(ZHP11 M )%\/ﬁ(c

a€cA

+4(ZHP]1 . )%R" 1]

+4VIBI(VC.R T2 ) RT5VIT]

by the virtue of the simple identity
(a+b+c)* =a®+b*+ 2 + 2ab + 2ac + 2bc, Va,b,c € R.

U Q
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Now, remembering that

DRt Il < D0 Pally < 3 [l <111

acA ‘ a€cA acA
We can rewrite (42) as follows

(43) HP|E (11]-1)

< D lPatp( el + QIR+ 4R73

+ 2@@(\/5.}21’5[’)
+4/|IIR~=/[1|
+4V/IEI(VER )R-V

We thus conclude that
(44) HP|E<|I|71>

<3 |Pa Lol n) 15+ KR"'|E||I| + 8R~%|I]
acA ol

for some absolutely positive constant K and an arbitrary D’ > 0 since D > 1 is

arbitrary and D' = %. This complete the proof of the lemma. ([

Remark 5.8. Despite the fact that our proof follows Bourgain’s proof, it is slightly
different.

The LP Lemma of Bourgain is useful in the following form

Lemma 5.9 (The e-localization of LP Lemma). Let I be a finite interval of integers
and P(z) be a trigonometric polynomial such that, P(z) = Y, o; gne*™"* with
lgn| < 1, for each n € I. Let {Ia} N be a partition of I in subintervales such that

aE
[Io| < €|I] with 0 < e < . Put

2minx
z)= > gne”™",
nel,

and let E be a finite set in the torus identify with (0,1]. Then, for any R > 1, we
have

(45) < Z/ Po(2)|?de + CRP|E||T| + CR™|1],
(Rl 1>

where D is an arbitrarily chosen exponent and the constant C' depends on D.

Proof. We are going to apply Lemma 5.7. For that let E’ be a subset of E(ﬁ)

1]
such that |E’| < 2R|E| and E(III) C E’(‘—}‘) We thus have, for each a € A,

R R
B(57=) < B(7)-
2|1 1o
Indeed, if A € E’(Q‘i ), then, for some & € E’, we have

p-of <z
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But E’ is a a subset of E(‘ﬂ) Therefore, for some n € E, we have

1]
R
£~ 77‘
‘ 1l - 2.l
Applying the triangle inequality, we get
’/\ — 77‘ <

Now, by appealing to Lemma 5.7, we obtain

2 R\-P (5)—%
|Plesn S Pty gy lar K (3) TEIN+3(3) T
Whence
HP|E(%)H ZHP 1y ( oyl + CRPIBIT + 1677 1),
and this achieve the proof of the lemma. (I

The proof of the fundamental lemma (Lemma 5.4) is based also on the famous
A-separated lemmas due to Bourgain. These lemmas are in the heart of Bourgain’s
method. Tts proof involve Lépingle inequalities (also called Lébingle Lemma ).
We refer to [11, Lemma 3.3] (see also [31]). For this later inequalities, one need
to introduce the variation norms. Let (an)nen be a complex sequence and sy a
positive integer. The variation norm of order s is given by

J—-1
@l = s (D lan, —an )
/ k=1

n1<n2l<m<nJ

w =

At this point, we are able to recall the A-separated Lemmas.

Lemma 5.10 (\-separated Lemma). Let A1, -+, Ax be a K points on the circle
such that [A; — A;| > 23%1, Vi # j, with s > 0. Let f € L?[0,1). Then, there is an
absolute constant C' > 0 such that

/ e27rinaf(a)da|
V.

J

sup
j>s

< C(log(K ’

£2(2)

where Vj is 37 ne1ghborhood of {A1, -+, Ak} given by

, 1
v, = {A €[0,1)/ min A=A < g}-

As a consequence of Lépingle Lemma, we have the following lemma needed here |9,
Lemma 3.23].

Lemma 5.11 (The entropic A-separated Lemma). Let A1, -+, A\x be a K points
on the circle such that [A\; — \j| > 7, Vi # j. Let f € (*(Z)), x = Lo, and
XN = % 1o, N7 and consider, for z € Z,

(46) L= { [ FOORO =) e Nivadic) > 1)

as a subset of K-dimensional Hilbert space. Then, for any ¢ > 0

(47) [N < 11
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where, for a subset A of a Hilbert space H, N(A,¢),e > 0 stand for the metrical
entropy numbers, that is, the minimal number of balls of radius € needed to cover
A.

More details on Lemma 5.4 will be given in the revised version of [1].

We proceed now to the proof of our main result (Theorem 5.1).

Proof of Theorem 5.1. Without loss of generality, we assume that the map T
is ergodic. We further assume that f, g are in L (X, u) with H’gH‘UZ = 0 (notice

that we can interchange the role of f and g). Therefore, by Lemma 3.4 combined
with Theorem 3.3, for any prime p # ¢, we have

N
1
(48) N Z 2P g (TP ) g (T~ ) ~ 0, for almost all x
— 400
n=1
We thus get, by Proposition 3.1, the following
1
49 — v(n)z "g(T "x) —— 0, for almost all x.
N N
— 400
n=1

It follows that if f is an eigenfunction, then the convergence holds.

Now, for f and g in the orthocompelment of eigenfunctions, following Bourgain’s
approach, we will use the finitary method. Therefore, by (49), we can write

(50) T 2w 0,

N —+oc0
r—N<n<z
where ¢ € £°°(Z) with |||¢]||p2 = 0. We set

Qun(l) =5 X walme ()

rz—N<n<zx

Therefore, for §p > 0, there exist Ny € N such that for any interval I C [1,J) with
|I| > No we have

(51) ’ﬁ S vy (e (n)]| < o,
nel

where z¢p = min([).

We proceed now to the application of the fundamental lemma of Bourgain (Lemma
5.4). We stress that this is not a direct application of the lemma. In fact, one
may need to check that the condition ((3.6) to (3.9)) of Lemma 3.5 from [9] are
satisfied. For that, we first notice that, by (50), the condition (3.6) is fulfilled, and
a straightforward computation yields that HQz ~||2 is less than N~1/2 since v and
1 are 1-bounded. We further have that the condition (3.8) and (3.9) are fulfilled,
since the map z +— zo05(|#]) is a Lipschitz function and the constant is independent
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of §. Indeed,

N N
1 ; 1
— Hﬁrgy(n)w(‘r n)eQﬂ'mG anly(n)w(x/ n)eQﬂ'mG ,
1 & 2
(62) =55 D> WPl —n) = v —n)|
n=1
1 & 2
<3 e =)~ vla’ = m)
n=1
The last inequality follows from the 1-boundedness of v. We further have
1 & 2
N2 Z W(z —n) =@’ — ”)‘
n=1
1 & N _
:Hﬁzw(‘m_n 27ind Z .’L' —7’L 27rzn9 ,
n=1 n=1
/
T—x
(53) < | e |

It is still to check that the condition (3.9) is fulfilled. This can be done, by applying
Bernstein-Zygmund inequalities [35, Theorem 3.13, Chapter X, p. 11] combined
with the 1-boundedness of v and . We thus get

(54) H@e (62””9@1,1\7(9)) H2 < NH% i v(n)(z —n)e>™
n=1

2<\/N

Following the path of Bourgain’s proof, the rest of the proof is accomplished by
applying the LP lemma (Lemma 5.7) (see also [9, Lemma 5.1]) and Lemma 5.10
(see also [9, Lemma 3.23] and [11, Lemma 4.1] )). We thus get, for any ¢ € £>°(Z),

N

1 1 1

— {ac e[1,J] : " ‘N g v(n)p(n + x)(n — ZC)‘ > (107 }‘
N(dyadic)>1 n=1

< C§ws,

Since, by Fourier transform transfer, we have

PP
- [ do

N
Z v —27ri(z—n)9,t/](x _ n))€4iwm9d9.

n=1

2|H

Moreover, we have

N
‘ / N Z 727ri(x7n)9,l/)(1, - n))e4i7rx0d9‘

5 < Y| /O 23(9)(QZ,N(e)oa(!Qz,N(G)D))e‘“'”@d@\+yiN—z-

s9>6>Ng b
dyadic
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This is due to the following fact

‘ /1 3(0) (% iv: v(n)e 2 i@=—mby gy n)(@))e‘””@de‘

5 =] [30( X Qur@0s(Qun ) s

0<6<1
dyadic
(57) \/ (Qus@esl|@en@)))etan| £ | 3 |
so>6>Ng 1 6e[NLT,50]
dyadic dyadic
(58) ‘/ QIN )05 (|Qu N(g)‘)))e4im9d9‘+ C -
> 4NI
S0>8>Ng b VA
dyadic

The last inequality can be obtained by applying Lemma 5.3 to the functions ¢(0) =
Z Qu.n(0)05(|Qa,n(0)]) and ¢. We further notice that

3¢ §=1%0]
dyadlc
N
2
and
9] =1

To finish the proof, we need to point out that any bounded aperiodic mutilplicative
function is statistically orthogonal to any nilsequence, by the generalized Daboussi-
Delange theorem [17, Theorem 2.5 |. We further notice that for any f,g € L?(X, p),
and any e > 0, there exist f1,g1 € L*(X, ) such that

-, < 2, o~ < v

Moreover, by Cauchy-Schwarz inequality, we have

v()(f — F1)(T"2)(g — g1)(T~"2)|

ST

N
-
7Mz &sz ':LMZ

7 2 ¢ = e - (")

COMNIETALY ) (2 - o)

Applying the ergodic theorem, it follows that for almost all z € X, we have

IN

: 1 al n -n
lim sup N;V(”)(f—fl)(T 2)(g — 0)(T"a)| <.
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Whence, we can write

N
1
limsup |— Y v(n)f(T"x)g(T "z ‘
fimsup |5 3w/ (T"2)g(T ")
1 N
< lmsup |53 T wn) (T )T )
n=1
1 N
+ msup |53 T wln) [T (T7")
n=1
1 N
Ii — T " ‘
"l AT
1 N
< e+ limsup ‘— V(n)fl(Tnx)g(Tinx)‘
ey 2
1 N
 Tmsup [ S0 w(n) (100 (T7")

We thus need to estimate

N—+o00

N
: 1 n —n
lim sup Nnilu(n)fl(T x)g(T :c)‘,
and

N
1
limsup | 37 () f(T"2)g1 (T7")|
n=1
In the same manner we can see that

N

s [ 5 3w AT ) 00T
1 N 1 1 N
2
< lmswp (v g A(T"a)?) lim sup (% g (g = g1)(T "))
< | Aillullg = aill,
< (Il + vE)-ve
This gives

N
: 1 n —n
lim sup N;umm(T 2)g(T™"a)|

IN

N —+oc0

IN

(71, +vE) Ve +0

Summarizing, we obtain the following estimates
1N
lim sup N Z I/(n)f(T”z)g(Tfnz)’

N—+oc0 n—1

< e+ (Il +vE)vE+ (llgll, + V) V&

(HfH2 + \/E)\/EJr lim sup % i'/(”)fl(T"z)gl(T”z)’

N
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Since € > 0 is arbitrary, we conclude that for almost every x € X,

N
% ; v(n)f(T"x)g(T"x) m 0.

This complete the proof of the theorem. O

It is noticed in [2] that the convergence almost sure holds for the short interval
can be obtained for the Liouville and Mobius functions by applying the following
Zhan’s estimation [32]: for each A > 0, for any £ > 0, we have

(59) max Z 2" A(n)| < Ca. for some C4 . > 0,

A
N<n<N+M log™ (M)

provided that M > N3+e, Here,

Question. we ask on the convergence almost sure in the short interval for the
bilinear ergodic bilinear averages with bounded aperiodic multiplicative weight.

Remark 5.12. In the forthcoming revised version of [1]. The author will present
the strategy of the proof of Bourgain double ergodic theorem and its adaptation
to prove the polynomials Bourgain bilinear ergodic theorem as it is stated in that

paper. !
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