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ON THE HOMOGENEOUS ERGODIC BILINEAR AVERAGES

WITH 1-BOUNDED MULTIPLICATIVE WEIGHTS

E. H. EL ABDALAOUI

Abstract. We establish a generalization of Bourgain double recurrence theo-
rem and ergodic Bourgain-Sarnak’s theorem by proving that for any aperiodic
1-bounded multiplicative function ν, for any map T acting on a probability
space (X,A, µ), for any integers a, b , for any f, g ∈ L2(X), and for almost all
x ∈ X, we have

1

N

N∑

n=1

ν(n)f(Tanx)g(T bnx) −−−−−−!

N!+∞

0.

We further present with proof the key ingredients of Bourgain’s proof of his
double recurrence theorem.

1. Introduction

The purpose of this paper is to consider the homogeneous ergodic bilinear averages
with arithmetical weight. But, we focus only on the case when the weight is given
by 1-bounded multiplicative function. This will give an another generalization of
Bourgain’s double recurrence theorem (BDRT) [9] and Bourgain-Sarnak’s ergodic
theorem [27]. For a simple proof of this later theorem, we refer to [3]. But, we
stress that our proof follows that of Bourgain. As a consequence, we present with
proof its key ingredients.

A careful understanding of Bourgain’s proof gives that for any invertible measure
preserving transformation T , acting on a probability space (X,B, µ), for any f ∈
Lr(X,µ) , g ∈ Lr′(X,µ) such that 1

r + 1
r′ = 1, for any non-constant polynomials

P (n), n ∈ Z, taking integer values, and for almost all x ∈ X , we have,

1

N

N∑

n=1

f(TP (n)x)g(T nx).

(See Lemma 3.4 (equation (8)) and Lemma 5.4). The study of the almost ev-
erywhere convergence of the homogeneous ergodic bilinear averages with weight
was initiated by I. Assani, D. Duncan, and R. Moore in [5]. Therein, the au-
thors proved a Wiener-Wintner version of BDRT, that is, the exponential sequences
(e2πint)n∈Z are good weight for the homogeneous ergodic bilinear averages. Subse-
quently, I. Assani and R. Moore showed that the polynomials exponential sequences(
e2πiP (n)

)
n∈Z

are also uniformly good weights for the homogeneous ergodic bilinear

averages [6]. One year later, I. Assani [7] and P. Zorin-Kranich [34] proved inde-
pendently that the nilsequences are uniformly good weights for the homogeneous
ergodic bilinear averages. Their proofs depend also on Bourgain’s theorem. Very
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recently, the author extended Bourgain-Sarnak theorem by proving that the Möbius
and Liouville functions are a good weight for the homogeneous ergodic bilinear av-
erages [2]. But there is a gap in the proof. Here, we will generalize that theorem
to the bounded multiplicative function and we will thus fill the gap. Let us point
out that therein, the author extended Assani’s theorem [4] by proving , indepen-
dently of the gap, that the Möbius and Liouville functions are a good weight for the
homogeneous Fürstenberg’s multilinear ergodic averages provided that the map is
weakly mixing and its restriction to its Pinsker algebra has singular spectrum.

Here, our proof follows closely Bourgain’s proof of his double recurrence theorem
which in turn is based on his method and the Calderón transference principal. For a
nice account on this method, we refer to [26], [31]. Despite the fact that the classical
spectral analysis can not be applied to study of Fürstenberg’s multilinear ergodic
average, some kind of spectral analysis tools based on the Fourier transform can be
adapted for its studies. This is accomplished by applying Caldéron principal and
the discrete Fourier transform which can be seen as a spectral isomorphism. We
notice that in this setting, the dynamics on the diagonal in Fürstenberg’s ergodic
average is interpreted as an operation on the kernels. The kernel is an average mass
on the particles X =

{
x1, · · · , xN

}
and the operation act on the diagonal of X×X

and it is given as a kernel the Dirac mass (xi, xi), i = 1, · · · , N . We emphasize
that the product on the observable functions in ℓ2 is interpreted as a convolution.
We thus believe that, as in Bourgain’s proof, the harmonic analyis methods can be
useful to address the problem of the convergence almost everywhere of Fürstenberg’s
multilinear ergodic average. This approach is raised in [1].

We recall that the problem of the convergence almost everywhere (a.e.) of the
ergodic multilinear averages was initiated by Fürstenberg in [18, Question 1 p.96].
Bourgain answered that question by proving the following:

Let T be a map acting on a probability space (X,A, ν), and a, b ∈ Z, then for any
f, g ∈ L∞(X), the averages

1

N

N∑

n=1

f(T anx)g(T bnx)

converge for almost every x. Here, we will state and formulate the fundamental
ingredients in Bourgain’s proof of his theorem. We will also present the proof of
the main ingredients. In fact, our proof is essentially based on those ingredients.

2. Set up and Tools

An arithmetical function is a complex-valued function defined on the positive in-
tegers. It is also called a number-theoretic function. The function ν is called
multiplicative if ν is not identically zero and if

ν(nm) = ν(n)ν(m) whenever (n,m) = 1.

(n,m) stand for the greatest common divisor of n and m.

ν is called completely multiplicative if we also have

ν(nm) = ν(n)ν(m), ∀n,m ∈ N.

An easy example of function which is multiplicative but not completely multiplica-
tive can be given by the function f(n) = ⌊√n⌋ − ⌊

√
n− 1⌋, where, as customary,

⌊ . ⌋ is the integer part.
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For the bounded completely multiplicative, the Liouville function is the famous
example. This function is defined for the positive integers n by

λ(n) = (−1)Ω(n),

where Ω(n) is the length of the word n is the alphabet of prime, that is, Ω(n) is
the number of prime factors of n counted with multiplicities.
Its allies is the Möbius function which is only multiplicative. It is given by

(1) µ(n) =





1 if n = 1;

λ(n) if n is the product of r distinct primes;

0 if not

These two functions are of great importance in number theory since the Prime
Number Theorem is equivalent to

(2)
∑

n≤N

λ(n) = o(N) =
∑

n≤N

µ(n).

Furthermore, there is a connection between these two functions and Riemann zeta
function, namely

1

ζ(s)
=

∞∑

n=1

µ(n)

ns
for any s ∈ C with Re(s) > 1.

Moreover, Littlewood proved that the estimate∣∣∣∣∣
x∑

n=1

µ(n)

∣∣∣∣∣ = O
(
x

1
2+ε
)

as x −! +∞, ∀ε > 0

is equivalent to the Riemann Hypothesis (RH) ( [30, pp.315]).

We recall that the proof of Sarnak-Bourgain theorem [27] is based on the following
Davenport-Hua’s estimation [14], [19, Theorem 10.]: for each A > 0, for any k ≥ 1,
we have

(3) max
z∈T

∣∣∣∣∣∣
∑

n≤N

zn
k

µ(n)

∣∣∣∣∣∣
≤ CA

N

logAN
for some CA > 0.

We refer to [3] and [13] for this proof.

The inequality (3) can be established also for the Liouville function by applying
carefully the following identity:

λ(n) =
∑

d:d2|n
µ
( n
d2

)
.

We further recall that the multiplicative function ν is said to be aperiodic if

1

N

N∑

n=1

ν(an+ b) −−−−−!
N!+∞

0,

for any (a, b) ∈ N∗ × N. By Davenport’s theorem [14] and Bateman-Chowla’s
theorem [8], the Möbius and Liouville functions are aperiodic.



4 E. H. EL ABDALAOUI

3. Wiener-Wintner’s version of
Daboussi-Katai-Bourgain-Sarnak-Ziegler’s (DKBSZ) criterion

(WWDKBSZ)

For the proof of our main result, we need a straightforward generalization à la
Wiener-Wintner of the so-called DKBSZ criterion. This criterion is based on the
results of Bourgain-Sarnak-Ziegler [10, Theorem 2], and Katai [21] , which in turn
develop some ideas of Daboussi (presented in [15], [16]). we state now the WWD-
KBSZ criterion in the following form.

Proposition 3.1 (WWKBSZ criterion). Let (X,A, µ) be a Lebesgue probability
space and T be an invertible measure preserving transformation. Let ν be a multi-
plicative function, f be in L∞ with ‖f‖∞ ≤ 1 and ε > 0. Suppose that for almost
all point x ∈ X and for all different prime numbers p and q less than exp(1/ε), we
have

(4) lim sup
N!∞

sup
t

∣∣∣∣∣
1

N

N∑

n=1

e2πin(p−q)tf(T pnx)f(T qnx)

∣∣∣∣∣ < ε,

then, for almost all x ∈ X , we have

(5) lim sup
N!∞

sup
t

∣∣∣∣∣
1

N

N∑

n=1

ν(n)e2πintf(T nx)

∣∣∣∣∣ < 2
√
ε log 1/ε.

Proof. The proof is verbatim the same as [10, Theorem 2], except that at the
equation (2.7) one need to apply the following elementary inequality: for any two
bounded positive functions F and G, we have

sup(F (x) +G(x)) ≤ sup(F (x)) + sup(G(x)).

�

3.1. Gowers Norms. Gowers norms are a great tools in additive number theory,
combinatorics and ergodic theory. We present its definition for the shift on the set
of integers.

Let d ≥ 1 and Cd = {0, 1}d. If h ∈ Zd and c ∈ Cd, then c.h =
∑d

i=1 cihi. Let(
fc
)
c∈Cd

be a family of bounded functions that are finitely supported, that is, for

each c ∈ Cd, fc is in L∞
c (Z) the subspace of functions that are finitely supported.

The Gowers inner product is given by〈(
fc
)〉

Ud(Z)
=

∑

x,h∈Gd+1

∏

c∈Cd

C|c|fc(g + c.h),

where |c| = c.1, 1 = (1, 1, · · · , 1) ∈ Cd and C is the conjugacy anti-linear operator.
If all fc are the same function f then the Gowers norms of f is defined by

∣∣∣∣f
∣∣∣∣2d
Ud(Z)

=
〈(
f
)〉

Ud(Z)
.

The fact that
∣∣∣∣.
∣∣∣∣
Ud(Z)

is a norm for d ≥ 2 follows from the following generalization

of Cauchy-Bunyakovski-Schwarz inequality for the Gowers inner product.

Proposition 3.2. (Cauchy-Bunyakovskii-Gowers-Schwarz inequality)
〈(
fc
)〉

Ud(Z)
≤
∏

c∈Cq

∣∣∣∣fc
∣∣∣∣
Ud(Z)

.
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The proof of Cauchy-Bunyakovskii-Gowers-Schwarz inequality can be obtain easily
by applying inductively Cauchy-Bunyakovskii-Schwarz inequality. Indeed, it easy
to check that we have

〈(
fc
)〉

Ud(Z)
≤
∏

j=0,1

∣∣∣〈
(
fπi,j

(c)
)〉

Ud(G)

∣∣∣
1
2

,

For all i = 1, · · · , d − 1, where πi,j(c) ∈ Cd is formed from c by replacing the ith

coordinates with j. Iterated this, we obtain the complete proof of Proposition 3.2.

Combining Cauchy-Bunyakovskii-Gowers-Schwarz inequality with the binomial for-
mula and the multilinearity of the Gowers inner product one can easily check that
the triangle inequality for

∥∥.
∥∥
Ud(G)

holds. We further have
∥∥f
∥∥
Ud(Z)

≤
∥∥f
∥∥
Ud+1(Z)

,

by applying Cauchy-Bunyakovskii-Gowers-Schwarz inequality with fc = 1 if cd = 0
and fc = 1 if cd = 1. The Gowers norms are also invariant under the shift and
conjugacy.

We define also the discrete derivative of function f : Z ! C by putting

∂h(f) = f(x+ h).f(x),

for all h, x ∈ Z. We can thus write the Gowers norm of f as follows

∥∥f
∥∥2d
Ud(Z)

=

∫

Gd+1

∂h1∂h2 · · ·∂hd
(f)(x)dhdx.

If further f take values on R/Z and

∂h1∂h2 · · · ∂hd+1
(f)(x) = 0,

for all h1, · · · , hd+1, x ∈ G, then f is said to be a polynomial function of degree at
most d. The degree of f is denoted by d◦(f).

According to this it is easy to see that for any function f and any polynomial
function φ of degree at most d, we have

∣∣∣∣e2πiφ(x)f(x)
∣∣∣∣
Ud(Z)

=
∣∣∣∣f
∣∣∣∣
Ud(Z)

.

Therefore

sup
φ, d◦(φ)≤d

∣∣∣
∫

G

e2πiφ(x)f(x)dx
∣∣∣ ≤

∣∣∣∣f
∣∣∣∣
Ud(Z)

.(6)

In application and here we need to define the Gowers norms for a bounded function
defined on

{
1, · · · , N

}
. For that, if f is a bounded function defined on

{
1, · · · , N−

1
}
, we put

∣∣∣∣f
∣∣∣∣
Ud[N ]

=

∣∣∣∣f̃
∣∣∣∣
Ud(Z/2d.NZ)∣∣∣∣ 11[N ]

∣∣∣∣
Ud(Z/2d.NZ)

,

where f̃ = f(x). 11[N ], x ∈ Z/2d.NZ, 11[N ] is the indicator function of
{
1, · · · , N

}
.

For more details on Gowers norms, we refer to [28], [29].

The sequence f is said to have a small Gowers norms if for any d ≥ 1,∣∣∣∣f
∣∣∣∣
Ud[N ]

−−−−−!

N!+∞
0.

An example of sequences of small Gowers norms that we shall need here is given
by Thue-Morse and Rudin-Shapiro sequences. This result is due J. Konieczny [24].
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The notion of Gowers norms can be extended to the dynamical systems as follows.

Let T is be an ergodic measure preserving transformation on X . Then, for any
k ≥ 1, the Gowers seminorms on L∞(X) are defined inductively as follows

‖|f |‖1 =
∣∣∣
∫
fdµ

∣∣∣;

‖|f |‖2k+1

k+1 = lim
1

H

H∑

l=1

‖|f.f ◦ T l|‖2kk .

For each k ≥ 1, the seminorm ‖|.|‖k is well defined. Those norms are also called
Gowers-Host-Kra’s seminorms. For details, we refer the reader to [20]. Notice that
the definitions of Gowers seminorms can be also easily extended to non-ergodic
maps.

The importance of the Gowers-Host-Kra’s seminorms in the study of the nonconven-
tional multiple ergodic averages is due to the existence of T -invariant sub-σ-algebra
Zk−1 of X that satisfies

E(f |Zk−1) = 0 ⇐⇒ ‖|f |‖k = 0.

This was proved by Host and Kra in [20]. The existence of the factors Zk was
established by Host and Kra and independently by Ziegler in [33].

At this point, we are able to state the second main ingredient need it in our proof.
It is due to Assani-Dacuna and Moore [5]. This result extend à la Wiener-Wintner
Bourgain’s double recurrence theorem (WWBDRT).

Proposition 3.3. Let (X,µ, T ) be an ergodic dynamical system and a, b distinct
non-zero integers. Then, for any f, g ∈ L∞ with min{‖f1‖U2 , ‖g‖U2} = 0, there
exist a measurable set X ′ of full measure such ,for any x ∈ X ′, we have

sup
|z|=1

∣∣∣ 1
N

N−1∑

n=0

znf(T anx)g(T bnx)
∣∣∣ −−−−−!

N!+∞
0.

Proposition 3.3 has been extended to the nilsequences independently by I. Assani [7]
and A. Zorin-Kranich [34]. We refer to [7] or [34] for the definition of nilsequences.

We need also the following straightforward lemma.

Lemma 3.4. Let T is be an ergodic measure preserving transformation on (X,B, µ)
and f ∈ L∞(X,µ). Then

lim sup
N−!+∞

∣∣∣ 1
N

N−1∑

n=0

znf(T nx)
∣∣∣ ≤ ‖f‖U2 .(7)

The previous lemma can be extended to the nilsequences. We thus have, for any
k-nilsequence (bn).

lim sup
N−!+∞

∣∣∣ 1
N

N−1∑

n=0

bnf(T
nx)
∣∣∣ ≤ ‖f‖Uk+1.(8)

The proof can be obtained by applying by induction combined with the classical
van der Corput inequality [23, p.25].
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4. Some tools on the oscillation method and Calderón transference
principle

Let k ≥ 2 and (X,A, Ti, µ)ki=1 be a family of dynamical systems, that is, for each i =
1, · · · , k, Ti is a measure-preserving transformation, (∀A ∈ A, µ(T−1

i A) = µ(A).).
The sequence of complex number (an) is said to be good weight in Lpi(X,µ), pi ≥ 1,

i = 1, · · · , k, with ∑k
i=1

1
pi

= 1, if for any fi ∈ Lpi(X,µ), i = 1, · · · , k, the ergodic

k-multilinear averages

1

N

N∑

j=1

aj

k∏

i=1

fi(T
j
i x)

converges a.e.. The maximal multilinear ergodic inequality is said to hold in

Lpi(X,µ), pi ≥ 1, i = 1, · · · , k, with
∑k

i=1
1
pi

= 1, if for any fi ∈ Lpi(X,µ),

i = 1, · · · , k, the maximal function given by

M(f1, · · · , fk)(x) = sup
N≥1

∣∣∣ 1
N

N∑

j=1

aj

k∏

i=1

fi(T
j
i x)
∣∣∣

satisfy the weak-type inequality

sup
λ>0

(
λµ
{
x : M(f)(x) > λ

})
≤ C

k∏

i=1

∥∥fi
∥∥
pi
,

where C is an absolutely constant.

As far as the author know, it is seems that it is not known whether the classical
maximal multilinear ergodic inequality (an = 1, for each n) holds for the general
case n ≥ 3. Nevertheless, we have the following Calderón transference principal in
the homogeneous case.

Proposition 4.1. Let (an) be a sequence of complex number and assume that for
any φ, ψ ∈ ℓ2(Z), for any non-constant polynomials P,Q mapping natural numbers
to themselves, for any 1 ≤ p, q, r ≤ +∞ such that 1

r = 1
p + 1

q , we have

∥∥∥ sup
N≥1

∣∣∣ 1
N

N∑

n=1

anφ(j + P (n))ψ(j +Q(n))
∣∣∣
∥∥∥
ℓr(Z)

≤ C.
∥∥φ
∥∥
ℓp(Z)

∥∥ψ
∥∥
ℓq(Z)

,

where C is an absolutely constant. Then, for any dynamical system (X,A, T, µ),
for any f ∈ Lp(X,µ) and g ∈ Lq(X,µ) , we have

∥∥∥ sup
N≥1

∣∣∣ 1
N

N∑

n=1

anf(T
P (n)x)g(TQ(n)x)

∣∣∣
∥∥∥
r

≤ C
∥∥f
∥∥
p

∥∥g
∥∥
q
.

We further have

Proposition 4.2. Let (an) be a sequence of complex number and assume that
for any φ, ψ ∈ ℓ2(Z), for any λ > 0, for any integer J ≥ 2, for any non-constant
polynomials P,Q mapping natural numbers to themselves, for any 1 ≤ p, q ≤ +∞
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such that 1
p + 1

q = 1, , we have

sup
λ>0

(
λ
∣∣∣
{
1 ≤ j ≤ J : sup

N≥1

∣∣∣ 1
N

N∑

n=1

anφ(j + P (n))ψ(j +Q(n))
∣∣∣ > λ

}∣∣∣
)

≤ C
∥∥φ
∥∥
ℓp(Z)

∥∥ψ
∥∥
ℓq(Z)

,

where C is an absolutely constant. Then, for any dynamical system (X,A, T, µ),
for any f, g ∈ L2(X,µ), we have

sup
λ>0

(
λµ
{
x ∈ X : sup

N≥1

∣∣∣ 1
N

N∑

n=1

anf(T
P (n)x)g(TQ(n)x)

∣∣∣ > λ
})

≤ C
∥∥f
∥∥
2
.
∥∥g
∥∥
2
.

It is easy to check that Proposition 4.1 and 4.2 hold for the homogeneous k-
multilinear ergodic averages, for any k ≥ 3. Moreover, it is easy to state and
to prove the finitary version where Z is replaced by Z/JZ and the functions φ and
ψ with J-periodic functions.

5. Main result and its proof

The subject of this section is to state and to prove the main result of this paper
and its consequences. We begin by stating our main result.

Theorem 5.1. Let (X,A, µ, T ) be an ergodic dynamical system, let ν be an ape-
riodic 1-bounded multiplicative function and a, b ∈ Z. Then, for any f, g ∈ L2(X),
for almost all x ∈ X ,

1

N

N∑

n=1

ν(n)f(T anx)g(T bnx) −−−−−!
N!+∞

0,

Consequently, we obtain the following corollary.

Corollary 5.2 ( [2]). Let (X,A, µ, T ) be an ergodic dynamical system, and T1, T2
be powers of T . Then, for any f, g ∈ L2(X), for almost all x ∈ X ,

1

N

N∑

n=1

ν(n)f(T n
1 x)g(T

n
2 x) −−−−−!

N!+∞
0,

where ν is the Liouville function or the Möbius function.

Before proceeding to the proof of Theorem (5.1), we recall the following notations.

Let T be a map acting on a probability space (X,A, µ) and ν be an aperiodic
1-bounded multiplicative function. For any any ρ > 1, we will denote by Iρ the set{
(⌊ρn⌋), n ∈ N

}
. The maximal functions are defined by

MN0,N̄(f, g)(x) = sup
N0≤N≤N̄

N∈Iρ

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g(T−nx)
∣∣∣,

and

MN0(f, g)(x) = sup
N≥N0
N∈Iρ

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g(T−nx)
∣∣∣.
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Obviously,
lim

N̄−!+∞
MN0,N̄ (f, g)(x) =MN0(f, g)(x).

For the shift Z-action, the maximal functions are denoted by mN0,N̄ (φ, ψ) and
mN0(φ, ψ). We denote by ℓp(J), p > 1, the subspace of ℓp(Z), of the observable
functions with finite support subset of [0, J ]. For each 0 < δ < 1, we define a
function σδ by

σδ(t) = θ(δ, t)− θ(2δ, t),

where θ(δ, t) is the half of bumpfunction with support (δ, 2δ] and θ(δ, 2δ) = 1. We
thus get ∑

0<δ<1

dyadic

σδ(t) = 1, for each t ∈ (0, 1].

For any N ∈ N∗, x ∈ [1, J ] and θ ∈ [0, 1), we put

Px,N(θ) =
1

N

x−1∑

n=x−N

e2πinθψ(n),

we further set
νx(n) = ν(n+ x), ∀n ∈ N.

For a finite subset E of the torus T and ǫ > 0, we denote its ǫ-neighbourhood by
E(ǫ). We recall that E(ǫ) is given by

E(ǫ) =
{
λ ∈ T : min

γ∈E

∣∣λ− γ
∣∣ < ǫ

}
.

We denote by A(T) the Weiner algebra of the absolutely convergent Fourier series
equipped with the norm ‖|.‖|. We recall that for any ϕ ∈ A(T), we have

∥∥∣∣ϕ
∥∥∣∣

A
=
∑

n∈Z

∣∣ϕ̂(n)
∣∣.

The Fourier transform on ℓ2(Z) will be denoted by F . It is defined by

F(φ)(θ) =
∑

n∈Z

f(n)e2πinθ, for φ ∈ ℓ2(Z) and θ ∈ T.

We need also the following lemma.

Lemma 5.3. Let φ ∈ ℓ2(Z) and ϕ ∈ A(T). Suppose that ϕ is differentiable with
ϕ′ ∈ L2(T) and ϕ̂(0) = 0. Then

‖F−1(ϕF(φ))‖∞ ≤ ‖ϕ‖A
∥∥f
∥∥
∞,(9)

‖ϕ‖A ≤ C
√∥∥ϕ

∥∥
2

√∥∥ϕ′
∥∥
2
.(10)

Proof. By the convolution theorem, we have

F−1(ϕF(φ)) = F−1(ϕ) ∗ φ.
Therefore

‖F−1(ϕF(φ))‖∞ = sup
k∈Z

∣∣∣
∑

n∈Z

(F−1(ϕ))(n)φ(k − n)
∣∣∣

≤
∣∣∣
∑

n∈Z

(F−1(ϕ))(n)
∣∣∣
∥∥φ
∥∥
∞

≤ ‖ϕ‖A
∥∥φ
∥∥
∞.
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We conclude the proof by noticing that F−1(ϕ)(n) = ϕ̂(n), for all n ∈ Z. We
proceed now to the proof of (10). By the time differential property of Fourier
transform, we have

ϕ̂(n) =
1

in
ϕ̂′(n).

We refer to [22, Theorem 1.6, p. 4], for the proof. Applying Cauchy-Schwarz
inequality combined with Parseval equality, we get

‖ϕ‖A =
∑

n6=0

1

|n|
∣∣ϕ̂′(n)

∣∣

≤
(∑

n6=0

1

n2

) 1
2
(∑

n6=0

1

n2

∣∣ϕ̂′(n)
∣∣2
) 1

2

≤ π√
3

(∑

n6=0

1

|n|
∣∣ϕ̂′(n)

∣∣∣∣ϕ̂′(n)
∣∣
) 1

2

≤ π√
3

(∑

n6=0

1

n2

∣∣ϕ̂′(n)
∣∣2
) 1

2
(∑

n6=0

∣∣ϕ̂′(n)
∣∣2
) 1

2

≤ π√
3

√∥∥ϕ
∥∥
2

√∥∥ϕ′
∥∥
2

This finish the proof of (10) and the lemma. �

Lemma 5.3 is stated in [9] as equations (3.1) and (3.3).

At this point, we state the key lemma from [9] in the proof of our main result.

Lemma 5.4. Let N0, N1, J be a positive integers such that J >> N1 > N0. Let
φ, ψ ∈ ℓ∞(J), and 0 < δ < 1 be a dyadic number. Suppose that for any interval
I ⊂ [0, J ], with |I| > N0, we have

sup
θ∈[0,1)

∣∣∣∣∣
1

|I|
∑

n∈I

e2πinθψ(n)

∣∣∣∣∣ < δ.(11)

Then,

1

J

∣∣∣∣∣
{
x ∈ [1, J ] : Nx(dyadic) ∈ [N0, N1], Nx >

1

δ
,

∣∣∣
∫
φ̂(θ)

(
Px,Nx

(θ)σδ
(∣∣Px,Nx

(θ)
∣∣)
)
e4πixθdθ

∣∣∣ > δ
1

109

}∣∣∣∣∣ < Cδ
1

106 .(12)

It follows, by Borel-Cantelli lemma, that under the condition (11), we have

1

J

J∑

x=1

mN0,N1(φ, ψ) < δ
1

109 −−−−−!

δ!0
0.

Lemma 5.4 is a compilation of the principal result proved by Bourgain in [9]. The
assumption (11) is stated as [9, eq (2.10), page 142] and the conclusion is formulated
as the last equation [9, eq (2.10), page 161]. For the proof of Lemma 5.4 one may
need the following proposition.

Proposition 5.5. Let J be a positive integer and δ > 0. Then, there is a finite
subset E0 of the torus such that
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(1) For any (λ, γ) ∈ E2
0 , λ 6= γ, we have

∣∣λ− γ
∣∣ ≥ c

J
,

where c is some absolute constant.

(2) |E0| < Cδ−2, for some constant C > 0.

(3)
{
λ :

∣∣∣
∑

1≤n≤J

ψ(n)e2πinλ
∣∣∣ > δJ

}
⊂ E0

( c
J

)
, where c is the constant in (1).

Proof. Let us denote by P0 the analytic polynomial given by

P0(λ) =
∑

1≤n≤J

ψ(n)e2πinλ.

By, appealing to Marcinkiewicz-Zygmund interpolation inequalities [35, Theorem
7.5, Chapter X, p.28], if λJ,j , j = 0, · · · , J are the (J +1)-roots of the unity. Then,
we have for α > 1, and for any analytic polynomial P of degree smaller or equal
than J , we have

Aα

J

J∑

j=0

∣∣P (e2πiλJ,j )
∣∣α ≤

∫

T

∣∣∣P (λ)
∣∣∣
α

dz ≤ Bα

J

n−1∑

j=0

∣∣P (e2πiλJ,j )
∣∣α,(13)

where Aα and Bα are independent of J and P . According, a finite family of
(λJ,j)j=0,··· ,J , is said to be a Marcinkiewicz-Zygmund family (MZ family) if 13
holds for it. Chui and Zhong [12] proved that (λJ,j)j=0,··· ,J , is a MZ family if and
only if the sample points (λJ,j)j=0,··· ,J , satisfies

min
0≤j<k≤J

∣∣∣λJ,j − λJ,k

∣∣∣ ≥ c

J
,

for some positive constant c.
Let (λJ,j)j=0,··· ,J , be a MZ family and E0 be the maximal subset of it such that

E0 ⊂
{
λ :

∣∣∣P0(λ)
∣∣∣ > δJ

}
.

Then, obviously E0 satisfy the condition (1). To check that the condition (2) is
fulfilled, it suffices to notice that, by (13) for α = 2, we have

δ2J2|E0| ≤
∑

j∈E0

|P0(λJ,j)||2 ≤ B2J
∥∥∥P0

∥∥∥
2

2
.

Moreover, by Parseval identity,
∥∥P0

∥∥2
2
≤ J since ψ is 1-bounded. Whence,

|E0| ≤ B2δ
−2.

Finally, it is easy to check the last condition is satisfied by the maximality of E0.
Indeed, assume by contradiction that (3) does not holds. Then, there is λ such that

λ ∈
{
λ :

∣∣∣P0(λ)
∣∣∣ > δJ

}
and

∣∣λ − λJ,j
∣∣ ≥ c

J , for each j ∈ E0. Therefore, either∣∣λ − λJ,j
∣∣ ≥ c

J , for each j ∈ Ec
0 and we can thus add λ to the family or for some

for each j ∈ Ec
0, we have

∣∣λ − λJ,j
∣∣ < c

J . In this case, we replace λJ,j ∈ Ec
0 by

λ in the family (λJ,j)j=0,··· ,J . In both cases we reach a contradiction since E0 is
maximal. �
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Proposition 5.5 is stated in [9] as equation (3.4) and (6.1). The proof of Lemma
5.4 is based also on the following Local Partition Lemma. Its proof is based on the
nice properties of de la Vallée-Poussin Kernel. We recall that de la Vallée-Poussin
Kernel V(n,p) of order n+ p is given by

V(n,p)(x) =
n+ p

p
Kn+p(x) −

n

p
Kn(x),

where Kn is Fejèr kernel. This later kernel is defined by

Kn(x) =

n∑

j=−n

(
1− |j|

n+ 1

)
e2πijx =

1

n+ 1

{
sin
(
π(n+ 1)x

)

sin(πx)

}2

.(14)

Therefore

V(n,p)(x) =
1

p

(
sin
(
π(n+ p)x

))2 −
(
sin
(
πnx

))2

(sin(πx))2
.(15)

We further have V̂n,p(j) = 1, if |j| ≤ n. We can associate to Vn,p a compactly
supported piecewise linear function vn,p on R given by

vn,p(t) =





1 if |t| ≤ n
n+p−|t|

p if n ≤ |t| ≤ n+ p

0 if |t| ≥ n+ p

The connection between those two families of functions is given by

V(n,p)(x) = V(rm,(s−r)m)(x)(16)

=

sm−1∑

j=−sm+1

vr,s−r

( j
N

)
e2πijx,(17)

where m = gcd(n, n+ p), n = rm and n+ p = sm. Notice that the classical de la
Vallée-Poussin kernel is given by

V(n,n)(x) = 2K2n(x) −Kn(x)(18)

=
∑

|j|≤n

e2πijx +
∑

n<|j|<2n

(
2− |j|

N

)
e2πijx.(19)

Moreover, as suggested by Bourgain in [9, eq. (5.5), p.149], for any γ > 0 and a
family of the de la Vallée-Poussin V(n,⌊γ.n⌋) kernel, the family of functions vr,s−r

can be made smooth such that for any M > γ−1, there is D > 1 such that∫
{
|x|> M

2.n+1

} |V(n,⌊γ.n⌋)(x)|dx < Cγ−1
(
γ.M

)−D
.(20)

In connection with Bourgain’s observation we have the following lemma.

Lemma 5.6. Let n,D be a positive integers with D > 2, γ > 0 and M > γ−1. Let
I be a finite interval of integers and V(n,p) be the associated de la Vallée-Poussin

kernel with p > γD+1MD−2|I|2 and supp(vn,p) ⊂ I. Then, we have
∫
{
|x|> M

|I|

} |V(n,p)(x)|dx < Cγ−1
(
γ.M

)−D
,(21)

where C is an absolute constant.
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Proof. By (15), we have∫
{
|x|> M

|I|

} |V(n,p)|dx(22)

≤
∫
{
|x|> M

|I|

}
1

p

∣∣∣
(
sin
(
π(n+ p)x

))2 −
(
sin
(
πnx

))2∣∣∣
(sin(πx))2

dx

≤
∫
{
|x|> M

|I|

}
1

p

2

(sin(πx))2
dx(23)

Now, remembering that sin( τ2 ) >
τ
π for any 0 < τ < π, we obtain

∫
{
|x|> M

|I|

} |V(n,p)(x)|dx ≤ 1

p
.

1
2.M2

|I|2
(24)

≤ Cγ−1
(
γ.M

)−D
.(25)

The last inequality is due to the fact that p > γD+1MD−2|I|2, and the proof of the
lemma is complete. �

We state now the Local Partition Lemma of Bourgain and we present its proof.

Lemma 5.7 (Local Partition Lemma of Bourgain (LP)). Let I be a finite interval of
integers and P (x) be a trigonometric polynomial such that, P (x) =

∑
n∈I gne

2πinx

with |gn| ≤ 1, for each n ∈ I. Let
{
Iα

}
α∈A

be a partition of I in subintervales.

Put
Pα(x) =

∑

n∈Iα

gne
2πinx,

and let E be a finite set in the torus identify with (0, 1]. Then, for any R > 1, we
have ∫

E(|I|−1)

∣∣P (x)
∣∣2dx

≤
∑

α

∫

E(R.|Iα|−1)

∣∣Pα(x)
∣∣2dx+ CR−D|E||I|+ CR− 1

4 |I|,(26)

where D is an arbitrarily chosen exponent and the constant C depends on D.

Proof. By Riesz representation theorem, there exist φ ∈ L2(T) such that

(1)
∥∥φ
∥∥
2
= 1,

(2) supp(φ) ⊂ E(|I|−1),

(3)

∫

E(|I|−1)

P (x)φ(x)dx =
∥∥∥P |E(|I|−1)

∥∥∥
2
.

Let (Vα)α∈A be a family of the smooth de la Vallée-Poussin kernel which satisfy for
each α ∈ A,

(1) supp(V̂α) ⊂ Iα,

(2) (20) with γ ∈ (0, 1
10 ).

Put
Qα = Pα ∗ Vα and ψα = φα ∗ Vα,
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where φα = F(F−1(φ)|Iα). Notice that we have ψα = φ ∗ Vα,
∥∥φα

∥∥
2
≤ 1, and by

the convolution theorem
∥∥ψα

∥∥
2
≤
∥∥φ‖2 = 1. Moreover, by proprieties 3 of φ and

the definition of Pα and φα, we have∥∥∥P |E(|I|−1)

∥∥∥
2
=< P (x), φ >

=
∑

α∈A

∑

n∈Iα

gnφ̂(n)

=
∑

α∈A

∑

n∈Z

gnφ̂(n)1Iα(n)

=
∑

α∈A

∑

n∈Z

P̂α(n)φ̂||Iα(n)

=
∑

α∈A

< Pα, φα >

≤
∑

α∈A

∣∣∣ < Pα, φα >
∣∣∣(27)

For th estimation of
∥∥∥P |E(|I|−1)

∥∥∥
2
, we are going to replace up to some errors

∣∣∣ <

Pα, φα >
∣∣∣ with

∣∣∣ < Qα, φα >
∣∣∣. We start with the estimation of the error.

Applying Parserval identity combined with the definition and the properties of Pα

and Qα, we get
∥∥∥Pα −Qα

∥∥∥
2

2
=
∥∥∥Pα − Pα ∗ Vα

∥∥∥
2

2

=
∑

n∈Iα

∣∣∣ ̂
(
Pα − Pα ∗ Vα

)
(n)
∣∣∣
2

=
∑

n∈Iα

∣∣∣P̂α(n)
(
1− V̂α(n)

)∣∣∣
2

(28)

But, by our assumption, we can write Iα = I1α
⋃
I2α, with I1α

⋂
Iα = ∅ and |I2α| =

γ.|Iα|. This combined with the nice proprieties of Vα and the 1-boundness og (gn)
gives

∥∥∥Pα −Qα

∥∥∥
2

2
= =

∑

n∈I2
α

∣∣∣P̂α(n)
(
1− V̂α(n)

)∣∣∣
2

< 4γ|Iα|.(29)

Whence ∥∥∥Pα −Qα

∥∥∥
2
< 2
√
γ|Iα|.(30)

This combined with Cauchy-Schwarz inequality and 1-boundness of ‖φα‖2 yields∣∣∣〈Pα, φα〉 − 〈Qα, φα〉
∣∣∣ ≤

∥∥∥Pα −Qα

∥∥∥
2

∥∥φα
∥∥
2

≤ 2
√
γ|Iα|.(31)
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Now, we proceed to the estimation of 〈Qα, φα〉. By the definition of Qα, φα and
ψα, we have

〈Qα, φα〉 = 〈Pα ∗ Vα, φα〉

=
∑

n∈Iα

P̂α(n)V̂α(n)φ̂α(n)

= 〈Pα, φα ∗ Vα〉
= 〈Pα, ψα〉.(32)

We can thus write

〈Qα, φα〉 = 〈Pα( 11E(|I|−1)+11E(|I|−1)c
), ψα〉

= 〈Pα 11E(|I|−1), ψα〉+ 〈Pα 11E(|I|−1)c , ψα〉(33)

This combined with Cauchy-Schwarz inequality gives∣∣∣〈Qα, φα〉
∣∣∣ ≤

∥∥Pα 11
E
(

R
|Iα|

)∥∥
2

∥∥ψα

∥∥
2
+
∥∥Pα

∥∥
2

∥∥ψα 11
E
(

R
|Iα|

)c∥∥
2
.(34)

Applying again Cauchy-Schwarz inequality combined with (1) and (2) we obtain,
for any θ ∈ (0, 1]

∣∣ψ(θ)
∣∣ =

∣∣∣
∫

E(|I|−1)

φ(t)Vα(θ − t)dt
∣∣∣

≤
( ∫

E(|I|−1)

∣∣Vα(θ − t)
∣∣2dt

) 1
2

≤
∥∥Vα

∥∥
2
= 1.(35)

Therefore
∥∥ψα 11

E
(

R
|Iα|

)c∥∥2
2
=

∫ ∣∣ψα(θ)
∣∣2 11

E
(

R
|Iα|

)c(θ)dθ

≤
∫ ∣∣ψα(θ)

∣∣ 11
E
(

R
|Iα|

)c(θ)dθ

≤
∫

11
E
(

R
|Iα|

)c(θ)
∫

E(|I|−1)

|φ(t)||Vα(θ − t)|dt(36)

But, assuming t ∈ E(|I|−1), we get that θ ∈ E
(

R
|Iα|
)c

implies |θ− t| > R
2|Iα| . If not,

since for some λ ∈ E, we have |λ − t| < 1
|I| <

R
2|Iα| , by the triangle inequality, we

get |λ − θ| < R
2|Iα| which which gives a contradiction. We can thus rewrite (35) as

follows
∥∥ψα 11

E
(

R
|Iα|

)c∥∥2
2
≤
∫

E(|I|−1)

|φ(t)|
∫

{|θ−t|> R
2|Iα|

}
|Vα(θ − t)|dt(37)

Applying (20) and Cauchy-Schwarz inequality to get

∥∥ψα 11
E
(

R
|Iα|

)c∥∥2
2
≤
∫

E(|I|−1)

|φ(t)|
∫

{|θ−t|> R
2|Iα|}

|Vα(θ − t)|dt

≤
∫

E(|I|−1)

|φ(t)|dt
(
C.γ−1(γ.R)−D

)

≤
(
Leb(E(|I|−1))

) 1
2
(
C.γ−1(γ.R)−D

)

≤
(
|E|.|I|−1

) 1
2
(
C.γ−1(γ.R)−D

)
,(38)
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where Leb stand for Lebesgue measure on the circle. Summarizing, we get∥∥∥P |E(|I|−1)

∥∥∥
2
≤
∑

α∈A

∣∣∣〈Qα, φα〉
∣∣∣+ 2

√
γ
∑

α∈A

√
|Iα|

≤
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥
2

∥∥φα
∥∥
2

(39)

+
(
|E|.|I|−1

) 1
2
(
C.γ−1(γ.R)−D

) 1
2
∑

α∈A

∥∥Pα

∥∥
2

+ 2
√
γ
∑

α∈A

√
|Iα|

by (27), (31),(34) and (38). Applying again Cauchy-Schwarz inequality we see that
∑

α∈A

√
|Iα| ≤

√
|I|

∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥
2

∥∥φα
∥∥
2
≤
(∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
) 1

2

∑

α∈A

∥∥Pα

∥∥
2
≤
√
|I|,

since, by our assumption,
∑

α∈A

∥∥φα
∥∥2
2
≤ 1 and

∥∥Pα

∥∥2
2
≤ |Iα|, for each α ∈ A.

Consequently, we can rewrite (39) as follows∥∥∥P |E(|I|−1)

∥∥∥
2
≤
∑

α∈A

∣∣∣〈Qα, φα〉
∣∣∣+ 2

√
γ
∑

α∈A

√
|Iα|

≤
(∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2

) 1
2

(40)

+
√
|E|
(
C.γ−1(γ.R)−D

) 1
2

+ 2
√
γ
√
|I|

Taking γ = 1
4√R

, we obtain

∥∥∥P |E(|I|−1)

∥∥∥
2
≤
(∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2

) 1
2

(41)

+
√
|E|
(√

C.R
1−3D

8

)
+ 2R− 1

8

√
|I|

Squaring, we get
∥∥∥P |E(|I|−1)

∥∥∥
2

2
≤
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2
+ C|E|R 1−3D

4 + 4R− 1
4 |I|(42)

+ 2
(∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2

) 1
2√|E|

(√
C.R

1−3D
4

)

+ 4
(∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2

) 1
2

R− 1
8

√
|I|

+ 4
√
|E|
(√

C.R
1−3D

8

)
R− 1

8

√
|I|

by the virtue of the simple identity

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc, ∀a, b, c ∈ R.
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Now, remembering that
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2
≤
∑

α∈A

∥∥Pα

∥∥2
2
≤
∑

α∈A

∣∣Iα| ≤ |I|.

We can rewrite (42) as follows
∥∥∥P |E(|I|−1)

∥∥∥
2

2
≤
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2
+ C|E|R 1−3D

4 + 4R− 1
4 |I|(43)

+ 2
√
|I|
√
|E|
(√

C.R
1−3D

4

)

+ 4
√
|I|R− 1

8

√
|I|

+ 4
√
|E|
(√

C.R
1−3D

8

)
R− 1

8

√
|I|

We thus conclude that∥∥∥P |E(|I|−1)

∥∥∥
2

2
≤
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2
+KR−D′ |E||I|+ 8R− 1

4 |I|(44)

for some absolutely positive constant K and an arbitrary D′ > 0 since D > 1 is
arbitrary and D′ = 1−3D

8 . This complete the proof of the lemma. �

Remark 5.8. Despite the fact that our proof follows Bourgain’s proof, it is slightly
different.

The LP Lemma of Bourgain is useful in the following form

Lemma 5.9 (The ǫ-localization of LP Lemma). Let I be a finite interval of integers
and P (x) be a trigonometric polynomial such that, P (x) =

∑
n∈I gne

2πinx with

|gn| ≤ 1, for each n ∈ I. Let
{
Iα

}
α∈A

be a partition of I in subintervales such that

|Iα| < ǫ|I| with 0 < ǫ < 1
10 . Put

Pα(x) =
∑

n∈Iα

gne
2πinx,

and let E be a finite set in the torus identify with (0, 1]. Then, for any R > 1, we
have ∫

E(R|I|−1)

∣∣P (x)
∣∣2dx

≤
∑

α

∫

E(R.|Iα|−1)

∣∣Pα(x)
∣∣2dx+ CR−D|E||I|+ CR− 1

4 |I|,(45)

where D is an arbitrarily chosen exponent and the constant C depends on D.

Proof. We are going to apply Lemma 5.7. For that let E′ be a subset of E
(

R
|I|
)

such that |E′| < 2R|E| and E
(

R
|I|
)
⊂ E′( 1

|I|
)
. We thus have, for each α ∈ A,

E′
( R

2|Iα|
)
⊂ E

( R

|Iα|
)
.

Indeed, if λ ∈ E′( R
2|Iα|

)
, then, for some ξ ∈ E′, we have

∣∣∣λ− ξ
∣∣∣ < R

2|Iα|
.
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But E′ is a a subset of E
(

R
|I|
)
. Therefore, for some η ∈ E, we have
∣∣∣ξ − η

∣∣∣ < R

|I| <
R

2|Iα|
.

Applying the triangle inequality, we get
∣∣∣λ− η

∣∣∣ < R

|Iα|
.

Now, by appealing to Lemma 5.7, we obtain
∥∥∥P |E′(|I|−1)

∥∥∥
2

2
≤
∑

α∈A

∥∥Pα 11
E′
(

R
2|Iα|

)∥∥2
2
+K

(R
2

)−D

|E′||I|+ 8
(R
2

)− 1
4 |I|

Whence ∥∥∥P |
E
(

R
|I|

)
∥∥∥
2

2
≤
∑

α∈A

∥∥Pα 11
E
(

R
|Iα|

)∥∥2
2
+ CR−D|E||I|+ 16R− 1

4 |I|,

and this achieve the proof of the lemma. �

The proof of the fundamental lemma (Lemma 5.4) is based also on the famous
λ-separated lemmas due to Bourgain. These lemmas are in the heart of Bourgain’s
method. Its proof involve Lépingle inequalities (also called Lébingle Lemma ).
We refer to [11, Lemma 3.3] (see also [31]). For this later inequalities, one need
to introduce the variation norms. Let (an)n∈N be a complex sequence and s0 a
positive integer. The variation norm of order s is given by

∥∥(an)‖vs = sup
J

n1<n2<···<nJ

( J−1∑

k=1

|ank+1
− ank

|s
) 1

s

.

At this point, we are able to recall the λ-separated Lemmas.

Lemma 5.10 (λ-separated Lemma). Let λ1, · · · , λK be a K points on the circle
such that |λi − λj | ≥ 1

2s−1 , ∀i 6= j, with s > 0. Let f ∈ L2[0, 1). Then, there is an
absolute constant C > 0 such that∥∥∥∥∥ supj>s

∣∣∣
∫

Vj

e2πinαf(α)dα|
∥∥∥∥∥
ℓ2(Z)

≤ C(log(K))2
∥∥f
∥∥
2
,

where Vj is 1
2j -neighborhood of {λ1, · · · , λK} given by

Vj =
{
λ ∈ [0, 1)/ min

1≤r≤K
|λ− λr | <

1

2j

}
.

As a consequence of Lépingle Lemma, we have the following lemma needed here [9,
Lemma 3.23].

Lemma 5.11 (The entropic λ-separated Lemma). Let λ1, · · · , λK be a K points
on the circle such that |λi − λj | ≥ τ , ∀i 6= j. Let f ∈ ℓ2(Z)), χ = 11[0,1] and

χN = 1
N 11[0,N ] and consider, for x ∈ Z,

Γx =
{∫ 1

0

f̂(λ)χ̂N (λ− λk
)
1≤k≤K

, N(dyadic) >
1

τ
}(46)

as a subset of K-dimensional Hilbert space. Then, for any t > 0∫
N(Γx, t)dx ≤ c

t2
∥∥f
∥∥2
2
,(47)
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where, for a subset A of a Hilbert space H , N(A, ǫ), ǫ > 0 stand for the metrical
entropy numbers, that is, the minimal number of balls of radius ǫ needed to cover
A.

More details on Lemma 5.4 will be given in the revised version of [1].

We proceed now to the proof of our main result (Theorem 5.1).

Proof of Theorem 5.1. Without loss of generality, we assume that the map T
is ergodic. We further assume that f, g are in L∞(X,µ) with

∣∣∥∥g
∥∥∣∣

U2 = 0 (notice
that we can interchange the role of f and g). Therefore, by Lemma 3.4 combined
with Theorem 3.3, for any prime p 6= q, we have

1

N

N∑

n=1

z(p−q)ng(T−pnx)g(T−qnx) −−−−−!
N!+∞

0, for almost all x(48)

We thus get, by Proposition 3.1, the following

1

N

N∑

n=1

ν(n)z−ng(T−nx) −−−−−!
N!+∞

0, for almost all x.(49)

It follows that if f is an eigenfunction, then the convergence holds.

Now, for f and g in the orthocompelment of eigenfunctions, following Bourgain’s
approach, we will use the finitary method. Therefore, by (49), we can write

1

N

∑

x−N≤n<x

νx(n)z
−nψ(n) −−−−−!

N!+∞
0,(50)

where ψ ∈ ℓ∞(Z) with ‖|ψ‖|U2 = 0. We set

Qx,N(θ) =
1

N

∑

x−N≤n<x

νx(n)e
−2πinθψ(n).

Therefore, for δ0 > 0, there exist N0 ∈ N such that for any interval I ⊂ [1, J) with
|I| > N0 we have

∣∣∣ 1|I|
∑

n∈I

ν−x0(n)e
−2πinθψ(n)

∣∣∣ < δ0,(51)

where x0 = min(I).

We proceed now to the application of the fundamental lemma of Bourgain (Lemma
5.4). We stress that this is not a direct application of the lemma. In fact, one
may need to check that the condition ((3.6) to (3.9)) of Lemma 3.5 from [9] are
satisfied. For that, we first notice that, by (50), the condition (3.6) is fulfilled, and
a straightforward computation yields that

∥∥Qx,N‖2 is less than N−1/2 since ν and
ψ are 1-bounded. We further have that the condition (3.8) and (3.9) are fulfilled,
since the map z 7! zσδ(|z|) is a Lipschitz function and the constant is independent



20 E. H. EL ABDALAOUI

of δ. Indeed,
∥∥∥Qx,N(θ) −Qx′,N (θ)

∥∥∥
2

2

=
∥∥∥ 1

N

N∑

n=1

ν(n)ψ(x− n)e2πinθ − 1

N

N∑

n=1

ν(n)ψ(x′ − n)e2πinθ
∥∥∥
2

=
1

N2

N∑

n=1

|ν(n)|2
∣∣ψ(x− n)− ψ(x′ − n)

∣∣2(52)

≤ 1

N2

N∑

n=1

∣∣ψ(x − n)− ψ(x′ − n)
∣∣2

The last inequality follows from the 1-boundedness of ν. We further have

1

N2

N∑

n=1

∣∣ψ(x− n)− ψ(x′ − n)
∣∣2

=
∥∥∥ 1

N

N∑

n=1

ψ(x− n)e2πinθ − 1

N

N∑

n=1

ψ(x′ − n)e2πinθ
∥∥∥
2

2

<

∣∣x− x′
∣∣

N2
.(53)

It is still to check that the condition (3.9) is fulfilled. This can be done, by applying
Bernstein-Zygmund inequalities [35, Theorem 3.13, Chapter X, p. 11] combined
with the 1-boundedness of ν and ψ. We thus get

∥∥∥∂θ
(
e2πixθQx,N(θ)

)∥∥∥
2
≤ N.

∥∥∥ 1

N

N∑

n=1

ν(n)ψ(x− n)e2πinθ
∥∥∥
2
<

√
N(54)

Following the path of Bourgain’s proof, the rest of the proof is accomplished by
applying the LP lemma (Lemma 5.7) (see also [9, Lemma 5.1]) and Lemma 5.10
(see also [9, Lemma 3.23] and [11, Lemma 4.1] )). We thus get, for any φ ∈ ℓ∞(Z),

1

J

∣∣∣∣∣
{
x ∈ [1, J ] : max

N0<N<N1,

N(dyadic)> 1
δ

∣∣∣ 1
N

N∑

n=1

ν(n)φ(n+ x)ψ(n − x)
∣∣∣ > δ

1
109

}∣∣∣∣∣

< Cδ
1

106 .

Since, by Fourier transform transfer, we have

1

N

N∑

n=1

ν(n)φ(n)ψ(n)

=

∫ 1

0

φ̂(θ)
( 1

N

N∑

n=1

ν(n)e−2πi(x−n)θψ(x− n)
)
e4iπxθdθ.

Moreover, we have

∣∣∣
∫ 1

0

φ̂(θ)
( 1

N

N∑

n=1

ν(n)e−2πi(x−n)θψ(x− n)
)
e4iπxθdθ

∣∣∣

≤
∑

δ0>δ>N
−1
x

dyadic

∣∣∣
∫ 1

0

φ̂(θ)
(
Qx,N(θ)σδ(

∣∣Qx,N(θ)
∣∣)
))
e4iπxθdθ

∣∣∣+ C
4
√
Nx

.(55)
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This is due to the following fact

∣∣∣
∫ 1

0

φ̂(θ)
( 1

N

N∑

n=1

ν(n)e−2πi(x−n)θψ(x− n)(θ)
)
e4iπxθdθ

∣∣∣

=
∣∣∣
∫ 1

0

φ̂(θ)
( ∑

0<δ<1

dyadic

Qx,N(θ)σδ(|Qx,N(θ)|)
)
e4iπxθdθ

∣∣∣(56)

≤
∑

δ0>δ>N
−1
x

dyadic

∣∣∣
∫ 1

0

φ̂(θ)
(
Qx,N(θ)σδ(

∣∣Qx,N(θ)
∣∣)
))
e4iπxθdθ

∣∣∣ +
∣∣∣
∑

δ 6∈[ 1
Nx

,δ0]

dyadic

· · ·
∣∣∣.(57)

≤
∑

δ0>δ>N
−1
x

dyadic

∣∣∣
∫ 1

0

φ̂(θ)
(
Qx,N(θ)σδ(

∣∣Qx,N(θ)
∣∣)
))
e4iπxθdθ

∣∣∣ + C
4
√
Nx

.(58)

The last inequality can be obtained by applying Lemma 5.3 to the functions ϕ(θ) =∑

δ 6∈[ 1
Nx

,δ0]

dyadic

Qx,N(θ)σδ(
∣∣Qx,N(θ)

∣∣) and φ. We further notice that

∥∥∥Qx,N

∥∥∥
2
≤ 1√

Nx

and ∥∥φ
∥∥
∞ ≤ 1.

To finish the proof, we need to point out that any bounded aperiodic mutilplicative
function is statistically orthogonal to any nilsequence, by the generalized Daboussi-
Delange theorem [17, Theorem 2.5 ]. We further notice that for any f, g ∈ L2(X,µ),
and any ε > 0, there exist f1, g1 ∈ L∞(X,µ) such that∥∥∥f − f1

∥∥∥
2
<

√
ε, and

∥∥∥g − g1

∥∥∥
2
<

√
ε.

Moreover, by Cauchy-Schwarz inequality, we have

∣∣∣ 1
N

N∑

n=1

ν(n)(f − f1)(T
nx)(g − g1)(T

−nx)
∣∣∣

≤ 1

N

N∑

n=1

∣∣(f − f1)(T
nx)
∣∣∣∣(g − g1)(T

−nx)
∣∣

≤
( 1

N

N∑

n=1

∣∣(f − f1)(T
nx)
∣∣2
) 1

2
( 1

N

N∑

n=1

∣∣(g − g1)(T
−nx)

∣∣2
) 1

2

Applying the ergodic theorem, it follows that for almost all x ∈ X , we have

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)(f − f1)(T
nx)(g − g1)(T

−nx)
∣∣∣ < ε.
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Whence, we can write

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g(T−nx)
∣∣∣

≤ lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣∣∣

+ lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣∣∣

+ lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g1(T

−nx)
∣∣∣

≤ ε+ lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣∣∣

+ lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣∣∣.

We thus need to estimate

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣∣∣,

and

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g1(T
−nx)

∣∣∣.

In the same manner we can see that

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)(g − g1)(T

−nx)
∣∣∣

≤ lim sup
N−!+∞

( 1

N

N∑

n=1

|f1(T nx)|2
) 1

2

lim sup
N−!+∞

( 1

N

N∑

n=1

|(g − g1)(T
−nx)|2

) 1
2

≤
∥∥f1
∥∥
2

∥∥g − g1
∥∥
2

≤
(∥∥f

∥∥
2
+
√
ε
)
.
√
ε

This gives

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g(T−nx)

∣∣∣

≤
(∥∥∥f

∥∥∥
2
+
√
ε
)
.
√
ε+ lim sup

N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f1(T
nx)g1(T

−nx)
∣∣∣

≤
(∥∥f

∥∥
2
+
√
ε
)
.
√
ε+ 0

Summarizing, we obtain the following estimates

lim sup
N−!+∞

∣∣∣ 1
N

N∑

n=1

ν(n)f(T nx)g(T−nx)
∣∣∣

≤ ε+
(∥∥f

∥∥
2
+
√
ε
)
.
√
ε+

(∥∥g
∥∥
2
+
√
ε
)
.
√
ε
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Since ε > 0 is arbitrary, we conclude that for almost every x ∈ X ,

1

N

N∑

n=1

ν(n)f(T nx)g(T−nx) −−−−−!
N!+∞

0.

This complete the proof of the theorem. �

It is noticed in [2] that the convergence almost sure holds for the short interval
can be obtained for the Liouville and Möbius functions by applying the following
Zhan’s estimation [32]: for each A > 0, for any ε > 0, we have

(59) max
z∈T

∣∣∣∣∣∣
∑

N≤n≤N+M

znλ(n)

∣∣∣∣∣∣
≤ CA,ε

M

logA(M)
for some CA,ε > 0,

provided that M ≥ N
5
8+ε. Here,

Question. we ask on the convergence almost sure in the short interval for the
bilinear ergodic bilinear averages with bounded aperiodic multiplicative weight.

Remark 5.12. In the forthcoming revised version of [1]. The author will present
the strategy of the proof of Bourgain double ergodic theorem and its adaptation
to prove the polynomials Bourgain bilinear ergodic theorem as it is stated in that
paper. 1

References

[1] e. H. el Abdalaoui, Simple proof of Bourgain bilinear ergodic theorem and its extension to
polynomials and polynomials in primes, arXiv:1908.02281 [math.DS].

[2] E. H. el Abdalaoui, On the homogeneous ergodic bilinear averages with Möbius and Liou-
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the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37
(2017), no. 6, 2899-2944.

[4] I. Assani, Multiple recurrence and almost sure convergence for weakly mixing dynamical
systems, Israel J. Math. 103 (1998), pp. 111-124.

[5] I. Assani, D. Duncan, and R. Moore, Pointwise characteristic factors for Wiener-Wintner
double recurrence theorem, Erg. Th. and Dyn. Sys. volume 36, issue 04, pp. 1037-1066.
arXiv:1402.7094.

[6] I. Assani, R. Moore, Extension of Wiener-Wintner double recurrence theorem to polyno-
mials, J. Anal. Math. 134 (2018), no. 2, 597–613. arxiv:1409.0463v1 [math.DS].

[7] I. Assani, Pointwise double recurrence and nilsequences, preprint, 2015, arXiv:1504.05732v2
[math.DS].

[8] P. T. Bateman & S. Chowla, Some special trigonometrical series related to the distribution
of prime numbers. J. London Math. Soc. 38 1963 372–374.

[9] J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404
(1990), pp. 140-161.

[10] J. Bourgain, P. Sarnak, T. Ziegler, Disjointness of Moebius from horocycle flows, From

Fourier analysis and number theory to Radon transforms and geometry, 67-83, Dev. Math.,
28, Springer, New York, 2013.

[11] J. Bourgain, Pointwise ergodic theorems on arithmetic sets, with an appendix on return
time sequences (jointly with H. Fürstenberg, Y. Katznelson, D. Ornstein), Publications
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